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Abstract This paper considers the suitability and 
efficiency of a highly parallel computer, the ICL 
Distributed Array Processor (DAP), for document 
clustering. Algorithms are described for the 
implementation of the single-pass and reallocation 
clustering methods on the DAP and on a 
conventional mainframe computer. These methods are 
used to classify the Cranfield, Vaswani and UKCIS 
document test collections. The results suggest 
that the parallel architecture of the DAP is not 
well suited to the variable-length records which 
characterise bibliographic data. 
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1. INTRODUCTION 

Cluster analysis, or automatic classification, is 
the name which is given to a range of techniques 
for the classification of datasets. By looking at 
similarities between objects in the dataset, it is 
possible to identify groups, or clusters, of 
objects which are alike in some way. The 
applications of cluster analysis are widespread 
(Jardine and Sibson, 1971; Anderberg, 1973; Dubes 
and Jain, 1980). In the information retrieval 
context, cluster analysis has been used for the 
clustering of documents, where the similarities 
are derived from the numbers of terms in common 
between documents, and for the clustering of 
terms, where the similarities are derived from the 
numbers of documents in which terms co-occur 
(Salton and McGill, 1983). Interest in document 
clustering for information retrieval arises from 
its potential for improving the efficiency and 
effectiveness of retrieval, as well as providing 
an alternative to the conventional Boolean search 
strategies (van Rijsbergen, 1979; Salton and 
flcGill, 1983; Vorhees, 1985). 
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Clustering methods can be broadly divided 
into two types: hierarchic methods and non- 
hierarchic, or partitioning, methods. The 
hierarchic methods use an NxN similarity matrix, 
containing the pairwise similarities in a dataset 
of size N objects, to create a nested set of 
clusters. The non-hierarchic methods divide a 
dataset into a single level partition, with or 
without overlap between the clusters; the same 
method can then be applied to the resulting 
partition to produce a hierarchy of partitions. 
Both types of method have been used for document 
collections. The extensive clustering experiments 
carried out in the SMART Project (Salton, 1971) 
used a variety of non-hierarchic methods; more 
recent work (Croft, 1977; Griffiths et al., 1984; 
Vorhees, 1985) has used the hierarchic methods. 
These have been shown to be substantially more 
effective for retrieval than the non-hierarchic 
methods; however, they are substantially less 
efficient in operation since the non-hierarchic 
methods do not involve the calculation and 
processing of the inter-document similarity matrix 
(which has a time requirement of at least order 
O(N-) for a collection of N documents). 

Clustering methods require the calculation of 
the similarity between items; for this, some 
similarity or distance function is required, and a 
number of similarity functions have been applied 
to the clustering of document collections (Salton 
and McGill, 1983). The one used in the work 
reported here, the Dice Coefficient, is typical; 
for two objects, D I and Dj, the coefficient is 
given by 

S(DI ,D J )  = 2 .  I ~ d i K * d j K / ( I E : d i K  + l ~ d j K )  

where D = (d -,d -,...,d ), T is the number of 
I II .I . IT 

terms In the In~exlng vocabulary, dr~ Is the 
weight of the K'term in the I'th object,'~nd where 
the summations are from K=I to K=T. In information 
retrieval applications, many of the d elements 
will be zero-valued, and it is often t~ case that 
only the non-zero elements are stored. In a 
typical document clustering routine, the objects 
are either documents or clusters, and this 
function must be evaluated for each and every 
document-document or document-cluster pair, making 
clustering a computationally demanding process. 
There has thus been considerable interest in the 
development of algorithms which can allow these 
similarities to be calculated as efficiently as 
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possible (Croft, 1977; Willett, 1981; Vorhees, 
1985). An alternative way of increasing clustering 
efficiency is by the use of parallel computer 
hardware; which allows some or many similarities 
to be calculated simultaneously. Many types of 
parallel machine have been developed, and these 
have been comprehensively surveyed by Hwang and 
Briggs (1984). In Flynn's typology (1966), 
conventional serial machines are designated as 
SISD - single instruction stream, single data 
stream; that is, instructions are executed 
sequentially on a serial stream of data items. 
Parallel machines are either single instruction 
stream, multiple data stream (SIMD) or multiple 
instruction stream, multiple data stream (MIMD), 
according to whether the processors act 
synchronously or independently. Parallel 
algorithms may be inherently suitable for SIMD or 
MIMD machines according to their requirements for 
communication; control and processor geometry 
(Kung, 1976). 

Most parallel computers have been developed 
for the study of scientific problems which involve 
extensive numeric computations; non-numeric 
applications of parallel processors are less well 
developed, with most attention being given to the 
development of hardware support for database 
management operations (Hsaio, 1983). There have 
been several studies of the use of parallel 
processors for clustering, but this has 
principally been for pattern recognition and image 
segmentation a~,plications (Jackson et al., 1982; 
Ni, 1985; White, 1985). However, the nature of 
document clustering suggests that it is a suitable 
candidate for parallel processing since, as Salton 
and Bergmark (1981) note, there is a high degree 
of parallelism in the calculation of a set of 
inter-document similarity coefficients: the same 
operation must be repeated many times on different 
data, and the results of the individual 
calculations are not interdependent. This type of 
parallelism is ~ll suited to an SIMD processor, 
for example an array processor (Hwang and Briggs, 
1984), which tun evaluate large numbers of 
similarity coefficients simultaneously by 
providing each processing element in the array 
with the data required for a single calculation, 
and matching a specified document against all of 
the elements in parallel. If there are N 
processors, then the time complexity of computing 
the elements ~of an NxN similarity matrix reduces 
from order O(N ~) to order O(N) if there are no 
serial bottlenecks or inter-processor 
communications costs which interfere significantly 
with the parallelism. Some initial studies of the 
use of a parallel array processor for calculating 
query-document similarity coefficients have been 
reported by Pogue and Willett (1984) who compared 
serial nearest neighbour document retrieval on 
such a processor with that on a conventional 
mainframe computer. Repeated nearest neighbour 
calculations lie at the heart of most clustering 
methods and an array processor should thus also be 
appropriate to this type of processing. 

The work described in this paper is an 
examination of the suitability of a parallel 
processor, the ICL Distributed Array Processor 
~DAP), for clustering large document collections 
u~ir.q the single-pass and reallocation clustering 

methods. In particular, the efficiency of the DAP 
for document clustering will be compared with that 
of a large serial mainframe, the IBM 3083 BX. 
After a brief description of the DAP and of the 
document collections which were used, Section 3 
discusses the two clustering methods and Section 4 
the algorithms which were used to implement them 
on a DAP and on an IBM 3083 BX. The experimental 
results are presented and discussed in Section 5. 
The paper closes with our conclusions and 
suggestions for future work. 

2. EXPERIMENTAL DETAILS 

2.1 The ICL Distributed Array Processor 

The DAP is a highly parallel, SIMD machine with 
large numbers of processing elements, or PEs, 
linked in a 2-D array; the DAP used in our 
experiments contained a total of 4096 PEs. The 
PE's are arranged in a 64x64 matrix and receive 
instructions broadcast from a Master Control Unit 
(MCU) so that processing activity is identical in 
all PEs (though for a particular operation it is 
possible to designate a PE as active or inactive 
through the use of a logical mask). Processing 
within each PE is bit-serial in nature and 
relatively slow; however, the great number of PEs 
means that very high processing rates can be 
obtained, given an appropriate algorithm which can 
map the problem under investigation onto the 
processor array. Each PE has an associated 16 
Kbits of storage, for a total of 8 Mbytes, with 
all data input and output being carried out via a 
host ICL 2980 mainframe. The programming language 
used is DAP FORTRAN, a version of FORTRAN with 
additional parallel functions and operations. More 
detailed descriptions of the DAP hardware and 
software are provided by Parkinson (1982), Hunt 
and Reddaway (1983) and by Carroll et al. (1987). 

2.2 Performance measurement 

The performance of a parallel computer is normally 
expressed in terms of the speed-up; the speed-up 
with P processors, S(P), is defined by 
S(P)=T(P)/T(1) where T(1) and T(P) are the run- 
times to perform some operation on I and P 
processors respectively. Parkinson and Liddell 
(1983) suggest that this definition is not 
applicable to an array processor like the DAP, 
where T(1) has no real meaning. Moreover, the 
algorithms which are best suited to a parallel 
processor are often not those most appropriate on 
a serial processor which further complicates the 
comparison. The approach taken here is to note the 
time required by a serial processor running a 
range of algorithms for the clustering task, and 
then to compare this with the time required for 
the same task by a parallel algorithm running on 
the DAP. 

Three document collections were used as 
detailed in Table I. In each collection, the 
keywords representing a document were stemmed 
using an automatic suffix stripping routine; the 
documents were then represented by lists of stem 
numbers. 
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Table 1: Characteristics of Test Collections 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Collection Cranfield UKCIS Vaswani 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Number of 1400 27361 11429 
documents 

Most terms 101 25 105 
per document 

Mean terms 28.7 6.7 20.3 
in a document 

Total postings 40241 182414 231920 

All clustering runs were carried out on the 64x64 
DAP at Queen Mary College, London, and on a 
conventional mainframe computer, this being an IBM 
3083 BX at the University of Sheffield; the cycle 
times of these two machines are 200 and 24 
nanoseconds respectively. The DAP programs were 
encoded in DAP-FORTRAN and the IBM programs in 
FORTRAN/VS using the level-3 optimising compiler. 
All of the data needed for each of the runs was 
loaded into main memory so that the recorded run- 
times do not include input-output operations. 

3. CLUSTERING PROCEDURES 

Two non-hierarchic clustering methods are studied 
in this report, these being the single-pass method 
and the reallocation method. 

The single-pass method, the simplest of the 
partitioning methods, operates as follows (Salton, 
1971; Fritsche, 1974; Willett et al., 1986): 

1= 

2. 

3. 

Make the first document the representative 
for Cluster 1. 
For the next item, calculate the 
similarity, S, with each existing cluster 
representative, using some standard 
similarity coefficient. 
If the highest calculated S is greater 
than some specified threshold value, SMAX, 
add the document to the corresponding 
cluster and redetermine the cluster 
representative; otherwise, use the 
document to initiate a new cluster. If any 
documents remain to be clustered, return 
to Step 2. 

This method requires only one pass through the 
dataset, and hence its name; the time requirements 
are typically of order O(NlogN) for order O(logN) 
clusters. This makes it a very efficient 
clustering method on a serial processor. A 
disadvantage is that the resulting clusters are 
not independent of the order in which the 
documents are processed, with the first clusters 
formed usually being larger than those created 
later in the clustering run. However the 
simplicity of the method makes it a suitable 
candidate for initial clustering work on the DAP, 
and it serves to demonstrate the link between 
clustering requirements and hardware restrictions. 
Moreover, the clusters created in the single pass 
method provide a useful starting position for the 
reallocation method. 

Reallocation methods, in which items are 
moved between clusters until a stable arrangement 
is reached, are computationally more demanding 
than the single pass methods. It is possible, 
however, to overcome the order dependence of 
single-pass methods, without the computational 
investment required for hierarchical methods 
(Willett, 1980). Typically, a reallocation 
algorithm is as follows: 

I. Select M cluster representatives or 
centroids. 

2. Assign each document in the set to the 
most similar centroid. 

3. Recalculate the cluster centroids. 
4. Steps 2 and 3 constitute one pass through 

the file. If none, or less than some user- 
specified number of documents have changed 
cluster membership, stop; otherwise return 
to Step 2 for another pass through the 
file. 

Although in theory most reallocation methods will 
converge (i.e., require no further changes in 
cluster membership) (Anderberg, 1973), there is no 
upper bound to the number of passes which may be 
required. However, in practice,four or five passes 
through the dataset are usually sufficient to 
provide clusters in which no, or relatively 
little, further movement is required (Willett, 
1980; Willett et al., 1986). 

A number of ways of specifying the initial M 
cluster centres have been suggested, including 
using M randomly selected items (Forgy, 1965), 
using the first M documents when ranked in order 
of similarity with the centroid of the entire 
collection (Hartigan and Wong, 1979), or using the 
set of centroids resulting from an initial single 
pass procedure (Hartigan, 1975); this last 
approach is well documented and is used in the 
work described here. 

The description of the two methods 
illustrates the central importance of nearest 
neighbour searching, since both are based upon the 
repeated assignment of documents to the most 
similar cluster. Accordingly, much of our work has 
been devoted to considering the implementation of 
the nearest neighbour components of the methods. 
Specifically, three nearest neighbour algorithms 
(SA, SB and SC) were implemented on the serial IBM 
processor and a parallel nearest neighbour 
algorithm on the DAP; this work is discussed in 
the following section. 

4. IMPLEMENTATION OF THE CLUSTERING METHODS 

4.1 Serial nearest neighbour searching algorithms 

Three nearest neighbour algorithms (SA, SB and SC) 
were implemented on the IBM 3083 processor. 

Algorithm SA. This algorithm was used by Pogue and 
Willett (1984) in their study of best match 
retrieval. For every document-cluster pair which 
needs to be compared, pointers are maintained in 
both the document and cluster term lists; these 
pointers are moved asynchronously along the lists 
term by term, incrementing the similarity value as 
matches are found. The algorithm assumes that the 
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lists of document terms have previously been 
sorted into order. In pseudocode, the process is 
represented as follows, where N and M are the 
numbers of documents and clusters and where P and 
Q are the numbers of terms in the current document 
and in the current cluster representative: 

DO FOR 1 TO N 
DO FOR I TO M 

I := I 
J := 1 
DO WHILE (I <= P) AND (J <= Q) 

IF DocumentTerm(I) > ClusterTerm(J) 
THEN J := J+1 
ELSE IF DocumentTerm(I) < ClusterTerm(J) 

THEN I := I+1 
ELSE 

add the term weight to the 
similarity value 

I := I+1 
J := J+1 

Calculate the similarity coefficient. 

P+Q comparisons are required for each document- 
cluster pair. 

Algorithm SB. In this algorithm, the document to 
be clustered is converted to a logical record; it 
is stored as a bit string with the I'th bit set to 
true if the I'th term has been assigned to the 
document (1 <= I <= T). Thus, the similarity 
calculation for a document-cluster pair involves 
using each cluster term value as an index to the 
document bit string: 

DO FOR I TO N 
Convert the current document to logical form 
DO FOR 1 to M 

J :: 1 
DO WHILE J <= Q 

IF DocumentTerm(ClusterTerm(J)) is True 
THEN add the term weight to the 

similarity value 
J := J+1 

Calculate the similarity coefficient. 

The number of comparisons required for each 
document-cluster pair is simply Q, the length of 
the cluster term list, and is independent of P. 

Algorithm SC. Algorithms SA and SB are based on 
the use of the serial file organisation, in which 
the current document is matched against one 
cluster after another. Efficiencies of operation 
on a serial processor can be obtained by use of 
the inverted file organisation; this limits the 
number of document-cluster similarity calculations 
which need to be carried out. Croft (1977) has 
demonstrated the use of the inverted file to 
eliminate the calculation of zero-valued 
similarity coefficients, this being achieved by 
carrying out pairwise calculations for documents 
which occur in the same inverted file lists. 
Further improvements are possible (Willett, 1981; 
Perry and Willett, 1983) if terms in the cluster 
representatives are stored in the form of an 
inverted file; the document term list can then be 
used as indices to the inverted term-cluster lists 
which are needed for the similarity calculation. 
The algorithm is as follows: 

DO FOR 1 to N 
I := 1 
DO WHILE I <= P 

Access the inverted file list 
corresponding to DocumentTerm(I) 

DO FOR I to NumberOfClusterOccurrences 
in this list 
Add the term weight to the similarity 

value corresponding to the current 
cluster 

I := I+I 
DO FOR 1 TO M 

Calculate the similarity coefficient. 

The similarity coefficient is computed only for 
those clusters which have terms in common with the 
document. SC is the algorithm most unlike the 
parallel algorithm described below, since it 
attempts to improve efficiency by limiting the 
number of calculations required rather than by 
making the calculations faster as in algorithms SA 
and SB (where all of the document-cluster 
similarity coefficients are calculated). 

4.2 Parallel nearest neighbour searching algorithm 

A basis for using the parallelism in the DAP 
hardware is provided by the observation that it is 
possible to store each cluster in a separate PE. 
As each document is processed in turn it is 
compared with all of the PEs which contain a 
cluster, thus allowing the simultaneous matching 
of the current document with all of the existing 
clusters (for M <= 4096). Once the contribution to 
the similarity value of all matching terms has 
been tallied, the remaining calculation (dividing 
by the denominator in the Dice Coefficient) can 
also be carried out in parallel. An intrinsic DAP 
FORTRAN function selects the maximum similarity 
value from the 64x64 matrix of PEs, thus 
completing the comparison of a document with all 
clusters. 

The question then arises as to how the 
matching operations should be implemented on the 
DAP; it seems that none of the three serial 
algorithms can be implemented in a manner which 
makes substantial use of the parallelism inherent 
in the hardware. A characteristic of the DAP is 
that processing must be carried out on the same 
relative location in each of the local storage 
areas associated with each PE; such a common 
storage area is referred to as a plane, and thus 
when an instruction is broadcast from the MCU, all 
processing must be aligned on the same plane. This 
means that a system of asynchronous pointers to 
the cluster terms (as in a parallel version of the 
SA algorithm) cannot be used. The SB algorithm 
involves an inherently serial inspection of each 
cluster representative in turn (for matching 
against the document bit string) and thus has no 
scope for implementing the matching operations in 
parallel. Finally, the SC algorithm also cannot be 
used owing to the Zipfian distribution of the 
numbers of postings in the lists which make up the 
inverted file; while many of the lists contain 
only one or two elementst some contain a very 
large number of postings, and these cannot be 
easily mapped onto the fixed, and limited, storage 
area associated with each PE. 
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The parallel algorithm which was used can 
best be regarded as a modification of algorithm SA 
in which the asynchronous movement of the document 
and cluster pointers is replaced by a broadcasting 
operation in which each term in the current 
document is matched against each of the storage 
locations containing terms in the longest cluster 
representative; by doing this, we ensure that the 
document terms are also matched against each of 
the terms in the representatives of shorter 
clusters (which are filled with dummy values so 
that all representatives are of the same, maximum 
length). The algorithm is thus as follows, where 
QMAX is the number of terms in the longest cluster 
representative: 

DO FOR 1 to N 
I :: 1 
DO WHILE I <= P 

J i= I 
DO WHILE J <= QMAX in parallel 

IF DocumentTerm(I) = ClusterTerm(J) 
in any PE 

THEN add the term weight to the 
similarity value for that cluster 

J := J+1 
I := I+1 

Calculate all similarity coefficients 
in parallel. 

In the worst case, PxQMAX comparisons are required 
(although this value can be reduced somewhat by 
determining when a match with a document term is 
no longer possible and then broadcasting the next 
term). Accordingly, the matching operations 
required here are inherently more time-consuming 
than in the SA algorithm; however, the DAP 
architecture ensures that these PxQMAX comparisons 
result in the calculation of the similarity 
coefficient between a document and all of the 
clusters, and not just one as with the serial 
algorithms. 

Although the number of documents which can be 
clustered by this method is not limited, the 4096 
PEs in the DAP imposes a hardware limitation on 
the number of clusters which can be created. In 
practice, a set of <: 4096 clusters was ensured by 
adjusting the similarity threshold, SMAX, in the 
single-pass method so that no overflow occurred. 
Since the number of clusters is not an inherent 
characteristic of a dataset, and since it is not 
at present possible to identify optimum values for 
any given dataset (Everitt, 1979), such an 
empirical solution related to the DAP's structure 
was considered acceptable. 

The local storage available in each PE is 
used to hold a cluster (i.e., the terms and term 
weights comprising the cluster representative, 
together with associated characteristics such as 
the length of the representative and the number of 
documents in the cluster) as well as the results 
of similarity calculations and the documents 
themselves. It is necessary to set an upper limit 
on the number of documents which can join a 
cluster, particularly in the single-pass method, 
where the clusters which are formed first can 
become very large; the upper limit was set to 20 
documents for the Cranfield and UKCIS datasets and 
to 10 documents for the Vaswani dataset. These 

restrictions were most significant in the largest 
(UKCIS) data set, but after reallocation 
processing less than 2% of the clusters were 
affected. These empirical decisions, though linked 
in this case to features of the DAP, are in fact 
characteristic of partition clustering methods, 
where a range of input parameters (threshold, 
number of clusters, degree of overlap etc.) 
normally need to be supplied. (Salton, 1971; 
Fritsche, 1974). 

4.3 Storage and updating of cluster 
representatives 

The parallel algorithm was used for both the 
single-pass and reallocation methods. The cluster 
representative used in our experiments was an 
ordered list of all the index terms appearing in 
the documents within a cluster, and an associated 
weight for each term corresponding to the number 
of times that • the term occurred in the cluster; 
since the document indexing merely denoted the 
presence or absence of a term in a document, the 
weights represented the number of documents within 
a cluster containing the given term. 

The process of updating the cluster in the 
single-pass method is essentially serial in 
nature, even on the DAP. The document which is to 
be clustered is compared with the representative 
of the cluster to which it is to be assigned, and 
the weights incremented for those terms in the 
representative which are also included within the 
document. In the reallocation method, where 
cluster updating is done at the end of each pass 
of the file, there is a potential for the parallel 
updating of all of the cluster representatives to 
which documents are to be assigned. However, the 
inability of the DAP to simultaneously access 
different planes makes this impossible to achieve 
in practice, and thus each document had to be 
processed in turn. 

5. RESULTS AND DISCUSSION 

5.1 Single-pass method 

The clustering rates (in documents/second CPU 
time) for the single-pass method are given in 
Table 2. The SA algorithm proved much less 
efficient than SB and SC in trials on the 
relatively small Cranfield collection, and was 
therefore not used with the UKCIS and Vaswani 
files. 

Table 2: Single Pass Cluster Rates (in 
Documents/Second) 

I Serial I Serial I Serial 
I A I B I C 
I ....... I ........ I . . . . . . . .  

Cranfield I 40.9 I 94.2 I 331.0 
UKCIS I - I 15.2 I 173.4 
Vaswani I - I 10.7 I 63.0 

Parallel 

5.2 
28.7 
9.9 

As expected, the inverted file SC algorithm 
performed better than the other serial algorithms 
in all of the datasets. The relatively poor 
performance of the parallel algorithm is due to 
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the need to broadcast PxQMAX index terms for each 
document, and to the serial component of the 
algorithm in the form of cluster representative 
update; this relatively simple part of the 
processing was found to require about 20% of the 
observed DAP times. Also, the single-pass method 
is not uniformly parallel, since the number of 
active PEs, which corresponds to the number of 
clusters formed, increases as the run progresses; 
thus, the parallel nature of the DAP only begins 
to play a significant role in increasing the 
efficiency of processing once much of the file has 
already been clustered. This is seen most clearly 
with the Cranfield dataset, where only 1400 
documents, and correspondingly fewer clusters, are 
used thus causing most of the PEs to remain idle 
throughout the processing. 

The parallel algorithm performs better than 
the SB algorithm on the UKCIS file. This can be 
explained by the nature of the file, which 
contains relatively short document descriptions. 
Since the parallel version requires PxQMAX 
comparisons and since short document descriptions 
result in short cluster term lists, PxQMAX is not 
substantially larger than the QMAX or less term 
comparisons required for each document-cluster 
match in the serial procedure. Therefore, short 
document descriptions are processed more 
efficiently than long ones; this advantage is lost 
with the Vaswani file, which has long document 
descriptions, where the SB and parallel algorithms 
perform comparably. 

A feature of both the SA and SB algorithms is 
their dependence on M, the number of clusters 
formed, while the parallel algorithm is 
independent of it (for M <= 4096). It would hence 
be expected that the parallel performance would 
improve relative to the others as the pass through 
the file progresses, and M increases; this 
behaviour is illustrated in Figures 1-3, which 
show the time taken to process the file at various 
points. On the Cranfield file, where the parallel 
algorithm performs poorly for the reasons given 
above, the timing values are erratic: this is due 
to the combined effect of the increased length of 
the longest cluster and of the average length of 
the documents in any file segment. The effect of 
document length is also shown clearly in Figures 2 
and 3; the UKCIS and Vaswani files were processed 
in order of increasing document length, and 
discontinuities in the timing curve occur whenever 
there is a large increase in the maximum cluster 
length. This is particularly marked in the final 
segment of the Vaswani file. 
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Figure 3 
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In general, the patterns noted for the 
single-pass method are repeated here. The inverted 
file (SC) algorithm is best for all files. 
However, the dependence of the SB algorithm on the 
number of clusters, M, which is fixed at the 
beginning of the reallocation processing, has 
caused its performance to deteriorate. The 
parallel algorithm is now clearly superior to SB 
on both the UKCIS and Vaswani files. 

6. CONCLUSIONS 

The results obtained here demonstrate an 
application area where the use of parallel 
processing techniques does not give increases in 
efficiency over the use of a conventional 
processor using a fast serial algorithm. One 
obvious reason for this behaviour is that good 
serial algorithms have been developed over a long 
period, while parallel algorithms are still 

relatively scarce. However, a more important 
factor is that the choice of a good parallel 
algorithm may be so restricted, as it is here, by 
the parallel hardware, that no alternative 
algorithm seems to be available. In the DAP the 
limitations are rigorous and include a relatively 
slow individual processor speed, and an inability 
to address different planes in different PEs 
(which means that it is not possible to implement 
a parallel version of the SA algorithm). To 
compete effectively with the inverted file 
algorithm for document clustering using the 
partition methods discussed here, a faster, more 
flexible type of processor is required. 

5.2 Reallocation method 

The times taken to cluster the same files using 
the reallocation method are shown in Table 3. The 
SA algorithm was again elminated as being too 
slow; SB, though slower than SC, was retained to 
show the effect of calculating all the similarity 
coefficients. 

Table 3: Reallocation Cluster Times (in Seconds) 

J J Serial B I Serial C J Parallel J 
I . . . . . . . . . . .  I . . . . . . . . . .  I . . . . . . . . . .  I . . . . . . . . . .  I 
J Cranfield J 121.1 J 22.5 J 1219.8 1 
I UKCIS I 22352.5 J 1033.4 J 4516.6 1 
J Vaswani J 12230.7 J 988.3 J 7019.6 J 

The times shown are for four iterations. On the 
IBM, the time taken for one SC iteration was up to 
64% longer than required in the single-pass run, 
since the number of clusters was fixed rather than 
increasing during the run. On the DAP, the time 
per iteration was also up to 52% longer since the 
number of comparisons required is dependent on the 
length of the longest cluster, which is stable in 
a reallocation iteration but gradually increasing 
in a single pass run. This increase in cluster 
length more than offsets the decrease in serial 
processing required during cluster representative 
updating. 

The best parallel performance found here was 
on a file of short document descriptions, where 
the number of term matching operations required is 
not large. When the exhaustivity of the document 
indexing is high, the complexity of the parallel 
algorithm means that serial algorithms are much to 
be preferred, especially the inverted file 
algorithm which makes use of the fact that a very 
sparse data matrix needs to be processed and that 
many of the similarities which need to be 
evaluated are zero valued. This is characteristic 
of bibliographic data, where each document is 
indexed by some small number of terms selected 
from a large indexing vocabulary. With fixed 
format data, each record will have all of the 
available fields, and there will be no advantage 
to be gained from the use of an inverted file 
algorithm. Some preliminary clustering experiments 
suggest that such data are much better suited to 
the DAP architecture than the variable length 
records used here, and further work is being done 
in this area. A study on the DAP, implementing the 
Jarvis-Patrick clustering method (Jarvis and 
Patrick, 1973) for a dataset of chemical 
structures, has been completed and will be 
reported in detail elsewhere. In brief, the 
chemical structures are represented as fixed 
format bit strings (denoting the presence or 
absence of predefined chemical substructures). The 
use of this representation with a parallel version 
of algorithm SB allows DAP nearest neighbour 
searching to be accomplished about two to three 
times as fast as nearest neighbour searching on 
the IBM. (The precise degree of speed-up depends 
on the number of nearest neighbours and the size 

138 



of the dataset.) Current work involves the use of 
the DAP for hierarchic clustering of large files 
of fixed format demographic data using Ward's 
method. 

Acknowledgement We thank the staff of the DAP 
Support Unit, Queen Mary College for help with the 
development of our programs, and the British 
Library Research and Development Department for 
funding under grant number SI/G/760. 

7. REFERENCES 

M.R. Anderberg (1973). Cluster Analysis for 
Applications. New York: Academic Press. 

D.M. Carroll, C. Pogue and P. Willett (1987). 
Bibliographic pattern matching using the ICL 
Distributed Array Processor. Journal of the 
American Society for Information Science (in 
press). 

W.B. Croft (1977). Clustering large files of 
documents using the single-link method. Journal 
of the American Society for Information Science 
28: 341-344. 

R. Dubes and A.K. Jain (1980). Clustering 
methodologies in exploratory data analysis. 
Advances in Computers 19: 113-227. 

B.S. Everitt (1979). Unresolved problems in 
cluster analysis. Biometrics 35: 169-181. 

M. Flynn (1966). Very high-speed computing 
systems. IEEE Proceedings 54: 1901-1909. 

E. Forgy (1965). Cluster analysis of multivariate 
data: Efficiency versus interpretability of 
classifications. Biometrics 21: 768. 

M. Fritsche (1974). Automatic Clustering 
Techniques in Information Retrieval. Luxembourg: 
Commission of the European Communities. 

A. Griffiths, L.A. Robinson and P. Willett (1984). 
Hierarchic agglomerative clustering methods for 
automatic document classification. Journal of 
Documentation 40: 175-205. 

J. A. Hartigan (1975). Clustering Algorithms. New 
York: Wiley. 

J.A. Hartigan and M.A. Wong (1979). A k-means 
clustering algorithm. Applied Statistics 28: 
100-108. 

D.K. Hsaio, ed. (1983). Advanced Database Machine 
Architecture. Englewood Cliffs, N.J.: Prentice- 
Hall. 

D.J. Hunt and S.F. Reddaway (1983). Distributed 
processing power in memory. In: The Fifth 
Generation Computer Project. London: Pergamon 
Infotech. pp. 49-62. 

K. Hwang and F.A. Briggs (1984). Computer 
Architecture and Parallel Processing. New York: 
McGraw-Hill. 

A.A. Jackson, H.M. Sykes, and R.S. Blake (1982). 
Drooling - a non-parametric multidimensional 
clustering algorithm for distributed array 
processor. Computer Physics Communications 27: 
351-364. 

N. Jardine and R. Sibson (1971). Mathematical 
Taxonomy. New York: Wiley. 

N. Jardine and C.J. van Rijsbergen (1971). The use 
of hierarchic clustering in information 
retrieval. Information Storage and Retrieval 7: 
217-240. 

R.A. Jarvis and E.A. Patrick (1973). Clustcr~n~ 
using a similarity measure based on shared near 
neighbors. IEEE Transactions on Computers C-22: 
1025-1034. 

H.T. Kung (1976). Synchronized and asynchronous 
parallel algorithms for multiprocessors. In: 
Algorithms and Complexity: New Directions and 
Recent Results. New York: Academic Press. pp. 
153-200. 

L.M. Ni (1985). A VLSI systolic architecture for 
pattern clustering. IEEE Transactions on Pattern 
Analysis and Machine Intelligence PAMI-7: 80-89. 

D. Parkinson (1982). Practical parallel processors 
and their uses. In: Parallel Processing Systems. 
Cambridge: Cambridge University. pp. 215-236. 

D. Parkinson and H.M. Liddell (1983). The 
measurement of performance on a highly parallel 
system. IEEE Transactions on Computers C-32: 32- 
37. 

S.A. Perry and P. Willett (1983). A review of the 
use of inverted files for best match searching 
in information retrieval systems. Journal of 
Information Science 6: 59-66. 

C. Pogue and P. Willett (1984). An evaluation of 
document retrieval from serial files using the 
ICL Distributed Array Processor. Online Review 
8: 569-584. 

G. Salton, ed. (1971). The SMART Retrieval System: 
Experiments in Automatic Document Processing. 
Englewood Cliffs, N.J.: Prentice-Hall. 

G. Salton and D. Bergmark (1981). Parallel 
computation in information retrieval. Lecture 
Notes in Computer Science 111: 328-342. 

G. Salton and M.J. McGill (1983). Introduction to 
Modern Information Retrieval. New York: McGraw- 
Hill. 

E. Vorhees (1985). The Effectiveness and 
Efficiency of Agglomerative Hierarchical 
Clustering in Document Retrieval. Cornell 
University: PhD thesis. 

R.A. White (1985). Data structures for 
implementing the CLASSY algorithm on the MPP. 
In: The Massively Parallel Processor. Cambridge, 
Mass.: MIT. pp. 31-61. 

P. Willett (1980). Document clustering using an 
inverted file approach. Journal of Information 
Science 2: 223-231. 

P. Willett (1981). A fast procedure for the 
calculation of similarity coefficients in 
automatic classification. Information Processing 
and Management 17: 53-60. 

P. Willett, V. Winterman and D. Bawden (1986). 
Implementation of nonhierarchic cluster analysis 
methods in chemical information systems: 
selection of compounds for biological testing 
and clustering of substructure search output. 
Journal of Chemical Information and Computer 
Sciences 26: 109-118. 

139 


