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ABSTRACT
Image search is a popular application on web search engines. Issu-
ing a location-related query in image search engines o�en returns
multiple images of maps among the top ranked results. Tradi-
tionally, clicking on such images either opens the image in a new
browser tab or takes users to a web page containing the image.
However, �nding the area of intent on an interactive web map
is a manual process. In this paper, we describe a novel system,
LiveMaps, for analyzing and retrieving an appropriate map view-
port for a given image of a map. �is allows annotation of images
of maps returned by image search engines, allowing users to di-
rectly open a link to an interactive map centered on the location of
interest.

LiveMaps works in several stages. It �rst checks whether the
input image represents a map. If yes, then the system a�empts
to identify what geographical area this map image represents. In
the process, we use textual as well as visual information extracted
from the image. Finally, we construct an interactive map object
capturing the geographical area inferred for the image. Evaluation
results on a dataset of high ranked location images indicate our
system constructs very precise map representations also achieving
good levels of coverage.
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Figure 1: Images of maps on web image search.

1 INTRODUCTION
In this paper, we describe LiveMaps – a system which converts
images of maps into interactive maps by opening an online map
engine to the area of intent located in the original map image.
We are developing this system for use on web image search as
many queries which users issue have location intent (e.g., names
of countries, states, parks, tourist destinations). Frequently, top
results returned by image search contain images of maps, as shown
in Figure 1. It is reasonable to assume that if a user clicks on a
map image, their intent is to explore the map depicted on it in
more detail, which may include zooming in to see more detail, or
scrolling to see neighboring context. If users want to interact with
the maps returned by major image search engines, they are forced
to locate the area of interest on a separate interactive map engine.
A user may a�empt to simply issue the same query on the map
endpoint as they did on the image endpoint, and sometimes they
will get a relevant map viewport, which we use as a baseline in our
experiment section. However, in many situations, the user query
does not contain enough context to recreate the area of geo-intent
contained in the map image. We propose a specialized system
that will annotate images of maps with map viewport information,
allowing a user to directly open an interactive mapwith the relevant
area of geo-intent.

In addition to image search, this system has use cases across the
web. Many news stories and articles discuss locations - news about
international events, economic news, weather forecasts, etc. It is
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Figure 2: Input/Output and LiveMaps architecture.

common to see map images embedded in such articles. Readers
may wish to acquire additional context by exploring closely the
location depicted on the map - zooming in or out, moving the map
viewport around. �is cannot be achieved with the original image
and an interactive map is needed.

Determining the area of geo-intent (a viewport) from a static
map image is challenging due to the inherent noise in analyzing
the image and the sheer size of the search space, ranging from
continents down to postal codes. In addition, the query used to
�nd the image of the map may not contain enough information to
properly locate the area of intent. We propose novel solutions to
address these challenges.

Related work in the area focuses on geo-location inference from
pictures and related metadata [3]. Frequently geo-location determi-
nation is focused on the metadata around an image (e.g., geo-tags,
textual content associated with an image, and referring URLs) [6].
Our work is more related to map digitization [7], in that we a�empt
to understand the map image itself, rather than visually recognizing
landmarks, or skylines [5].

�e paper format is as follows. In Section 2, we describe the com-
ponents of the LiveMaps system. In Section 3, we experimentally
validate our system using hand-labeled images from human judges
against a robust baseline. Finally, in Section 4, we summarize our
system and describe future work.

2 SYSTEM ARCHITECTURE
LiveMaps is comprised of several components, as shown in Figure 2.
Given an image, LiveMaps �rst classi�es whether the image appears
to be of a map. �is is done via an image-based classi�er we call the
IsMap classi�er, explained in Section 2.1. If the image is not a map
then we simply exit without producing any map annotation for the
image. If the image is detected to be of a map, LiveMaps begins to
Featurize the image as explained in Section 2.2. �is consists of a set
of sub-components that derive features from the image. �e output
is a set of features which we combine into a ‘meta query’ that we
pass to our Viewport Search Engine (detailed in Section 2.3) to iden-
tify the area of geo-intent depicted by the image. �e index contains
text documents representing all administrative boundaries in the
world (e.g., countries/cities/states). �e documents also contain
the spatial shape of the location they represent. �is shape is used
to construct the map viewport ultimately returned by the system.
Finally, to ensure high precision, LiveMaps also runs a Re�nement
component which looks at the original image and the derived map
and decides purely visually whether the two look similar. �is is
achieved with a Image-Map Similarity detection classi�er. If the
classi�er says with high con�dence that the image and the derived
map are similar we proceed and annotate the image with our map.
If not we exit without producing any annotation.

2.1 IsMap Classi�er
�e IsMap classi�er is a binary classi�er which uses image analysis
to detect whether an image represents a map. We trained a deep
neural network model with CNTK1 using a pre-trained residual
network of eighteen layers (ResNet-18 [4]). We modi�ed the last
layer to have a so�max binary output - ‘map’ or ‘not map’. As
training data we used approximately 1,500 images of maps anno-
tated from the publicly available ImageNet [1] dataset. We also
sample uniformly at random another ��y thousand non-maps im-
ages from the same set. All inputs are resized to 256x256 using
three (RGB) channels for depth. Figure 3 shows a precision-recall
curve of the model computed on a judged annotate test set DT
which we describe in more details in our evaluation section.

2.2 Featurizer
Given an image, we extract several types of features. Not all fea-
tures may be present for every map image. �e primary feature
comes from the textual information derived from optical charac-
ter recognition (OCR) of the image. Terms from OCR and other
extractors are combined into a query. �e terms in the query can
be weighted based on our con�dence in the accuracy of each ex-
tractor. If there are additional extractors, e.g. image name or text
surrounding the image, we can simply concatenate their output to
the query already constructed by the current extractors. At present
we have two extractors - OCR and Country Detection.

OCR Feature Extractor. Whenever a map image contains ma-
chine readable text, that text becomes a very strong predictor for
the area of geo-intent depicted by the image. We extract the text
from the image with a publicly available OCR library2. For many
images, however, there are numerous problems: the text may be
blurred; OCR may break or merge some terms incorrectly; there
may be many irrelevant image terms, such as map legends. All
these considerations make the OCR input potentially noisy. We
apply a few �ltering rules to eliminate the noisiest of text, however,
frequently the output will contain potentially a majority of OCR’ed
terms that are not relevant to the image. Regardless, this text is
used as the query for matching potential viewports in our Viewport
Search engine, discussed below. Improving OCR for non-traditional
use cases is outside the scope of this paper.

Country Extractor. Many countries have distinctive border shapes
or coastal lines which facilitates learning to detect them visually.
We built a classi�er to predict the presence of a country as follows.

We constructed a training set DC with automatically labeled
images for each of 250 countries by scraping queries of the form
{map of countryi}. We issue these queries against an image search

1h�ps://github.com/microso�/cntk
2h�ps://www.microso�.com/cognitive-services/
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engine and collect the top 150 results per query. We split the dataset
into a training part, approximately 120 images per country, and a
testing part, the remaining images. Note, we make sure that none
of the images in the training set are also in the measurement set
we use later in our experimental evaluation.

UsingDC , we trained a country detection classi�er. �e classi�er
again uses purely visual inputs. Similar to the IsMap classi�er, we
use a pre-trained residual network model of eighteen layers. �e
input is again images of size and depth 256x256x3. �e output layer
in this case is a so�max over 250 categories - one for each of the
top 250 countries and territories in the world. If the model detects
as top category country X with score larger than 0.80, then we add
the top country to the overall meta query which we construct. �is
feature extractor is especially important when there is no text or the
text is too li�le or blurred for the OCR extractor to read it correctly
(Fig 3). At present the model is trained only to detect countries. We
are currently augmenting it with other locations with distinctive
shapes, e.g. islands or states.

2.3 Viewport Search Engine
Once an image is featurized, we generate a query to for our View-
port Search Engine. We utilize standard search engine technology
(referred to as our ‘index’) for retrieving and ranking documents.
Our assumption is that the featurizers from above will extract
textual information from the map image indicative about the ad-
ministrative entity it depicts, and that we can retrieve a document
about that same administrative entity with said textual information.
For example, if an image contains the terms “San Francisco, Oak-
land, Los Angeles, Sacramento, San Diego”, presumably the highest
ranking document returned from our index will be the document
for California. �e documents contained in our index represent
each administrative district worldwide (e.g., a document for the
United States, one for California, one for San Francisco). Each doc-
ument contains textual information representing the contents of
that administrative boundary (e.g., the United States document has
a list of popular cities and all states). �e document also contains
the geometry of the entity, as well as a bounding box, which is
passed to the Re�nement step.

In the matching phase, we generate a query from the OCR text.
�e index �nds documents with some minimum number of match-
ing query terms, and in the ranking phase, the text from an image
will be matched and featurized for ranking the �nal list of docu-
ments. �e index uses a machine-learned model we trained (Gra-
dient Boosted Regression Trees [2]) for ranking of documents on
a number of features: administrative level (country/city/state/etc),
number of matching phrases, TF-IDF scores, etc. For trainingwe use
the 2K locations discussed in the next section with their viewports
as returned by the map search engine. We then apply a threshold to
determine whether the top ranking document should be passed to
the next step for further re�nement or if we should exit and return
nothing.

2.4 Re�nement
If the system generates a map which does not correctly represent
the area of geo-intent from the image, this leads to a poor user
experience. To avoid this and improve the precision of the system,
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Figure 3: Le�: P/R curve for the IsMapmodel. Center: Coun-
try classi�er, top category and score: (Barbados:0.982); right:
(Switzerland:0.963).

we built a re�nement component. �is component runs an Image-
Map Similarity classi�er: the classi�er looks at the original image
and the map that was generated on the previous step and compares
them visually. If the two are found to be similar, we proceed with
the process, otherwise LiveMaps exits without returning a map to
the user. To compare a map to an image, we �rst convert the map
itself into an image using a web-based map API. Now the problem
reduces to one of comparing whether two images are similar.

Training data: to train the Image-Map Similarity model, we con-
struct a dataset of pairs of images. For each of 2K location entities
(e.g. countries, cities, states, islands) collected from Wikipedia, we
construct a query qi = {map of locationi}. We issue the queries
against a web image search scraping the top 5 results, e.g. for query
qi we obtain s

j
i (j = 1..5). We then issue the queries against a web

map search API3 obtaining one map imagemi . We now construct
pairs. A pair has a positive label (mi , s

j
i ) = 1 if both were scraped

by the same query qi , e.g. both are likely to represent {France}.
�is gives us approximately 10K positive pairs. We also generate
negative pairs by matching (mi , s

j
k ) = 0 - the map search result for

a query qi with the image search result for a query qk . We sample
50K such negative pairs.

Training method: From each pair we construct input of size and
depth 256x256x6, i.e. using six depth channels, three from each
image in the pair. We train a convolutional neural network (CNN)
with two convolutional layers followed by MaxPooling and a dense
layer with Dropout. �e output layer is a so�max binary output
predicting whether the map and the image are ‘similar’ or ‘not-
similar’. �is step signi�cantly increases precision at the cost of
some recall.

3 EVALUATION
Datasets. To evaluate the end-to-end precision and recall of our
system we use the following datasets.

3h�ps://msdn.microso�.com/en-us/library/�701713.aspx

Baseline LiveMaps
θ ≥ 0.0 θ ≥ 0.1 θ ≥ 0.5 θ ≥ 0.9

Precision 0.58 0.86 0.89 0.91 0.93
Recall 0.54 0.17 0.14 0.09 0.05
Avg S 0.30 0.45 0.46 0.47 0.50

Table 1: Results on the DMT dataset where Si ≥ 0.2 and θ is a
threshold for the Image-Map Similarity model scores.
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Figure 4: Le�: Source map image. Right: Viewports of Baseline, Human Judge, and LiveMaps. We measure correctness via
Equation 1 against the judge’s viewport. LiveMaps: si = 0.307, Baseline: si = 0.002.

DT : Constructed by sampling 20K queries from the image search
tra�c over a period of several months. Judges labeled 670 of the
queries as having ‘location intent’, among them queries such as
{Acadia national park}, {island of Oahu}, etc. For each of the 670,
queries we scraped the top 30 results from image search. We thus
obtained a dataset of approximately 20K images. �e set was labeled
by judges who identi�ed 3,500 images from it as maps images.
DMT : �e subset of 3,500 maps images from the DT test set.

We asked the judges to use map search and capture the corner
coordinates of the map viewport best representing the map from
the image. �e evaluation results in this section are computed on
this set using the viewports derived from the judges.

Metric. For an image i ∈ DMT , let V J
i be the map viewport

created by our human judges and V L
i be the viewport as provided

by LiveMap. We compute a measure of quality of the system by
comparing the extent of overlap between its viewports and the
judge’s viewport. In particular, we compute the quantity:

Si =
V J
i ∩V

L
i

V J
i ∪V

L
i

(1)

When V J
i ≈ V L

i we have Si → 1, and when V J
i ∩ V

L
i = ∅ we

have Si = 0.
Translations in the viewport, or in zoom level can cause drop

in the similarity score Si , but the derived viewports may still be
acceptable. Based on multiple observations we see that an overlap
of Si ≥ 0.2 indicates a viewport which judges would consider
an acceptable representation of the original map image. Figure 4
shows an example where the judged viewport (rectangle with the
word ‘Judge’ in lower le�-hand corner) has similarity of Si = 0.307
with the LiveMaps viewport (labeled ‘LiveMaps’). Both viewports
capture the area of geo-intent from the image, the Florida keys, but
judges have used a tighter zoom level than the system. While the
Judge’s viewport is more accurate to the original image, LiveMaps
still returns an acceptable result. LiveMaps could be improved by
cropping the returned administrative bounding box (viewport) to
more accurately represent the image.

Baseline. In the core of the DMT dataset are image search
queries. A natural question is: If the image search query is, say
{France}, should we forward it to maps search and display what-
ever map is returned? We refer to this as the Baseline. As we will

show, this works some of the time, but the precision is unusably
low.

Results. As stated, we assume that if for an image i we have
Si ≥ 0.2 then we have constructed a viewport which accurately
represents the image, i.e., we count this example as a true positive
in computing precision and recall. Table 1 shows the performance
of LiveMaps on the DMT dataset and compares it with Baseline. For
LiveMaps, we vary the threshold θ over the scores of the Image-Map
Similarity model, where a threshold of 0 indicates the similarity
model isn’t being used - in which case the average S is 0.45. For
instance, if we set θ ≥ 0.5 we return a viewport for an image only if
the Image-Map similaritymodel says that they are similar with score
more than 0.5. For the images that pass the similarity threshold and
a minimum index document score we compute the metric Si , and
for the rest we say that we have not recalled them. We assume that
all queries have valid answers in our index, and therefore recall
is computed over all queries. As can be seen from the table, if we
impose very strict requirements on the visual similarity between
image and derived map (θ ≥ 0.9) the system achieves very high
precision (number of returned viewports with metric Si ≥ 0.2).

4 CONCLUSION
In this paper, we propose a novel system for annotating images
of maps with their areas of geo-intent, to be used for opening
interactivemap engines on the area of interest matching the original
image. �e system achieves high precision, as is required for a user-
facing service, and our next steps will be research into more feature
extractors to improve recall.
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