
Non-Hierarchic Document Clustering
Using the

ICL Distributed Array Processor

Edie M. Rasmussen and Peter Willett*
Dept. of Information Studies

University of Sheffield,
Western Bank, Sheffield $10 2TN, U.K.

Abstract This paper considers the suitability and
efficiency of a highly parallel computer, the ICL
Distributed Array Processor (DAP), for document
clustering. Algorithms are described for the
implementation of the single-pass and reallocation
clustering methods on the DAP and on a
conventional mainframe computer. These methods are
used to classify the Cranfield, Vaswani and UKCIS
document test collections. The results suggest
that the parallel architecture of the DAP is not
well suited to the variable-length records which
characterise bibliographic data.

* to whom all correspondence should be addressed

1. INTRODUCTION

Cluster analysis, or automatic classification, is
the name which is given to a range of techniques
for the classification of datasets. By looking at
similarities between objects in the dataset, it is
possible to identify groups, or clusters, of
objects which are alike in some way. The
applications of cluster analysis are widespread
(Jardine and Sibson, 1971; Anderberg, 1973; Dubes
and Jain, 1980). In the information retrieval
context, cluster analysis has been used for the
clustering of documents, where the similarities
are derived from the numbers of terms in common
between documents, and for the clustering of
terms, where the similarities are derived from the
numbers of documents in which terms co-occur
(Salton and McGill, 1983). Interest in document
clustering for information retrieval arises from
its potential for improving the efficiency and
effectiveness of retrieval, as well as providing
an alternative to the conventional Boolean search
strategies (van Rijsbergen, 1979; Salton and
flcGill, 1983; Vorhees, 1985).

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and /o r specific permission.

© 1987 A C M 089791-232 -2 /87 /0006 /0132- -75¢

Clustering methods can be broadly divided
into two types: hierarchic methods and non-
hierarchic, or partitioning, methods. The
hierarchic methods use an NxN similarity matrix,
containing the pairwise similarities in a dataset
of size N objects, to create a nested set of
clusters. The non-hierarchic methods divide a
dataset into a single level partition, with or
without overlap between the clusters; the same
method can then be applied to the resulting
partition to produce a hierarchy of partitions.
Both types of method have been used for document
collections. The extensive clustering experiments
carried out in the SMART Project (Salton, 1971)
used a variety of non-hierarchic methods; more
recent work (Croft, 1977; Griffiths et al., 1984;
Vorhees, 1985) has used the hierarchic methods.
These have been shown to be substantially more
effective for retrieval than the non-hierarchic
methods; however, they are substantially less
efficient in operation since the non-hierarchic
methods do not involve the calculation and
processing of the inter-document similarity matrix
(which has a time requirement of at least order
O(N-) for a collection of N documents).

Clustering methods require the calculation of
the similarity between items; for this, some
similarity or distance function is required, and a
number of similarity functions have been applied
to the clustering of document collections (Salton
and McGill, 1983). The one used in the work
reported here, the Dice Coefficient, is typical;
for two objects, D I and Dj, the coefficient is
given by

S(DI ,D J) = 2 . I ~ d i K * d j K / (I E : d i K + l ~ d j K)

where D = (d -,d -,...,d), T is the number of
I II .I . IT

terms In the In~exlng vocabulary, dr~ Is the
weight of the K'term in the I'th object,'~nd where
the summations are from K=I to K=T. In information
retrieval applications, many of the d elements
will be zero-valued, and it is often t~ case that
only the non-zero elements are stored. In a
typical document clustering routine, the objects
are either documents or clusters, and this
function must be evaluated for each and every
document-document or document-cluster pair, making
clustering a computationally demanding process.
There has thus been considerable interest in the
development of algorithms which can allow these
similarities to be calculated as efficiently as

132

possible (Croft, 1977; Willett, 1981; Vorhees,
1985). An alternative way of increasing clustering
efficiency is by the use of parallel computer
hardware; which allows some or many similarities
to be calculated simultaneously. Many types of
parallel machine have been developed, and these
have been comprehensively surveyed by Hwang and
Briggs (1984). In Flynn's typology (1966),
conventional serial machines are designated as
SISD - single instruction stream, single data
stream; that is, instructions are executed
sequentially on a serial stream of data items.
Parallel machines are either single instruction
stream, multiple data stream (SIMD) or multiple
instruction stream, multiple data stream (MIMD),
according to whether the processors act
synchronously or independently. Parallel
algorithms may be inherently suitable for SIMD or
MIMD machines according to their requirements for
communication; control and processor geometry
(Kung, 1976).

Most parallel computers have been developed
for the study of scientific problems which involve
extensive numeric computations; non-numeric
applications of parallel processors are less well
developed, with most attention being given to the
development of hardware support for database
management operations (Hsaio, 1983). There have
been several studies of the use of parallel
processors for clustering, but this has
principally been for pattern recognition and image
segmentation a~,plications (Jackson et al., 1982;
Ni, 1985; White, 1985). However, the nature of
document clustering suggests that it is a suitable
candidate for parallel processing since, as Salton
and Bergmark (1981) note, there is a high degree
of parallelism in the calculation of a set of
inter-document similarity coefficients: the same
operation must be repeated many times on different
data, and the results of the individual
calculations are not interdependent. This type of
parallelism is ~ll suited to an SIMD processor,
for example an array processor (Hwang and Briggs,
1984), which tun evaluate large numbers of
similarity coefficients simultaneously by
providing each processing element in the array
with the data required for a single calculation,
and matching a specified document against all of
the elements in parallel. If there are N
processors, then the time complexity of computing
the elements ~of an NxN similarity matrix reduces
from order O(N ~) to order O(N) if there are no
serial bottlenecks or inter-processor
communications costs which interfere significantly
with the parallelism. Some initial studies of the
use of a parallel array processor for calculating
query-document similarity coefficients have been
reported by Pogue and Willett (1984) who compared
serial nearest neighbour document retrieval on
such a processor with that on a conventional
mainframe computer. Repeated nearest neighbour
calculations lie at the heart of most clustering
methods and an array processor should thus also be
appropriate to this type of processing.

The work described in this paper is an
examination of the suitability of a parallel
processor, the ICL Distributed Array Processor
~DAP), for clustering large document collections
u~ir.q the single-pass and reallocation clustering

methods. In particular, the efficiency of the DAP
for document clustering will be compared with that
of a large serial mainframe, the IBM 3083 BX.
After a brief description of the DAP and of the
document collections which were used, Section 3
discusses the two clustering methods and Section 4
the algorithms which were used to implement them
on a DAP and on an IBM 3083 BX. The experimental
results are presented and discussed in Section 5.
The paper closes with our conclusions and
suggestions for future work.

2. EXPERIMENTAL DETAILS

2.1 The ICL Distributed Array Processor

The DAP is a highly parallel, SIMD machine with
large numbers of processing elements, or PEs,
linked in a 2-D array; the DAP used in our
experiments contained a total of 4096 PEs. The
PE's are arranged in a 64x64 matrix and receive
instructions broadcast from a Master Control Unit
(MCU) so that processing activity is identical in
all PEs (though for a particular operation it is
possible to designate a PE as active or inactive
through the use of a logical mask). Processing
within each PE is bit-serial in nature and
relatively slow; however, the great number of PEs
means that very high processing rates can be
obtained, given an appropriate algorithm which can
map the problem under investigation onto the
processor array. Each PE has an associated 16
Kbits of storage, for a total of 8 Mbytes, with
all data input and output being carried out via a
host ICL 2980 mainframe. The programming language
used is DAP FORTRAN, a version of FORTRAN with
additional parallel functions and operations. More
detailed descriptions of the DAP hardware and
software are provided by Parkinson (1982), Hunt
and Reddaway (1983) and by Carroll et al. (1987).

2.2 Performance measurement

The performance of a parallel computer is normally
expressed in terms of the speed-up; the speed-up
with P processors, S(P), is defined by
S(P)=T(P)/T(1) where T(1) and T(P) are the run-
times to perform some operation on I and P
processors respectively. Parkinson and Liddell
(1983) suggest that this definition is not
applicable to an array processor like the DAP,
where T(1) has no real meaning. Moreover, the
algorithms which are best suited to a parallel
processor are often not those most appropriate on
a serial processor which further complicates the
comparison. The approach taken here is to note the
time required by a serial processor running a
range of algorithms for the clustering task, and
then to compare this with the time required for
the same task by a parallel algorithm running on
the DAP.

Three document collections were used as
detailed in Table I. In each collection, the
keywords representing a document were stemmed
using an automatic suffix stripping routine; the
documents were then represented by lists of stem
numbers.

133

Table 1: Characteristics of Test Collections

.

Collection Cranfield UKCIS Vaswani
.

Number of 1400 27361 11429
documents

Most terms 101 25 105
per document

Mean terms 28.7 6.7 20.3
in a document

Total postings 40241 182414 231920

All clustering runs were carried out on the 64x64
DAP at Queen Mary College, London, and on a
conventional mainframe computer, this being an IBM
3083 BX at the University of Sheffield; the cycle
times of these two machines are 200 and 24
nanoseconds respectively. The DAP programs were
encoded in DAP-FORTRAN and the IBM programs in
FORTRAN/VS using the level-3 optimising compiler.
All of the data needed for each of the runs was
loaded into main memory so that the recorded run-
times do not include input-output operations.

3. CLUSTERING PROCEDURES

Two non-hierarchic clustering methods are studied
in this report, these being the single-pass method
and the reallocation method.

The single-pass method, the simplest of the
partitioning methods, operates as follows (Salton,
1971; Fritsche, 1974; Willett et al., 1986):

1=

2.

3.

Make the first document the representative
for Cluster 1.
For the next item, calculate the
similarity, S, with each existing cluster
representative, using some standard
similarity coefficient.
If the highest calculated S is greater
than some specified threshold value, SMAX,
add the document to the corresponding
cluster and redetermine the cluster
representative; otherwise, use the
document to initiate a new cluster. If any
documents remain to be clustered, return
to Step 2.

This method requires only one pass through the
dataset, and hence its name; the time requirements
are typically of order O(NlogN) for order O(logN)
clusters. This makes it a very efficient
clustering method on a serial processor. A
disadvantage is that the resulting clusters are
not independent of the order in which the
documents are processed, with the first clusters
formed usually being larger than those created
later in the clustering run. However the
simplicity of the method makes it a suitable
candidate for initial clustering work on the DAP,
and it serves to demonstrate the link between
clustering requirements and hardware restrictions.
Moreover, the clusters created in the single pass
method provide a useful starting position for the
reallocation method.

Reallocation methods, in which items are
moved between clusters until a stable arrangement
is reached, are computationally more demanding
than the single pass methods. It is possible,
however, to overcome the order dependence of
single-pass methods, without the computational
investment required for hierarchical methods
(Willett, 1980). Typically, a reallocation
algorithm is as follows:

I. Select M cluster representatives or
centroids.

2. Assign each document in the set to the
most similar centroid.

3. Recalculate the cluster centroids.
4. Steps 2 and 3 constitute one pass through

the file. If none, or less than some user-
specified number of documents have changed
cluster membership, stop; otherwise return
to Step 2 for another pass through the
file.

Although in theory most reallocation methods will
converge (i.e., require no further changes in
cluster membership) (Anderberg, 1973), there is no
upper bound to the number of passes which may be
required. However, in practice,four or five passes
through the dataset are usually sufficient to
provide clusters in which no, or relatively
little, further movement is required (Willett,
1980; Willett et al., 1986).

A number of ways of specifying the initial M
cluster centres have been suggested, including
using M randomly selected items (Forgy, 1965),
using the first M documents when ranked in order
of similarity with the centroid of the entire
collection (Hartigan and Wong, 1979), or using the
set of centroids resulting from an initial single
pass procedure (Hartigan, 1975); this last
approach is well documented and is used in the
work described here.

The description of the two methods
illustrates the central importance of nearest
neighbour searching, since both are based upon the
repeated assignment of documents to the most
similar cluster. Accordingly, much of our work has
been devoted to considering the implementation of
the nearest neighbour components of the methods.
Specifically, three nearest neighbour algorithms
(SA, SB and SC) were implemented on the serial IBM
processor and a parallel nearest neighbour
algorithm on the DAP; this work is discussed in
the following section.

4. IMPLEMENTATION OF THE CLUSTERING METHODS

4.1 Serial nearest neighbour searching algorithms

Three nearest neighbour algorithms (SA, SB and SC)
were implemented on the IBM 3083 processor.

Algorithm SA. This algorithm was used by Pogue and
Willett (1984) in their study of best match
retrieval. For every document-cluster pair which
needs to be compared, pointers are maintained in
both the document and cluster term lists; these
pointers are moved asynchronously along the lists
term by term, incrementing the similarity value as
matches are found. The algorithm assumes that the

134

lists of document terms have previously been
sorted into order. In pseudocode, the process is
represented as follows, where N and M are the
numbers of documents and clusters and where P and
Q are the numbers of terms in the current document
and in the current cluster representative:

DO FOR 1 TO N
DO FOR I TO M

I := I
J := 1
DO WHILE (I <= P) AND (J <= Q)

IF DocumentTerm(I) > ClusterTerm(J)
THEN J := J+1
ELSE IF DocumentTerm(I) < ClusterTerm(J)

THEN I := I+1
ELSE

add the term weight to the
similarity value

I := I+1
J := J+1

Calculate the similarity coefficient.

P+Q comparisons are required for each document-
cluster pair.

Algorithm SB. In this algorithm, the document to
be clustered is converted to a logical record; it
is stored as a bit string with the I'th bit set to
true if the I'th term has been assigned to the
document (1 <= I <= T). Thus, the similarity
calculation for a document-cluster pair involves
using each cluster term value as an index to the
document bit string:

DO FOR I TO N
Convert the current document to logical form
DO FOR 1 to M

J :: 1
DO WHILE J <= Q

IF DocumentTerm(ClusterTerm(J)) is True
THEN add the term weight to the

similarity value
J := J+1

Calculate the similarity coefficient.

The number of comparisons required for each
document-cluster pair is simply Q, the length of
the cluster term list, and is independent of P.

Algorithm SC. Algorithms SA and SB are based on
the use of the serial file organisation, in which
the current document is matched against one
cluster after another. Efficiencies of operation
on a serial processor can be obtained by use of
the inverted file organisation; this limits the
number of document-cluster similarity calculations
which need to be carried out. Croft (1977) has
demonstrated the use of the inverted file to
eliminate the calculation of zero-valued
similarity coefficients, this being achieved by
carrying out pairwise calculations for documents
which occur in the same inverted file lists.
Further improvements are possible (Willett, 1981;
Perry and Willett, 1983) if terms in the cluster
representatives are stored in the form of an
inverted file; the document term list can then be
used as indices to the inverted term-cluster lists
which are needed for the similarity calculation.
The algorithm is as follows:

DO FOR 1 to N
I := 1
DO WHILE I <= P

Access the inverted file list
corresponding to DocumentTerm(I)

DO FOR I to NumberOfClusterOccurrences
in this list
Add the term weight to the similarity

value corresponding to the current
cluster

I := I+I
DO FOR 1 TO M

Calculate the similarity coefficient.

The similarity coefficient is computed only for
those clusters which have terms in common with the
document. SC is the algorithm most unlike the
parallel algorithm described below, since it
attempts to improve efficiency by limiting the
number of calculations required rather than by
making the calculations faster as in algorithms SA
and SB (where all of the document-cluster
similarity coefficients are calculated).

4.2 Parallel nearest neighbour searching algorithm

A basis for using the parallelism in the DAP
hardware is provided by the observation that it is
possible to store each cluster in a separate PE.
As each document is processed in turn it is
compared with all of the PEs which contain a
cluster, thus allowing the simultaneous matching
of the current document with all of the existing
clusters (for M <= 4096). Once the contribution to
the similarity value of all matching terms has
been tallied, the remaining calculation (dividing
by the denominator in the Dice Coefficient) can
also be carried out in parallel. An intrinsic DAP
FORTRAN function selects the maximum similarity
value from the 64x64 matrix of PEs, thus
completing the comparison of a document with all
clusters.

The question then arises as to how the
matching operations should be implemented on the
DAP; it seems that none of the three serial
algorithms can be implemented in a manner which
makes substantial use of the parallelism inherent
in the hardware. A characteristic of the DAP is
that processing must be carried out on the same
relative location in each of the local storage
areas associated with each PE; such a common
storage area is referred to as a plane, and thus
when an instruction is broadcast from the MCU, all
processing must be aligned on the same plane. This
means that a system of asynchronous pointers to
the cluster terms (as in a parallel version of the
SA algorithm) cannot be used. The SB algorithm
involves an inherently serial inspection of each
cluster representative in turn (for matching
against the document bit string) and thus has no
scope for implementing the matching operations in
parallel. Finally, the SC algorithm also cannot be
used owing to the Zipfian distribution of the
numbers of postings in the lists which make up the
inverted file; while many of the lists contain
only one or two elementst some contain a very
large number of postings, and these cannot be
easily mapped onto the fixed, and limited, storage
area associated with each PE.

135

The parallel algorithm which was used can
best be regarded as a modification of algorithm SA
in which the asynchronous movement of the document
and cluster pointers is replaced by a broadcasting
operation in which each term in the current
document is matched against each of the storage
locations containing terms in the longest cluster
representative; by doing this, we ensure that the
document terms are also matched against each of
the terms in the representatives of shorter
clusters (which are filled with dummy values so
that all representatives are of the same, maximum
length). The algorithm is thus as follows, where
QMAX is the number of terms in the longest cluster
representative:

DO FOR 1 to N
I :: 1
DO WHILE I <= P

J i= I
DO WHILE J <= QMAX in parallel

IF DocumentTerm(I) = ClusterTerm(J)
in any PE

THEN add the term weight to the
similarity value for that cluster

J := J+1
I := I+1

Calculate all similarity coefficients
in parallel.

In the worst case, PxQMAX comparisons are required
(although this value can be reduced somewhat by
determining when a match with a document term is
no longer possible and then broadcasting the next
term). Accordingly, the matching operations
required here are inherently more time-consuming
than in the SA algorithm; however, the DAP
architecture ensures that these PxQMAX comparisons
result in the calculation of the similarity
coefficient between a document and all of the
clusters, and not just one as with the serial
algorithms.

Although the number of documents which can be
clustered by this method is not limited, the 4096
PEs in the DAP imposes a hardware limitation on
the number of clusters which can be created. In
practice, a set of <: 4096 clusters was ensured by
adjusting the similarity threshold, SMAX, in the
single-pass method so that no overflow occurred.
Since the number of clusters is not an inherent
characteristic of a dataset, and since it is not
at present possible to identify optimum values for
any given dataset (Everitt, 1979), such an
empirical solution related to the DAP's structure
was considered acceptable.

The local storage available in each PE is
used to hold a cluster (i.e., the terms and term
weights comprising the cluster representative,
together with associated characteristics such as
the length of the representative and the number of
documents in the cluster) as well as the results
of similarity calculations and the documents
themselves. It is necessary to set an upper limit
on the number of documents which can join a
cluster, particularly in the single-pass method,
where the clusters which are formed first can
become very large; the upper limit was set to 20
documents for the Cranfield and UKCIS datasets and
to 10 documents for the Vaswani dataset. These

restrictions were most significant in the largest
(UKCIS) data set, but after reallocation
processing less than 2% of the clusters were
affected. These empirical decisions, though linked
in this case to features of the DAP, are in fact
characteristic of partition clustering methods,
where a range of input parameters (threshold,
number of clusters, degree of overlap etc.)
normally need to be supplied. (Salton, 1971;
Fritsche, 1974).

4.3 Storage and updating of cluster
representatives

The parallel algorithm was used for both the
single-pass and reallocation methods. The cluster
representative used in our experiments was an
ordered list of all the index terms appearing in
the documents within a cluster, and an associated
weight for each term corresponding to the number
of times that • the term occurred in the cluster;
since the document indexing merely denoted the
presence or absence of a term in a document, the
weights represented the number of documents within
a cluster containing the given term.

The process of updating the cluster in the
single-pass method is essentially serial in
nature, even on the DAP. The document which is to
be clustered is compared with the representative
of the cluster to which it is to be assigned, and
the weights incremented for those terms in the
representative which are also included within the
document. In the reallocation method, where
cluster updating is done at the end of each pass
of the file, there is a potential for the parallel
updating of all of the cluster representatives to
which documents are to be assigned. However, the
inability of the DAP to simultaneously access
different planes makes this impossible to achieve
in practice, and thus each document had to be
processed in turn.

5. RESULTS AND DISCUSSION

5.1 Single-pass method

The clustering rates (in documents/second CPU
time) for the single-pass method are given in
Table 2. The SA algorithm proved much less
efficient than SB and SC in trials on the
relatively small Cranfield collection, and was
therefore not used with the UKCIS and Vaswani
files.

Table 2: Single Pass Cluster Rates (in
Documents/Second)

I Serial I Serial I Serial
I A I B I C
I I I

Cranfield I 40.9 I 94.2 I 331.0
UKCIS I - I 15.2 I 173.4
Vaswani I - I 10.7 I 63.0

Parallel

5.2
28.7
9.9

As expected, the inverted file SC algorithm
performed better than the other serial algorithms
in all of the datasets. The relatively poor
performance of the parallel algorithm is due to

136

the need to broadcast PxQMAX index terms for each
document, and to the serial component of the
algorithm in the form of cluster representative
update; this relatively simple part of the
processing was found to require about 20% of the
observed DAP times. Also, the single-pass method
is not uniformly parallel, since the number of
active PEs, which corresponds to the number of
clusters formed, increases as the run progresses;
thus, the parallel nature of the DAP only begins
to play a significant role in increasing the
efficiency of processing once much of the file has
already been clustered. This is seen most clearly
with the Cranfield dataset, where only 1400
documents, and correspondingly fewer clusters, are
used thus causing most of the PEs to remain idle
throughout the processing.

The parallel algorithm performs better than
the SB algorithm on the UKCIS file. This can be
explained by the nature of the file, which
contains relatively short document descriptions.
Since the parallel version requires PxQMAX
comparisons and since short document descriptions
result in short cluster term lists, PxQMAX is not
substantially larger than the QMAX or less term
comparisons required for each document-cluster
match in the serial procedure. Therefore, short
document descriptions are processed more
efficiently than long ones; this advantage is lost
with the Vaswani file, which has long document
descriptions, where the SB and parallel algorithms
perform comparably.

A feature of both the SA and SB algorithms is
their dependence on M, the number of clusters
formed, while the parallel algorithm is
independent of it (for M <= 4096). It would hence
be expected that the parallel performance would
improve relative to the others as the pass through
the file progresses, and M increases; this
behaviour is illustrated in Figures 1-3, which
show the time taken to process the file at various
points. On the Cranfield file, where the parallel
algorithm performs poorly for the reasons given
above, the timing values are erratic: this is due
to the combined effect of the increased length of
the longest cluster and of the average length of
the documents in any file segment. The effect of
document length is also shown clearly in Figures 2
and 3; the UKCIS and Vaswani files were processed
in order of increasing document length, and
discontinuities in the timing curve occur whenever
there is a large increase in the maximum cluster
length. This is particularly marked in the final
segment of the Vaswani file.

Figure I

20

SECS

15

Figure 2

450

SINGLE PRSS CLUSTERING: CRRNFiELO

SERIRL R
......... . - ' " ' "

• "" SERIRL 8

2 3 4 5 6 7 8 9 tO 1I 12 13 14
FILE SGBMENT (i SEGMENT = 100 RECORDS)

SINGLE PRSS CLUSTERING: UKCIS

L
400 I

350

aDO ,SER)QL B

~ECS. I '"

250] . ' ' ' " ' ' ' ' " " .

200 1

I
:!

FILE SEGMENT (1 ~Z~MENT = 273G RECORDS]

137

Figure 3

SINGLE PASS CLUSTE.~INB: VRSWRNI
350 -

300

o"

250 . '

SEC3

200 ."

$ERZRL B . "

150 • " PRRRLLEL

I00 . " •

~0 . ' "

0 ,

F I L E $EEHEHT {1 SEGMENT = 1143 RECCROS}

In general, the patterns noted for the
single-pass method are repeated here. The inverted
file (SC) algorithm is best for all files.
However, the dependence of the SB algorithm on the
number of clusters, M, which is fixed at the
beginning of the reallocation processing, has
caused its performance to deteriorate. The
parallel algorithm is now clearly superior to SB
on both the UKCIS and Vaswani files.

6. CONCLUSIONS

The results obtained here demonstrate an
application area where the use of parallel
processing techniques does not give increases in
efficiency over the use of a conventional
processor using a fast serial algorithm. One
obvious reason for this behaviour is that good
serial algorithms have been developed over a long
period, while parallel algorithms are still

relatively scarce. However, a more important
factor is that the choice of a good parallel
algorithm may be so restricted, as it is here, by
the parallel hardware, that no alternative
algorithm seems to be available. In the DAP the
limitations are rigorous and include a relatively
slow individual processor speed, and an inability
to address different planes in different PEs
(which means that it is not possible to implement
a parallel version of the SA algorithm). To
compete effectively with the inverted file
algorithm for document clustering using the
partition methods discussed here, a faster, more
flexible type of processor is required.

5.2 Reallocation method

The times taken to cluster the same files using
the reallocation method are shown in Table 3. The
SA algorithm was again elminated as being too
slow; SB, though slower than SC, was retained to
show the effect of calculating all the similarity
coefficients.

Table 3: Reallocation Cluster Times (in Seconds)

J J Serial B I Serial C J Parallel J
I I I I I
J Cranfield J 121.1 J 22.5 J 1219.8 1
I UKCIS I 22352.5 J 1033.4 J 4516.6 1
J Vaswani J 12230.7 J 988.3 J 7019.6 J

The times shown are for four iterations. On the
IBM, the time taken for one SC iteration was up to
64% longer than required in the single-pass run,
since the number of clusters was fixed rather than
increasing during the run. On the DAP, the time
per iteration was also up to 52% longer since the
number of comparisons required is dependent on the
length of the longest cluster, which is stable in
a reallocation iteration but gradually increasing
in a single pass run. This increase in cluster
length more than offsets the decrease in serial
processing required during cluster representative
updating.

The best parallel performance found here was
on a file of short document descriptions, where
the number of term matching operations required is
not large. When the exhaustivity of the document
indexing is high, the complexity of the parallel
algorithm means that serial algorithms are much to
be preferred, especially the inverted file
algorithm which makes use of the fact that a very
sparse data matrix needs to be processed and that
many of the similarities which need to be
evaluated are zero valued. This is characteristic
of bibliographic data, where each document is
indexed by some small number of terms selected
from a large indexing vocabulary. With fixed
format data, each record will have all of the
available fields, and there will be no advantage
to be gained from the use of an inverted file
algorithm. Some preliminary clustering experiments
suggest that such data are much better suited to
the DAP architecture than the variable length
records used here, and further work is being done
in this area. A study on the DAP, implementing the
Jarvis-Patrick clustering method (Jarvis and
Patrick, 1973) for a dataset of chemical
structures, has been completed and will be
reported in detail elsewhere. In brief, the
chemical structures are represented as fixed
format bit strings (denoting the presence or
absence of predefined chemical substructures). The
use of this representation with a parallel version
of algorithm SB allows DAP nearest neighbour
searching to be accomplished about two to three
times as fast as nearest neighbour searching on
the IBM. (The precise degree of speed-up depends
on the number of nearest neighbours and the size

138

of the dataset.) Current work involves the use of
the DAP for hierarchic clustering of large files
of fixed format demographic data using Ward's
method.

Acknowledgement We thank the staff of the DAP
Support Unit, Queen Mary College for help with the
development of our programs, and the British
Library Research and Development Department for
funding under grant number SI/G/760.

7. REFERENCES

M.R. Anderberg (1973). Cluster Analysis for
Applications. New York: Academic Press.

D.M. Carroll, C. Pogue and P. Willett (1987).
Bibliographic pattern matching using the ICL
Distributed Array Processor. Journal of the
American Society for Information Science (in
press).

W.B. Croft (1977). Clustering large files of
documents using the single-link method. Journal
of the American Society for Information Science
28: 341-344.

R. Dubes and A.K. Jain (1980). Clustering
methodologies in exploratory data analysis.
Advances in Computers 19: 113-227.

B.S. Everitt (1979). Unresolved problems in
cluster analysis. Biometrics 35: 169-181.

M. Flynn (1966). Very high-speed computing
systems. IEEE Proceedings 54: 1901-1909.

E. Forgy (1965). Cluster analysis of multivariate
data: Efficiency versus interpretability of
classifications. Biometrics 21: 768.

M. Fritsche (1974). Automatic Clustering
Techniques in Information Retrieval. Luxembourg:
Commission of the European Communities.

A. Griffiths, L.A. Robinson and P. Willett (1984).
Hierarchic agglomerative clustering methods for
automatic document classification. Journal of
Documentation 40: 175-205.

J. A. Hartigan (1975). Clustering Algorithms. New
York: Wiley.

J.A. Hartigan and M.A. Wong (1979). A k-means
clustering algorithm. Applied Statistics 28:
100-108.

D.K. Hsaio, ed. (1983). Advanced Database Machine
Architecture. Englewood Cliffs, N.J.: Prentice-
Hall.

D.J. Hunt and S.F. Reddaway (1983). Distributed
processing power in memory. In: The Fifth
Generation Computer Project. London: Pergamon
Infotech. pp. 49-62.

K. Hwang and F.A. Briggs (1984). Computer
Architecture and Parallel Processing. New York:
McGraw-Hill.

A.A. Jackson, H.M. Sykes, and R.S. Blake (1982).
Drooling - a non-parametric multidimensional
clustering algorithm for distributed array
processor. Computer Physics Communications 27:
351-364.

N. Jardine and R. Sibson (1971). Mathematical
Taxonomy. New York: Wiley.

N. Jardine and C.J. van Rijsbergen (1971). The use
of hierarchic clustering in information
retrieval. Information Storage and Retrieval 7:
217-240.

R.A. Jarvis and E.A. Patrick (1973). Clustcr~n~
using a similarity measure based on shared near
neighbors. IEEE Transactions on Computers C-22:
1025-1034.

H.T. Kung (1976). Synchronized and asynchronous
parallel algorithms for multiprocessors. In:
Algorithms and Complexity: New Directions and
Recent Results. New York: Academic Press. pp.
153-200.

L.M. Ni (1985). A VLSI systolic architecture for
pattern clustering. IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-7: 80-89.

D. Parkinson (1982). Practical parallel processors
and their uses. In: Parallel Processing Systems.
Cambridge: Cambridge University. pp. 215-236.

D. Parkinson and H.M. Liddell (1983). The
measurement of performance on a highly parallel
system. IEEE Transactions on Computers C-32: 32-
37.

S.A. Perry and P. Willett (1983). A review of the
use of inverted files for best match searching
in information retrieval systems. Journal of
Information Science 6: 59-66.

C. Pogue and P. Willett (1984). An evaluation of
document retrieval from serial files using the
ICL Distributed Array Processor. Online Review
8: 569-584.

G. Salton, ed. (1971). The SMART Retrieval System:
Experiments in Automatic Document Processing.
Englewood Cliffs, N.J.: Prentice-Hall.

G. Salton and D. Bergmark (1981). Parallel
computation in information retrieval. Lecture
Notes in Computer Science 111: 328-342.

G. Salton and M.J. McGill (1983). Introduction to
Modern Information Retrieval. New York: McGraw-
Hill.

E. Vorhees (1985). The Effectiveness and
Efficiency of Agglomerative Hierarchical
Clustering in Document Retrieval. Cornell
University: PhD thesis.

R.A. White (1985). Data structures for
implementing the CLASSY algorithm on the MPP.
In: The Massively Parallel Processor. Cambridge,
Mass.: MIT. pp. 31-61.

P. Willett (1980). Document clustering using an
inverted file approach. Journal of Information
Science 2: 223-231.

P. Willett (1981). A fast procedure for the
calculation of similarity coefficients in
automatic classification. Information Processing
and Management 17: 53-60.

P. Willett, V. Winterman and D. Bawden (1986).
Implementation of nonhierarchic cluster analysis
methods in chemical information systems:
selection of compounds for biological testing
and clustering of substructure search output.
Journal of Chemical Information and Computer
Sciences 26: 109-118.

139

