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tive approach (called description-oriented in the follow-

Abstract

We distinguish model-oriented and description-oriented

approaches in probabilistic information retrieval. The

former refer to certain representations of documents and

queries and use additional independence assumptions,

whereas the latter map documents and queries onto fea-

ture vectors which form the input to certain classifi-

cation procedures or regression methods. Description-

oriented approaches are more flexible with respect to

the underlying representations, but the definition of the

feature vector is a heuristic step. In this paper, we

combine a probabilistic model for the Darmstadt Index-

ing Approach with logistic regression. Here the prob-

abilistic model forms a guideline for the definition of

the feature vector. Experiments with the purely the-

oretical approach and with several heuristic variations

show that heuristic assumptions may yield significant

improvements.

1 Int roduct ion

Probabilistic retrieval functions aim at the estimation

of the probability P(R[q~, d~) that a document rim will

be judged relevant by a user with request qk. A large

number of probabilistic models have been developed

for this problem, differing in the assumptions about

the representation of queries and documents and about

the statistical dependence or independence of elements

of these represent at ions. In [Fuhr 89c], an alterna-
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ing) is presented, which adapts concepts from pattern

recognition methods for probabilistic retrieval: First,

request-document pairs (qk, dm ) are mapped onto de-

scription vectors z (qk, dm), where each component gives

the value of a specific feature of the pair (q~, d~) (e.g.

the number of terms common to query and document,

the sum of the weights of these terms w.r.t. the doc-

ument, the total number of terms in the document).

Second, a regression method (i.e. least square polyno-

mials) is applied in order to develop a retrieval func-

tion e(z) such that it yields estimates of the probability

P(Rlz(q~, din)). For this purpose, a learning sample of

request-document pairs with relevance j~dgements must

be given. A major advantage of the description-oriented

approach is its flexibility with respect to the underly-

ing representations. In the model-oriented approach,

most changes of the representation (e.g. considering

the within-document frequency of a term instead of re-

garding only the presence or absence of a term) would

require the formulation of a new probabilistic model.

With the description-oriented approach, only the set of

features that are included in the description vector has

to be revised.

A second advantage of the description-oriented ap-

proach is its adaptability to the amount of learn-

ing data available. For example, several depen-

dence models have been developed [Rljsbergen 77]

[Yu et al. 83] in order to overcome the limitations of the

binary independence retrieval model [Yu & Salton 76]

[Robertson & Sparck Jones 76]. However, due to the
small size of the learning samples available, parame-

ter estimation problems lead to worse retrieval results

for the dependence models in comparison to those of

the independence models. In the description-oriented

approach, only the number of features considered in

the description vector has to be modified according

to the size of the learning sample. As described in

[Fuhr & Buckley 90] [Fuhr & Buckley 91] (for the case

of indexing functions), the description vector represents

an abstraction from specific elements (queries, docu-

ments, or terms), and the level of abstraction can be
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chosen according to the amount of learning data avail-

able.

On the other hand, a major disadvantage of the
description-oriented approach is the heuristics employed

in the definition of the description vector. In order to

optimize the retrieval function, a large series of experi-

mentswith varying definitions has to be performed (al-

though fairly good functions can be achieved with little

effort).

In this paper, we try to combine both approaches. As

application, we regard indexing functions (instead of re-

trieval functions). In probabilistic document indexing,

we seek for the estimation of the probability P(Clsi, CZm)

that the asssigment of the indexing term Si to the doc-

ument dm is correct; the decision about the correctness

can be specified either explicitly (by comparison with

manual indexing) or implicitly (derived from relevance

judgments, see [Fuhr & Buckley 91]). This task is ana-

logous to the retrieval problem: Instead of a query, we

regard a single index term (from a prescribed indexing

vocabulary), and relevance is replaced by correctness.

As a major advantage, we have large learning samples

available for our experiments.

For the combination of both approaches, we present a

new probabilistic indexing model, which can be trans-

formed into a log-linear form. This kind of function

allows the application of logistic regression, where the

model leads us to the definition of the description vec-

tor. The regression method generalizes the model and

fits the parameters of the function to the data.

In the following, we first present the probabilistic in-

dexing model. Then we describe the logistic regression

method and show how this method can be combined

with log-linear models. Section 5 presents the test set-

ting and the evaluation methods used for our exper-

iments, followed by the experimental results given in

section 6.

2 A new probabilistic model for

the Darmstadt Indexing Ap-

proach

The “Darmstadt Indexing Approach” (DIA) is a

dictionary-based approach for automatic indexing from

document titles and abstracts, with index terms (called

descriptors here) from a prescribed indexing vocabulary

([Fuhr 89b] [Fuhr et al. 91]). For the task of mapping

text content onto the set of descriptors, the approach

needs an indexing dictionary containing term-descriptor
rules for as many terms (i.e. words or phrases) of the

application field as possible. Furthermore, the indexing

dictionary contains term-specific and descriptor-specific

information. This data can be derived automatically

from a large sample of manually indexed documents (see

below).

The indexing process starts with the identification of

terms in the text. As this task cannot be done perfectly,

each term is identified in a certain form of occurrence

(FOC) v, where different FOCS correspond to different

levels of confidence.

FOCS are defined with respect to some formal param-

eters that are computed by the system. Actually, the

concept of FOC comprises two aspects:

1.) the certainty with which a term is identified,

2.) the significance of a term with respect to the doc-

ument.

In our experiments described here, we consider for all

kinds of terms the location of the term (title vs. ab-

stract ) as a criterion for the significance of the term.

For phrases, the certainty of identification is measured

by the number of stopwords between the first and the

last component: P+ with no stopwords and P- with 1

. . . 3 stopwords in between. For the document shown

in figure 1, examples for P+ are “TUNNEL JUNC-

TION”, “TUNNEL CURRENT” and “ELECTRICAL

CONDUCTIVITY”, and for P- “ALUMINIUM SUB-

STRATES”, “MEASURE ELECTRICAL” and “FILM

COEFFICIENT”. So we have two different FOCS for

words, namely W/TI and W/AB according to their lo-

cation in the title or in the abstract, and four different

FOCS for phrases: P+TI, P-TI, P+AB and P-AB.

Current-voltage spectra of metal/oxide/SnTe
diodes. Pt. 1

In metal/oxide/SnTe tunnel @nctions (where the ox-

ide is Alz 03 or Si02 and the metal is lead or alu-

minium) on BaF2 or NaCl substrates the tunnel cur-

rent I(U) and its derivatives I’(U) and 1“ (U) were

measured at 4.2 K. Additionally the Hall coefficient

and electrical conductivit~ of the monocrystalline SnTe

ji/ms were determined at the same temperature. The

pronounced oscillations in I“ suggest the existence of

a quantum size effect in the very thin SnTe films in

several cases, although this is complicated by various

other processes. The most important features of the

different types are discussed briefly.

Figure 1: Example document

If a term t is identified in a document d and a term-

descriptor rule t + s is stored in the directory, a de-

scriptor indication from t to s is generated. It contains

– the form of occurrence v oft in d,

– the rule t + s,

– further information about s and t (from the dictio-
nary) and d.

For example, our indexing dictionary contains the rule

“ELECTRICAL CONDUCTIVITY” USE “ELEC-

TRIC CONDUCTIVITY”, so the indexing system pro-
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duces the corresponding descriptor indication for the

example document shown above, where the FOC is

P+ AB. Another example isthe statistical rule “ELEC-

TRICAL COEFFICIENT” - “ELECTRIC CONDUC-

TIVITY” with a weight of 3.0 (see the definition of the

parameter ri~ described below), for which an indication

with the FOC P-AB is generated. As additional infor-

mation about d, we might regard the number of different

words in the document, because longer documents tend

to produce more descriptor indications, but the num-

ber of descriptor asssigments to a document should be

independent of this factor.

The collection of all descriptor indications from a doc-

ument leading to the same descriptor s is called the

relevance description X(S, d) ofs w.r.t. d. Now a probe

bilistic indezing function a(z(s, d)) has to be developed

which yields estimates of the probability P(CIZ(S, d))

that the assignment of a descriptor s to document d will

be judged correct, given that the descriptor-document

pair is represented by relevance description Z. For this

purpose, a learning sample with document-descriptor

pairs and decisions about the correctness of assignments

must be given; then several probabilistic classification

methods can be applied for the development of an index-

ing function (see [Fuhr & Buckley 91] [Fuhr et al. 91]).

In [Fuhr 89a], a new probabilistic model for the DIA is

derived, For the description of the indexing functions

following from this model, we use the following nota-

tions:

T

v

E

= {tl,. . . . t~ } is the set of terms in our collection,
and

={ VI,..,, v~ } is the set of forms of occurrence that
we distinguish. In addition, let V. denote the ab-

sence of a term (that is, it is not identified in any

form VI c V in the current document), and let

V-o= {Vo}uv.

is the set of document characteristics that we re-

gard. That is, the information describing a doc-

ument that is independent of a specific reievance

description is mapped onto an element e E E (e.g.

the number of words in the document as mentioned

above).

For a single document-descriptor pair (dm, Sk), we have:
— the decision about the correctness (C or ~

– the document characteristics em of dm

– the terms that occur within dm together with their

forms of occurrence.

The latter information is described by a vector g~ =

{Y ~,, . . . . Ym. } in the following, where ym, G V. has
the value of the form of occurrence of ti in dm (or V.,

respectively),

With this notation, a relevance description Z(sk, dm)
can be mapped onto a triple (sk, em, Ym), and we

seek for the probability y P(Clsk, em, y~ ). For the for-

mulation of our model, we use odds, where O(x) =

P(z)/P(@. Let P(y~, Isk, C’) (with y~, G V) be the

probability that term tiwill occur with FOC y~, in an

arbitrary document to which Sk was assigned correctly,

whereas F’(y~, = V. lsh, C’) denotes the probability that

ti will not occur in such a document. P(ymi Ish, C) and

P(y~, = V. Ish, ~) denote the corresponding probabili-

ties for documents to which the assigment of sk is not

correct.

With

~(ym, = Vl)lsk, c)
Wiko =

~(Ym, = vO!sk, C)

~(ym, = V/,~ [sh, C)
wikl,~ =

~(ym, = V,,m Ik’k, d)

(where vli~ denotes the form of occurrence of tiin d~,

that is Vmi = vli~ ), our first indexing function yields

~(clsk, i%, Vm) =

O(CILU) . O(Clem)

o(c) “ rI ~fiwi~o(1)
Ym,ev $=1

Here O(C) is the odds that an arbitrary document-

descriptor relationship is correct, O(Cle~) denotes the

odds that the assigment of an arbitrary descriptor to a

document with characteristics em will be judged correct,

and O(Clsk ) is the odds that the assigment of descriptor

Sk to an arbitrary document is correct. In the follow-

ing, we will refer to this formula as the FOC dependence

model.

A major disadvantage of the FOC dependence model is

the fact that the term descriptor rules (i.e. the prob-

abilities P(y~i = ‘V~imIsh, C) and ~(y~, = V/~m I.$k, (?)

are FOC-specific, so for each term-descriptor pair, pa-

rameter values for aII vrim G V. are required. In or-

der to overcome this problem, we have derived a sec-

ond probabilistic model in which the distributions of

FOCS and term-descriptor pairs are assumed to be

independent of each other, The FOC independence

model based on this assumption uses the parameters

.flim = ~(V~imlC)/P(V~im]C) and rik = O(Clti, sk) in-

stead of wihli~. Here P(tilim IC) denotes the probabil-
ity that an arbitrary term will occur with FOC Vlim in

an arbitrary relevance description leading to a correct

(incorrect) assignment, whereas O(clti, Sk) is the odds

that the assignment of descriptor Sk to an arbitrary doc-

ument will be correct, given that term tioccurs in this

document. With these parameters, we can derive the

indexing function
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For the discussion in the following, we bring the in-

dexing functions (1) and (2) into their log-linear form.

With J(z) = log ~($), w~kj = log Wikj and ~k =

log HVG1 ~i~o, the FOG dependence model yields:

~(6’lSk,/~,~m) =

~(clem) + ~(clsk) - ~(c) + pk

(3)

Ilmt Ev

Furthermore, let p~i~ = log ~~i~ and eik = log r~k, then

the FOC independence model can be transformed into

~(clm, Lrl, %) =

~(cle~) + ~(clsk) – ~(c) + @k +

~ (2A(C)+ 3~(Cls~) + ~,,~ + @ - (J@)(4)

Ym, ev

3 Logistic regression

As indexing function a(z(s, d)), we regard logistic func-

tions here [Freeman 87] [Fienberg 80]. For this type

of functions, the relevance description must be in vec-

tor form z(s, d) (also called description vector), with

z = (Zl, . . ..xm) ‘. Let b = (61,.. ., bm)T denote a

parameter vector that is to be estimated, then logistic

indexing functions have the form

exp(bTz)
a(z) =

1 + exp(brz)

Since we want to vary b in order to find an optimum

logistic function, we will include the parameter vector

as argument of the indexing function in the following,

that is a(z, b).

For the development of an indexing function, we

need a learning sample of relevance descriptions z =

(xl,..., Zt) with corresponding correctness decisions

Y=(yI,. . ., yt), where yi = 1 if for Zi(s, d), the as-

signment ofs to d is correct, and yi = O otherwise.

As optimizing criterion, maximum likelihood is used

here (minimum squared errors also would be possible).

For a given learning sample and a specific parameter

vector b, the likelihood function yields

t

L(b) = ~ a(zk, b)yk[l – a(zk, b)]l-Yk

k=l

In the following, the log-likehood function
log L(b) is regarded:

t

l(b) =

i(b) = ~Yk loga(zk, b) + (1 – Yk)log[l – a(zk, b)].

kel
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The maximum likelihood estimate of the parameter vec-

tor is the value at which 1 takes its maximum, i.e., the

value of b at which

:= ~[yk ‘a(~k,b)]~k, = g,(b) =0. (5)
t

k=l

In general, this equation cannot be solved in closed form,

so an iterative method has to be applied. Here we use

the Newton-Raphson method, for which we need the

derivations

= .Hij(b). (6)

With g(b) and the matrix H(b) computed this way, we

get the iteration formula

So we first have to choose a starting vector b(o), and

then H(b(n)), g(b(n)) and b(n+ll) are computed in each

iteration step n, until a stopping criterion is fulfilled. In

the computation process, the matrix H is not inverted,

instead we solve the linear equation H(b(n)) . A(n) =

g(b(n)) with A(n) = b(m) _ b(n+l). AS stopping criterion,

one can compare lA(n) I with a predefine value e. Since

we performed experiments with different vector lengths

m, we choose to regard the value

b(n+l) _ b(n)
p(n+l) = max ~

i b(n+l) ‘

/

instead. In our experiments, we used description vectors

with up to 40 components, and we always got good solu-

tions within 5 to 6 iterations (that is, further iterations

did not improve the indexing quality).

4 Combination of logistic re-

gression and log-linear models

Logistic functions have in fact the same form as log-

linear models, which can be seen easily when we trans-

form the approximation that is given by the logistic

function

P(clx) &
exp(bTz)

1 + exp(bTz)

into O(CIZ) sx exp(bTz), and thus A(CIZ) x bTz. For

the discussion below, let us assume that we have a con-

stant element in addition to the description vector, so

the logistic functions that we want to consider are of the

form



Obviously, most probabilistic models can be brought

into such a log-linear form, where the bis are some coef-

ficients (mostly -1 or +1) and the Zis are certain proba-

bilities (or products or quotients of probabilities). This

feature suggests the combination of probabilistic models

with logistic regression. In [Robertson & Bovey 82],

this kind of combination (which they call logistic model)

has been applied to the binary independence retrieval

model. However, the experimental results of this work

showed no strong evidence for the logistic model in

comparison to the original probabilistic model, even

for half-collection experiments. We think that these

results are caused by the limited size of the learn-

ing data. From experiments with least square polyno-

mial functions described in [Fuhr 89 b], [Knorz 83a] and

[Fuhr & Buckley 91], we know that regression methods

require significantly larger learning samples than sim-

ple parameter estimation schemes. For our indexing

experiments described here, learning sample size is no

problem, since we work with samples of at least 3000

elements.

Robertson and Bovey mentioned the following impor-

tant properties of logistic models:

– In comparison to the original probabilistic model, the

independence assumptions of the logistic model are

weaker. In the logistic model, it is only assumed that

the degree of dependence of any set of elements is the

same in the set of correct relevance descriptions as in

the set of incorrect ones.

- A major advantage of the logistic model is that the

estimation process does not require the learning sam-

ple being a random sample from the whole event

space. It is only assumed that the learning and the

test samples are representative for each other. For

our indexing task, we only consider relevance descrip-

tions with at least one descriptor indication, whereas

the probabilistic model regards all possible document-

descriptor pairs.

- In the logistic model, prior distributions for the pa-

rameters of the model can be considered, so the model

yields Bayesian estimates of these parameters. This
feature is important for small learning samples.

Now we discuss some aspects of the application of logis-

tic repression to our probabilistic indexing model, espe-

cially the definition of the description vector z:

– The mapping of the elements of the probabilistic for-

mula onto elements of the description vector can be

defined in two different ways, depending on the fact

whether the number of elements of the formula is fixed

1In [Fuhr 89c], we have dk.cussed the relationship between Iog-

linear models and least square polynomials, and it is shown that
this type of function is not suited for a combination of both.

or variable (for one logistic regression formula): For

the development of query-specific retrieval functions

as described in [Robertson & Bovey 82], the dimen-

sion of x can be set equal to the number of query

terms. In our probabilistic indexing function, we

have a varying number of factors for different descrip-

tors (depending on the number of term-descriptor

rules stored in the indexing dictionary for the spe-

cific descriptor), and we want to develop descriptor-

independent indexing functions (otherwise our learn-

ing samples would become to small). In this case,

we have to map variable numbers of elements of the

formula onto one description vector element. For ex-

ample, we can split the sum in formula (6) according

to the different forms of occurrence:

J(Clsk,em,ym) =
A(C[em) + A(Clsk) – J(C) + h

Ivl

()+ ~ ~ Wikj – ~ ~ikO (8)

j=l Y*, =fJ, Ynt, Ev

and define IVI + 5 vector elements for this formula.

– In many cases, not all of the parameters of the proba-

bilistic formula are known in advance. For this prob-

lem, logistic regression can be used in different ways

for estimating probabilistic parameters:

– For binary features, (e.g. presence or absence of a

term), we can set Xi = 0/1, and the logistic ap-

proach will (in the ideal case) yield the coefficients

bi = A(zi = 1) – .A(zi = O) and b. = b~ +J(zi = O),

where b~ is the value of the constant element before

the inclusion of xi. Similarly, we can set ~i = n for
the case when we need log 0“(.).

– In the case of our indexing function, we do not have

the specific values Cikj for different FOCS in our in-

dexing dictionary, only general values cik relating

to all FOCS included in V. In order to derive esti-

mates for the different forms of occurrence, we can

assume general numeric relationships between the

VdU6!S Wik and Wikj: For that, we assume the ex-

istence of a value crj for each form of occurrence
vj G V and test the relationships wi~j = ~j -1- Uik

and Wikj = ffj . Wi k. In the former case, we define
one vector component for each FOC vj, counting

in this element the number of indications with ~j,

and sum up the values u~k in an additional vector

element. In the latter case, we sum up the wik’s

separately for each vj in a specific vector element.

– Finally, there may be cases where we want to per-

form a general regression, because we assume that the

value of a missing probabilistic parameter is a mono-

tonic function of a known non-probabilistic parame-

ter: In our indexing application, we do not have the

values P(Clem). However, we can assume that this
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probability is a function of the number of descriptor

indications of the document, and therefore we include

this information in the vector.

5 Test settings

For our experiments, we used documents from the

physics data base PHYS of the Fachinformationszen-

trum Karlsruhe, Germany. For this application, an

indexing dictionary named PHYS/PILOT was devel-

oped. As probabilistic term-descriptor rules, the as-

sociation factors z(t,s) = h(t, s)/~(t) were computed

from 392000 manually indexed documents, where ~(t)

denotes the number of documents containing the term t

and h(t, s) is the number of those among the ~(t) doc-

uments to which the descriptor s was assigned man-

ually (terms can be words, phrases, or terms derived

from formulas). So z(t, s) yields an approximation of

the probability P(CIS, t). With the additional criteria

z(t, s) ~ 0.3 and h(t, s) ~ 3, more than 800000 term-

descriptor pairs were obtained. Because of performance

reasons, only 350000 of these pairs (chosen by some

heuristic criterica) have been included as relation Z in

PHYS/PILOT2.

In addition to these term-descriptor pairs with proba-

bilistic weights, the PHYS/PILOT dictionary also con-

tains the following relations:

the USE relation of the PHYS thesaurus,

the IDENTITY relation connecting each of the 22683

descriptors with itself,

the FORMULA IDENTITY relation mapping iden-

tifiers derived from formulas onto the corresponding

descriptors (In our experiments, we do not distinguish

between IDENTITY and FORMULA IDENTITY,

and not between formula identifiers and words.).

The size of the PHYS/PILOT dictionary is illustrated

in table 1.

Since the parameters 0(6’lsk) were not contained in the

original PHYS/PILOT dictionary, we computed these

factors from a sampleof20000 documents, where only

those descriptors were considered which were assigned

to at least 3 documents. Due to this procedure, some of

our experiments are restricted to relevance descriptions

where the parameter O(Cls~) is available; furthermore,

we consider only descriptor indications based on relation

Z in these experiments.

For our indexing experiments, we used three samples

of 1000 documents each (disjoint from the material

from which the indexing dictionary or the parameters

O(clsk) were derived). These samples with the num-

bers 5, 6 and 7 were drawn randomly from the input to

2 some ~xPeriments with the complete set of pairs described in

[Fuhr et al. 91] showed almost no difference in terms of indexing

quality.

Descriptors (with classifications) 22683

Other terms 179675

Words 85017

Phrases 94658

Pairs (t,s) in the relations:

Relation Z 355933

t = word 159930

t = phrase 170697

t = formula identifier 25306

Relation USE 50138

IDENTITY relation t = s 22683

FORMULA IDENTITY relation 15214

Table 1: Survey of the PHYS/PILOT dictionary used

for our experiments

the PHYS database. Sample 5 is always used as learning

sample for the estimation of the. parameters of the in-

dexing functions. All indexing functions developed were

tested with sample 6. Due to the large number of ex-

periments performed, this sample also can be regarded

as a kind of learning sample. For this reason, we finally

tested a few functions with sample 7, in order to get

statistically valid tests for our major findings.

For evaluating the quality of automatic indexing, we

regard the coincidence with manual indexing3. Since

our indexing functions produce a weighted indexing

(whereas the manual indexing is a binary one), we can

either use measures that consider these weights, or we

can regard measures for binary indexing, after applica-

tion of a cutoff value. As a measure of the first type, we

regard the average square error

.$2= ; ‘&c- ~(~k))’
k=l

For the comparison of two binary indexings, the consis-

tency factor

IAUT n MAiVl

q = IAUT U MAIVJ “

is computed, where AUT and MAN denote the set of

all automatic resp. manual descriptor assignments for

a given test set of documents. By varying the cutoff

values, we take the maximum qmaa of these q values.

As test of significance, the sign test is used in the fol-

lowing way: For a certain test set of documents with

relevance descriptions, we compare the performance of

two indexing functions al(~) and a2 (z). Now we can

either regard weighted indexing or binary indexing. In

3 of COur,e, ,etrievd results are the final yardstick for index-

ing quality. This approach was taken in the AIR retrieval test

[Fuhr & Knorz 84]. The results of the AIR retrieval test revealed

that the comparison with manual indexing is also a good measure

of indexing quality, so we prefer this method because it requires

substantially less effort.
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the case of weighted indexing, we compare the differ-

ences ly~ – al(z~)l and Igk – az(zk)l for k = 1.. .t.In

order to compare binary indexing, first an average in-

dexing depth 6 (number of descriptor assignments per

document) has to be chosen. From this parameter, the

corresponding cutoff values a1(6) for al(z) and az(c$)

for a2(z) can be derived. In the test set, only those

relevance descriptions Xt are regarded where the two

indexing functions lead to different assignment deci-

sions, that is either al(zk) > a1(6) A a2(xk) < LY2(6)

or al(zk) < CY1(6) A a2(xk) > cr2(6), and then these

decisions are compared with the intellectual decision

denoted by ~k. In our experiments, we varied the in-

dexing depth from O to the maximum (21.9 or 27.7,

respectively) in steps of 0.1 and compared the resulting

binary indexings at a significance level of 99%. Then

we give the indexing depths for which the difference is

significant.

6

For

ries

1)

2)

3)

Experiments

testing the logistic models, we performed three se-

of experiments:

Tests of the pure model with relevance descriptions

where all parameters required by the model are

available.

Extensions of the pure models that consider all the

information stored in the indexing dictionary.

Heuristic definitions of the description vector for

the comparison of logistic indexing functions and

linear functions based on least square polynomials.

These experiments are described in the following. A

more detailed presentation of the experimental results

can be found in [Pfeifer 90].

6.1 Tests of the pure model

For this series of experiments, we only considered the

descriptor indications and the relevance descriptions

where all the parameters w~k, wjko, @jk, ~k and ~(clsk)

were available (about 21900 of a total of 27700 rele-

vance descriptions for a sample of 1000 documents).

We compare the two variants fo the FOC dependence

model with the independence model. Table 3 shows

the description vector for the FOC dependence model

with the heuristic assumption Uikj == Ck’j . Uik. This

indexing function is called FD* here. For the alter-

native heuristic assumption Wikj = CYj + Wik (funC-

tion FD+), the description vector contains elements

no. 1-12 from table 4, but with the element ~ ZWT

defined as ~ ymie V (~ik). In both cases (as well as

with all functions for the FOC independence model

described below), the first two elements of the vector

serve for the estimation of the document-oriented pa-

rameter A(Clem), whereas all other elements relate to

name I m I description

FD+

FD*

FI

FIM

FIT

FIMT

FIT3

FIT5

FIZ–DO

FIZ–D05

FIZ-O
FIZ-L

FIZ–LI

no

1

2

3

4

5

6

7

8

9

10

11

11

14

14

14

30

30

30

30

42

42

40
40

40

FOG dependence model with w,~j =

ff~ + wik

FOC dependence model with W,kj =

a, - Wik

FOC independence model

FOC independence model, but with

max z(t, s)

like FI, plus ID and USE relations

like FIM, plus ID and USE relations

like FIT, but 3 classes of rel. descr.

like FIT, but 5 classes of rel. descr.

FIZ vector plus descriptor weights

O(cls)

like FIZ-DO, but 5 classes of rel. descr.

FIZ vector

FIZ vector with linear function (MSE)

like FIZ–L, but iterated MSE

Table 2: Survey of indexing functions tested

name

#DIDOC

#WODOC

DESA’WT

~ RULEAWT

DESKRA W

description

number of descriptor indications in

the document

number of different words in the

document giving indications

~Wik for words in the title

~ w,k for words in the abstract

~w,k for phrases (P+) in the title

~w,k for phrases (P+) in the ab-

stract

~Wik forphm.ses (P+) in the title

~~~ ‘or Phases (p+) in the ab.

A(clsk) = logo(c]sk)

~gm,.v ‘Sko

Table 3: Description vector for FD*

a specific relevance description. Furthermore, it should

be noted that in all experiments, the description vec-

tor contains a constant element (which is not shown

here). The description vector for the FOC indepen-

dence model consists of elements no. 1-14 from table

4. For the sum in eqn(5), we have defined ~ ZWT for

Q,,, ~ RULEAWT gives W;k. and the elements #ZSTI

thru #ZP–AB serve for the FOC-specific estimation of

the parameters P1i~ = P(vrim lC)/P(vlim IC). In order

to compute ~ 2A(G), #Z counts the number of indi-

cations (with Z relations) in the relevance description,

so the corresponding coefficient is assumed to approx-

imate 2A(C). In a similar way, #Z * D W computes

~ ~(clsk), so its coefficient should be about 3. The

results for these three indexing functions are shown in

table 5. Although the differences for the evaluation pa-

rameters S2 and q~a~ are fairly small (as for all our ex-
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name

FD+

FD*

FI

FIM

‘F]p ---

FIMT

FIT3

FIT5

‘F~~~D-O-

FIZ–D05

FIZ–O

FIZ–L

FIZ–LI

no

1

2

3

4
5
6
7
8
9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

name

#DIDOC
#WODOC

~ ZWT

#ZSTI
#ZSAB
#ZP+TI
#ZP–TI
#ZP+AB
#ZP-AB
~ RULEAWT

DESCWT
DESCRAW

#z

#Z*DW

?DESCWT
#NRA
?DESCRAW
;~;;WT

#ISAB
#IP+TI
#IP–TI
#IP+AB
#IP-AB
#USTI
#USAB
#UP+TI
#UP-T I
#UP+AB
#UP-AB

description

number of descriptor indications in the document

number of different words in the document Riving indications

~v~,ev ‘ik = 10g~,m,Gvo(Wt,S~) - -
n.i .W. Z relation from word in the title

n.i.w. Z relation from word in the abstract

n.i .w. Z relation from phrase (P+) in the title

n.i. w. Z relation from phrase (P-) in the title

n.i.w. Z relation from phrase (P+) in the abstract

n.i .w. Z relation from phrase (P-) in the abstract—

~,m,ev ‘:ko
~(cls~) = bgo(clt,,sk)

~k = ~:=1 wtkO
n.i.w. Z relatiom

= #Z. DESCWT = ~ymzev ~(clsk)

=1, if DESC WT available, =0 otherwise

# indications without weight W,ko

=1, if DESCRAW available, =0 otherwise

=1, if ~ RULEAWT # O, =0 otherwise

n.i.w. ID relation from word in the title

n.i.w. ID relation from word in the abstract

n.i.w. ID relation from (P+) in the title

n.i.w. ID relation from (P-) in the title

n.i. w. ID relation from (P+) in the abstract

n.i.w. ID relation from (P-) in the abstract

n.i .w. USE relation from word in the title

n.i .W. USE relation from word in the abstract

n.i.w. USE relation from (P+) in the title

n.i.w. USE relation from (P-) in the title

n.i.w. USE relation from (P+) in the abstract

n.i .W. USE relation from (P-) in the abstract

(n.i.w. = number of indications with)

Table 4: Description vector for the functions F’1, FIT, FIT3 and FIT5

san

s’

0.134

0.134

0.128

0.126

l.ill

0.112

0.106

0.102

T.ilti

0.102

0.113

0.117

0.113

e6

qmax
0.422

0.419

0.429

0.432

6.152

0.451

0.470

0.476

ii&76

0.476

0.463

0.452

0.464

sam

s’

0.131

0.131

0.126

0.124

F.lii

0.109

0.103

0.100

tills

0.101

0.111

0.113

0.111

[e 7

qmaz

0.414

0.412

0.412

0.428

i4z9-

0.451

0.469

0.476

F435–

0.471

0.459

0.451

0.458

Table 5: Indexing results

periments described here), the statistical tests show that

most of these differences’ are significant. With the FOC

dependence model, F’D+ performs significantly better

(> 99.99%) for weighted indexing, but only for a few

indexing depths (6 = 7.3,7.4,9.0, 9,8) when we regard

binary indexing. The FOC independence model

performs both variants of the dependence model,

out-

with

a significance level > 99.99% for weighted indexing and

at most indexing depths in the case of binary indexing.

As a heuristic variant of the FI function, the func-

tion FIM was developed. This function is based on

the same decryption vector aa FI. However, ~ ZWT

was redefined here in order to get the maximum value

maxvm, e” @ik instead of the sum of these values. Fur-

thermore, ~ RULEAWT was assigned only the weight

w~ko from the indication with the maximum @ik value.

This heuristic strategy has been applied successfully

for the development of least square polynomial index-

ing functions ([ Knorz 83b] [Knorz 86]; see also below).

One can regard this method as a means for coping with

the problem of statistical dependence of the descrip-

tor indications within a relevance description. In fact,

the experimental results show a slight improvement for

weighted indexing, and for binary indexing with index-

ing depths in the intervals [7.1 . . .9.9] [10.1 . ..10.3] and

[10.5...11.5].

6.2 Extensions of the pure model

Since our dictionary contains the USE and the ID re-

lation besides the Z relation, we have to extend the

description vector in order to consider this information,



too. In contrast to the relation Z, there is no weight

associated with these thesaurus relations. For this rea-

son, we assume that the weights Wikj are the same for

all term-descriptor pairs (t~, sk ) in one of these relations.

So we have six different weights (for our six FOCS) for

the relation USE and another six weights for the ID

relation. Furthermore, we assume that Wjko = O for

these relations. These assumptions lead us to the de-

scription vector shown in table 4, where we have six

elements for either of these relations. Furthermore,

the elements ?DESK WT, #NRA, ?DESKRA W and

#Z–ABS have been defined in order to cope with in-

dications based on the relation Z for which the parame-

ters UiklJ or ~k are not available. So we have a combina-

tion of the FOC dependence and the FOC independence

model here: For the relation Z, we assume indepen-

dence, since we do not have the FOC-specific weights.

With the relations ID and USE, no term-descriptor-

specific weights are available, but we can aim at esti-

mating FOC-specific weights here. The results of this

indexing function called FIT are shown in table 5. In

comparison to the experiments based on the relation Z

only, we get a clear improvement.

The function FIMT is heuristic variation of FIT, where

we regard the maximum of the weights @jk instead of

their sum (like in the case of FIM). Again, we achieve

slight improvements which are significant (> 9570) for

weighted indexing.

The next two experiments in this series are based on a

subdivision of the relevance descriptions into 3 resp. 5

classes. According to the relations on which the indica-

tions of a relevance descriptions are based, we defined 5

classes:

T : 38% of all relevance descriptions are based ex-

clusively on thesaurus relations.

21: 23% of all relevance descriptions consist of ex-

actly one indication, which is based on the rela-

tion Z.

22: 11% of all relevance descriptions consist of at

least two indications, which are all based on the

relation Z.

TZ1 : 12% of all relevance descriptions contain exactly

one indication derived from the relation Z, plus

one or more indications based on thesaurus rela-

tions.

TZ2 : 15% of all relevance descriptions contain at least

two indications derived from the relation Z, plus

one or more indications based on thesaurus rela-

tions.

For each of these classes, separate indexing func-

tions (based on the description vector of the func-

tion FIT) were developed. This combined function

is called FIT5. We also tested a variant (FIT3)

with 3 classes only, where the distinctions between the

classes 21 and 22 and between TZ1 and TZ2 were

dropped. The experimental results show large improve-

ments for FXT3 over FIT, and a further slight im-

provement for FIT5. In both cases, the difference is

highly significant for weighted indexing (> 99.99%).

For binary indexing, FIT3 performs significantly bet-

ter than FIT at the indexing depths 2.3, 2.5 and

2.8 thru 16.9. 5 classes are better than 3 classes at

6 E [5.9.. .6.9], [7.2 . . .10.2], [10.9.. .16.4]. These re-

sults show that – in comparison to the other strategies

tested – using class-specific instead of general index-

ing functions is the best method for improving indexing

quality.

6.3 Heuristic description vectors

The indexing functions described so far are based more

or less on the probabilistic indexing model as described

in section 2. Here we want to consider a heuristic strat-

egy for the description vector, in order to see whether

there are significant differences between the indexing re-

sults of these two strategies.

Instead of developing a completely new description vec-

tor, we choose to use the description vector that had

been developed heuristically for the least square poly-

nomials indexing function, as described in [Knorz 86].

This description vector is shown in table 6. With the

exception of the elements DESK WT and ?DESK WT,

this vector is currently used in the linear indexing func-

tion FIZ–L for the input production of the database

PHYS. The logistic indexing function FIZ–DO based

on this vector performs significantly better than our

more theoretic function FIT. With class-specific func-

tions, however, FIZ–D05 produces results that are

about identical with those of F1T5. In the following ex-

periments, we compare logistic and linear indexing func-

tions. Here the elements DESK WT and ?DESK WT

were excluded from the description vector. The logis-

tic function FIZ–O shows significantly better results

than the linear function FIZ–L. A closer examination

of the properties of the least square polynomials proce-

dure revealed the following weakness of this approach:

in contrast to the logistic functions, linear functions may

yield estimates outside the interval [0, 1]. Even if these

estimates are on the “correct side” of the interval (that

is, a(~~) > 1 and yk = 1 or a[mk) <0 and y~ = O), these

estimates are treated as errors, and the LSP procedure

aims at minimizing the error (a(z~) — ~k )2. In order to

overcome this problem, we first developed a linear func-

tion al (~k ), then we removed all relevance descriptions

with al (~k) @ [0, 1] from the learning sample, and devel-

oped anew linear function. This process of reducing the
learning sample and developing a new function can be

repeated several times, and we achieved improvements

for up to 10 iterations [Pfeifer 91]. The experimen-

4The ~Omputation~ effort for each of these iterations is about
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no

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30
31
32
33
34
35
36
37
38
39
40
41
42

name

#WODOC
#RDDOC
#DI
#WORDS
#PHRASES
#ID
#zs5
Z5
2s
22s
?IDONLY
?P+
#ZFO
Z5T+AB
Z5T+
Z3T+
ZT+
HZT+
#ZT+
#z5PTI
#ISTI
#IFTI
#ISAB
#IFAB
#ID+TI
#IPTI
#IP+AB
#IPAB
Z3STI
Z5STI
Z3SAB
Z5SAB
Z3P+TI
Z5P+TI
Z3PTI
Z5PTI
Z3P+AB
Z5P+AB
Z3PAB
Z5PAB
DESKWT
?DESKWT

description

numberof different words in the document giving indications

number of relevance descriptions of the document

number of descriptor indications of the RD

number of different words in the RD

number of dMerentphrasesin the RD

n.i.w. ID relation

n.i.w. Zrelation from word, where h(t,s) ~ 5

maximum z(t, s), where h(t, s) >5

maxz(t, s) from word or phrase, where h(t,s)~ 5
2nd largest ,s(t, s) from word or phrase, where h(t, s) ~ 5

=1, if RD contains only ID relation, =0 otherwise

=1, if indication with FOC P+ occurring in title on abstract

n.i.w. Z relation from formula identifier

max. z(t,s) from word or P+ in the abstract, where h(t, s) ~ 5

max. z(t, s) from word or P+, where h(t, s) ~ 5

max. z(t, s) from word or P+, where h(t, s) <5

max. z(t, s) from word or P+
h(t, s) for z(t,s) stored in ZT+
n.i.w. Z relation from word or P+
n.i.w. Z relation from phrase in the title

n.i,w. ID relation from word in the title
n.i .W. ID relation from forrrmla in the title

n.i.w. ID relation from word in the abstract

n.i.w. ID relation from formula in the abstract

n.i .w. ID relation from phrase P+ in the title

n.i.w. ID relation from phrase in the title

n.i.w. ID relation from phrase P+ in the abstract

n.i.w. ID relation from phrase in the abstract

max. .z(t, s) from word in the title, where h(t, s) <5

max. z(t, s) from word in the title, where h(t, s) ~ 5

max. z(t, s) from word in the abstract, where h(t, s) <5

max. z(t, s) from word in the abstract, where h(t, s) >.5

max. z(t, s) from P+ in the title, where h(t, s) <5

max. z(t, s) from P+ in the title, where h(t, s) >5

max. z(t, s) from phrase in the title, where h(t, s) < 5

max. z(t, s) from phrase in the title, where h(t, s) ~ .5

max. z(t, s) from P+ in the abstract, where h(t, s) <5

max. ,z(t, s) from P+ in the abstract, where h(t, s) >5

max. z(t, s) from phrase in the abstract, where /i(t,s) <5

max. z(t, s) from phrase in the abstract, where h(t, s) ~ 5

A(clsk)

=1, if value for DESA’WT available, =0 otherwise

Table 6: Description vector for indexing functions F’lZ . . .

tal results for this iterated linear function FIZ–L1 are

about the same as for the logistic function FIZ–O.

7 Summary and conclusions

In this paper, we have derived a new probabilistic index-

ing model, which serves as a basis for developing logistic

indexing functions. We have shown that logistic func-

tions can be applied as indexing functions, and that the

definition of description vectors based on the theoretical

model is a partially successful strategy. However, addi-

tional heuristic strategies – such as the development of

class-specific functions – may yield large improvements.

In comparison to a purely heuristic strategy, only the

the same as for one iteration with the Newton-Raphson method

for logistic functions, so these two approaches require about the

same effort

combination of heuristics and theory produces about the

same indexing quality. No significant differences were

found between logistic and linear (iterated) functions.

All these findings, however, refer to the specific appli-

cation tested here. In contrast to the experiments with

logistic models described in [Robertson & Bovey 82], we

have very large learning samples, even in relation to the

number of parameters to be estimated. The number of

elements of the description vector also may affect the

almost identical performance of linear and logistic func-

tions. For smaller numbers of parameters to be esti-

mated, the difference between linear and logistic func-

tions may be important. For example, in the experi-

ments described in [Fuhr & Buckley 91], indexing func-

tions are based on about 5 parameters, and the learn-

ing samples available do not allow a larger number of

parameters. So more experimental work is needed on
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logistic functions in order to fill the gap between the

results of Robertson and Bovey and the work described

here.
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