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Abstract

This paper is a report of a study investigating the valid-

ity of the Multiple Poisson ( nP) model of word distri-

bution in document collections. An nP distribution is a

mixture of n Poisson distributions with different means.

We describe a practical algorithm for determining if a

certain word is distributed according to an nP distribu-

tion and computing the distribution parameters. The

algorithm was applied to every word in four different

document collections. It was found that over 70% of

frequently occurring words and terms indeed behave ac-

cording to the nP distributions. The results indicate

that the proportion of nP words depends on the col-

lection size, document length ancl the frequency of the

individual words. Most of the nP words recognised are

distributed according to the mixture of relatively few

single Poisson distributions (two, three or four). There

is an indication that the number of single Poisson com-

ponents in the mixture depends on the collection fre-

quency of words.

1 Introduction

This paper describes the results of the current study

attempting to find a useful statistical model of large

collections of full text documents. We describe the re-

sults of several experiments that examine the Multiple

Poissonl model of word distributions in document col-

1 In thk paper we use “n-Poisson model” or “nP model” ter-

minology to refer to the Multiple Poisson model.
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lections. The initial results indicate that over 70% of

frequently occurring words indeed behave according to

Multiple Poisson distributions and that the composition

of the nP distribution functions depends on the collec-

tion frequency of words. The nP properties are also

displayed by terms (words after applying a word reduc-

tion algorithm). The detailed analysis of tlhe nP dis-

tribution functions composition results and the effects

of various document length normalisation techniques on

the nP properties of words appear in a rehked report

(Margulis, 1991).

The Information Retrieval (IR) area of Computing

Science deals with the problems associated with pro-

cessing of large collections of usually unstructured doc-

uments. One of the traditional applications of IR is

the retrieval of full text documents from large docu-

ment collections. The major problem lies in finding

documents within the collection that satisfy a Cdah

query (a phrase or a set of words that describe the doc-

uments to be retrieved). To solve this problem the doc-

uments are assigned a set of identifiers (indexes) that

describe what the documents are about. This process

is called Zndemng. The indexes are then examined in

order to determine which documents satisfy the query

the most and should be retrieved. There exist marvy

indexing/retrieval approaches and much research has

been directed towards finding better ones. In spite of

the abundance of IR approaches, there are several unre-

solved fundamental problems. It is very hard to judge

the effectiveness of indexing/retrieval approaches objec-

t ively. A method that works well for one collection,

may not work well for another. We are not capable of

determining or justifying in advance the best method

to use with a given collection. We know little of the

characteristics of document collections that affect the

effectiveness of IR functions.

Most of these problems arise due to the lack of a use-

ful statistical model of a document collection. A useful

model (with respect to IR) would provide us with a set

of characteristics and measurements that could be used

in determining the para]iieters of various information re-
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trieval methods. A number of IR related models have

been proposed in the past (e.g. vector space model, var-

ious probabilistic models, etc.)z. Most of these models

introduce new formalisms to support a certain indexing

and retrieval strategy. Only a few of the models attempt

to describe the properties of a document collection irre-

spectively of a specific retrieval strategy.

This study analyses the validity of a statistical model

described by Bookstein and Swanson (1974) who sug-

gest that the frequency of occurrence of words in doc-

uments can be modelled by a sum of Poisson distribu-

tions. Several studies have attempted to test the va-

lidity of the model experimentally, but were unable to

prove or disprove the validity of the model conclusively

(Harter, 1975; Srinivasan, 1990). Another study used a

special case of the nP model to develop an index term

weighting scheme (Robertson et al., 1981).

The main goal of this study was to find a conclusive

experimental evidence that either supports or disproves

this model. The results of our experiments strongly sup-

port the Multiple Poisson model.

2 Notation Summary

In this section we summarise the notation and some of

the basic definitions and assumptions used throughout

this study.

2.1 Words and Terms

Documents in document collections can be partitioned

into various text tokens: words, reduced words, n-grams,

phrases, etc. Text tokens have meanings or concepts

associated with them. The meanings of the text tokens

define the meanings and topics of the documents.

In this study we deal with two types of text tokens:

words and terms. A word is a sequence of nonblank al-

phabetic characters that appears in full text documents.

In some IR literature a word is referred to as a “word

token” or “text word”. A term is a reduced word that

results from the application of a word reduction (suf-

fix/prefix removal) algorithm. We say that t is a term

if it is a reduction of some word w, its length is greater

than 2 and the word w does not belong to the list of com-

monly used “stop words” 3. In some IR literature terms

are referred to as “keywords”, “word stems”, “reduced

words” or “index terms”.

2 Biirtschi (1985) provides a good overview of various IR

models.
3 stop ~ord~ are the words that OCCUr very often but have little

or no meaning for information retrieval purposes within the con-

text of a specific document collection. Fc,r example: “a”, “the”,

etc. are common stop words. In a collection of financial articles

the word “dollar” might be a stop word.

We use the following notation to describe functions

defined with respect to text tokens, words, terms and

documents:

mtoc(C) the number of clocuments in collection C

ntok(C) the number of unique tokens in collection C

wlen(D) the total number of words in document D

tlen(D) the total number of terms in document D

awlen(C) average number of words per document in C

atlen(C) average number of terms per document in C

wdfreq(D, w) number of times word w occurs in D

tdj”req(D, t) number of times term t occurs in D
tcfreq(C, t) number of times term t occurs in C

dfreq(D, h) number of times token h occurs in D
cfreq(C, h) number of times token /S occurs in C

Note that wdfreq and tdfreq are special cases ofdfreq

and that wcfreq and ti-Ireq are special cases of cfreq.

2.2 Extents of Coverage

Documents are written to provide information on a cer-

tain topic or a set of topics. The extent of coverage

of various topics within the document varies from one

topic to another. For example, this article is primarily

about the n-Poisson text, models but it also describes the

estimation methods of pal ameters of probability distri-

butions. This article, however, is to a very large extent

about the n-Poisson models and to a lesser extent about

parameter estimation. To estimate the extent of cover-

age we can use the following assumption:

Assumption 2.1 : 1 he frequency of occurrence of a

specific text token h in :L particular document depends

on the extent to which this document is related to the

topic that is associated with the text token.

This assumption is a key ~ssumption in IR and is related

to the Luhn’s proposal that the frequency of word oc-

currence is a useful measure of word significance (Luhn,

1958). Thus the extent ,)t’ coverage of topics represented

by a specific text token in the document can be approxi-

mated by the frequency of occurrence of the token within

the document: df req(ll, // ). For words and terms the ex-

tents of coverage are approximated with wdfreq(D, w)

and tdfreq(ll, t) respectively.

Document collections :au be divided into subsets of

documents with respect to the extent of coverage of a

certain topic. Therefore. a collection C can be divided

into subsets C, with re~pect to the extent of coverage

of topics associated with a certain text token. These

subsets are usually refer] ed to as “levels” or “classes” of

coverage.

3 nP Model Overview

In this section we preser,[ the definition of the n-Poisson

model. We also summ wise previous studies that at-
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tempted to validate various special cases of the nP

model.

3.1 nP Models

n-Poisson models of documents are based on the follow-

ing assumption:

Assumption 3.1 : The frequency of occurrence of

text tokens within the full text clocuments in a docu-

ment collection can be described by a sum of Poisson

distributions.

Each summand in this sum is an independent single

Poisson distribution that describes the frequency of oc-

currence of the text token within the subset of docu-

ments that belong to the same level of coverage of the

topics related to that text token (1300 kstein & Swanson,

1974). The probability that a randomly chosen docu-

ment D contains k occurrences of a certain text token

h is given by:

Here i denotes the class of coverage of the topics related

to the text token; Ai is the average extent of coverage

of topics related to the text token within the class C~;

Zi is the probability that the document belongs to the

class Ci, and ~, ri = 1.

The process of generation of documents can be viewed

as a stochastic process where the documents are created

by randomly selecting text tokens. For every document

D, each text token h has a certain probability of be-

ing selected. This probability depends on the extent of

coverage of topics associated with h in D. Since the

number of various text tokens (e.g. words) is very large

and the probability of being selected for every token is

very small, the process of document generation can be

viewed as a poisson process. The mean of this poisson

process (A) is the average number of occurrences of the

text token h per document and represents the extent of

coverage of topics associated with h in the document D.

A document collection can be partitioned into a number

of classes of documents w .r.t. the extents of coverage of

topics related to a specific text token h. The distribution

of the text tokens h within each class C, is governed by

a single poisson process with a mean of ~,. Thus the dis-

tribution of a certain text token h in documents within

the whole collection is governed hy the sum of poisson

distributions, one for each class of coverage.

For example, consider a collection of documents on

vacation travel (C). Suppose we can divide the collec-

tion into two subclasses: C 1 -- the documents about air

travel, and Cz – all other documents. The probabihty of

the word “aircraft” occurring in C 1 documents is higher

than the probability of the word “aircraft” c)ccurring in

C2 documents. In C 1 the word “aircraft” occurs on

average A 1 times per document and AZ times per docu-

ment in C ~. The probabilities that a randomly chosen

document D from C 1 or C z contains k occurrences of

the word “aircraft” are:

Pi(k) = P(D ~ CL,7zudfreq(D, “aircraft”) = k)

A: _~,——
me

P2(k) = P(D E c2Azud~r’eq(D, “aircraft”) = k)

A; _xo

‘~e -

Thus the probability that a randomly chosen document

from the whole collection C contains k occurrences c,f

the word “aircraft” can be computed as:

P(k) = P(D c CA?.ud~req(D, “aircraft”) = k)

= P((DECiv DEC2)

Awdfreq(D, “aircraft” = k))

= P((D E C ~Azudfreq(D, “aircraft” ) = k)

V(D E C2Awd~req(D, “aircraft”) = k))

= P(D6 CL) .P1(k)+P(Dc C2) P2(k)

The discussion above demonstrates a possible analyt-

ical interpretation of the Multiple Poisson model. In the

rest of this paper we present experimental results that

support the validity of ihe model.

The Multiple Poisson model can be defined with re-

spect to any text token. In this study we recognise two

types of poisson models: nPw based on words and nPt

based on terms. We define these models as follows:

nPt : P(td~req(D, t) = k) = xi ~i$e-~’

nPw :
Ak -A,

P(wcifreq(D, w) = k) = ~, ~i~e

where ~, mi = 1

If the distribution of a !ertain text token (e.g. word or

term) complies with a Multiple Poisson model, then we

say that this text token is nP. We define a Boolean

function rip(h) that determines whether th~e token h is

nP;

~P(~) = ~n,3;=1’&. 7rL,vD ● c

P(dfreq(D, h) = k) = xi 7ri#e-~a

where ~i ~i = 1
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3.2 Previous Work

Harter attempted to verify the validity of a special case

of the nPw model – the 2P model (Harter, 1975). The

2P model is the nP model with only two coverage

classes. The 2P model used by Harter can be described

in our notation as follows:

A:
P(wdfreq(D, w) = k) = 7rze-~’ + (1 – r)#e-~2

Harter’s goal was to find a better indexing strategy

based on the 2P model. He used a collection of 650

Sigmund Freud abstracts for his experiments. The av-

erage length of an abstract was 223 words. Harter used

the Method of Moments to estimate the 2P parameters

m, Al and A2 for the index terms considered “good” by

human indexers. 38% of these terms fitted a 2P dis-

tribution according to the X2 goodness of fit test. The

experiment showed that a significant number of good

index terms were 2P, but it did not provide a conclu-

sive evidence of the validity of assumption 3.1 for the

following reasons:

Only “good index terms” were analysed

Only the special case (2P) was examined

The collection size was too small for many words to

have high enough frequencies for X2 test

Only relatively short abstracts and not complete

documents were used

The Method of Moments is not the best available

method for parameter estimation (Breiman, 1973,

pp. 84-85)

Srinivasan investigated the possibility of extending

Harter’s 2P model to 3P (Srinivasan, 1990). She used

a variation of the nPt model that consist of the three

poisson terms. The model was tested with 59,917 docu-

ments from the INSPEC database. Only abstracts and

citation details were used for each document with an

average length of 58 words. Index terms that were se-

lected from the identifying phrases of the documents and

were determined “good” in another study were used for

the approximation of 2P and 3P parameters using the

Method of Moments. The study confirmed Harter’s re-

sults by finding that 43% of the terms tested (85 out of

196) were 2P, but failed to find any 3P terms. Although

this experiment confirmed Harter’s results, it failed to

provide a conclusive evidence of the validity of assump-

tion 3.1 for the following reasons:

Only “good index terms” were analysed

Only special cases (2P and 3P) were examined

Only very short abstracts (awlen = 58) and not

complete documents were used

The Method of Moments is not the best available

method for parameter estimation (Breiman, 1973,

pp. 84-85)

The studies described above provide strong evidence

that nP models could play an important role in describ-

ing the word occurrence distribution in full text doc-

uments. Both studies, however, investigate only spe-

cial cases of the nP model with respect to preselected

“good” index words/texms and use collections of rela-

tively short abstracts rather than complete documents.

Harter’s 2P model was used by Robertson, Rijsber-

gen and Porter (1981) to develop a 2P based index term

weighting schema. The authors mention that the perfor-

mance of the weighting schema in the experiments con-

ducted was “slightly disappointing”. The experiments

conducted had most of the drawbacks of the Harter’s

study: only a special case (2P) was examined, the doc-

uments used were short (average length was 19.96 terms)

and the Method of Moments was used for the parameter

estimation. We believe that a term weighting schema

based on the complete nP model would be more suc-

cessful.

The inconclusive resui s of these studies prompted us

to examine the validity of the complete nP model in

large collections of full text documents.

4 Experiment Description

The goal of the current study was to find a convincing

evidence that would either support or disprove the as-

sumption 3.1 with respect to nPw and nPt models. In

order to find such evidence we estimate the & and xi

parameters of the nP distribution for every word and

term in our test collections and test the goodness of the

estimation using the X2 goodness of fit test.

4.1 Data Description

In this experiment we auaiyse four document collections:

FT8& collection of articles that appeared in the “Fi-

nancial Times” newspaper in 1985

WS8fi collection of articles that appeared in the “Wall

Street Journal” new:? paper in 1987

RAMR on-line collection of film reviews from usenet

news group rec. arts. movie. revzews

IIVY!R on-line collectio:, of summer 1991 “New-York

Times” articles4

Two larger collections, 1‘c1’85 and WS87, were used for

the major portion of te:;ts in this study. RAMR and

INYT, considerably sn, aller collections, were used to

verify the results obtained from FT85 and WS87. FT85

4 The articles are electronically distributed by the MIT BCIS

project. The description oft .Ie project appears in (Giford, 1990).

180



m
Figure 1: Test Collection Characteristics

collection was only used for nPt model related tests, in

that collection we only had access to the term occurrence

data and the document length data, but not to the full

text documents. The table in Fig. 1 shows some of the

characteristics of these collections. In this table mwlen

is the wlen of the smallest document in the collection.
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Figure 2: Term Frequencies

In this study we were interested in the analysis of com-

plete full text documents (as opposed to the relatively

short abstracts used in the previous studies). There-

fore, only the documents with length greater than 400

words (approximately one typed page of English text

in 12pt font) were selected from the complete collec-

tion of the Financial Times articles for 1985 to comprise

the FT85 test collection. Only documents with length

greater than 500 words were selected from the collec-

tion of “Wall Street Journal” 1987 articles to comprise

WS87 collection. Smaller documents were not excluded

from the RAMR and INYT collections since since these

collections are considerably smaller.

Many tests in this study are based on the collection

frequency of text tokens: words and terms. The graphs

in Fig. 2 (terms) and Fig. 3 (words) show the num-

ber of text tokens in the collections tested whose col-

lection frequency is greater than a certain value. The

X axis in this graph is the collection frequency of the
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Figure 3: Word Frequencies

text tokens and the Y -ixis is the number of text to-

kens whose frequency is greater than z: y :, [Tl, T =

{h\c~req(C, h) > z}

Porter’s stemming algorithm (Porter, 1980) was used

for word stemming to create terms. Words (and terms)

shorter than 2 characters were not used for testing.

4.2 Experiment Procedures

The experiment involve~l the estimation of the nP pa-

rameters for each word and term in our test collections

and then testing the estimated parameters with the ~ 2

goodness of fit test. All experiments in this study were

run on a Sun 4/490 SPARC server.

The estimation of the parameters of nP distribution

is done using the Maximum Likelihood Estimate (MLE)I

based algorithm described by Hasselblad (1 969). Our

implementation of this -algorithm is based on the im-

plementation suggested I)y Agha and Ibrahirn (1984) in

algorithm AS203.

The performance of the estimation algorithm depends

on the initial values of the parameters being estimated

(A, and Ti). We generate the initial values c)f these pa--

rameters randomly and ‘f the estimation attempt fails

we use the ‘<Abundance of witnesses” approach (Karp,

1990) to determine whether to stop the estimation pro-

cess or make another att wnpt with a different set of ini-.

tial values. If the estima ~lon or the goodness of fit test

fails for one set of initial values, another set is generated

and the estimation and goodness of fit test is repeated,

up to 10 times. If, after 10 times, no estimates that

satisfy the goodness of tit test are found, the number

of poisson components is increased and the estimation

process repeated.

The simplified descri,)tiou of the estimation process
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foreacb token do

npcomponents := 1

estimated := FALSE

while (=estimated)A(npcompon ents < 8) do

npcornponents := npcomponents + 1

nattempts := O

while (-estimated) A (nuttempts < 10) do

nattempts := nattempts + 1

generate mittal values of nP parameters

estimate parameters uvth MLE algorithm

estimated := X2 goodness of fit test

M satisfied

endwhile

endwhile

endfor

Figure 4: Estimation Process

is shown in Fig. 4. estimated is the Boolean variable

that indicates successful estimation. npcomponents is

the number of single Poisson components in the nP dis-

tribution. nattempts is the number of the estimation

attempts.

4.2.1 Accuracy of the Estimation Algorithm

The accuracy of this randomised estimation approach

was determined experimentally by generating various

nP distributions and then approximating their param-

eters. The results are summarised in Fig. 5.

These results were obtained by first generating 1000

random nP distributions for each n in nP and each sam-

ple size class, and then approximating their parameters.

The table shows that for sample sizes of over 500 (for the

tokens that occur in 500 documents or more in the col-

lection) the accuracy of our estimation process is greater

than 9570. Therefore the chance of failing to recognise

an n P token is less than 570.

4.2.2 Efficiency of the Estimation Algorithm

The analysis and the experimental measurements indi-

cate that the time complexity of the algorithm is in the

worst case proportional to the product of the sample

size (ndoc in our case) and the number of iterations re-

quired by the MLE algorithm. For sample sizes under

20000, the time complexity is proportional to the square

of the sample size in the worst case. The following dis-

cussion of the time complexity of the algorithm is based

on a number of measurements performed during the ac-

curacy testing described above. The resultss are shown

in Figures 6a,6b and 6c.

The time complexity- of the algorithm can be de-

scribed by the following formula:

NT NA(ET+OT)+OA

where NT is the numbe; of tokens to be processed; NA

is the average number of estimation attempts per token;

ET is the time complexity of the parameter estimation

process; OT is the handhng overhead per term and OA

is the handling overhead per document collection.

NT is the number of tokens to be processed and is

equal to the number of unique tokens in the collection

– ntok. This number grows with the collection size, but

asymptotically it approaches the number of the unique

tokens in the collectio]l vocabulary. Therefore, NT is

asymptotically a constant, albeit large. For smaller col-

lections, however, NT is equal to ntok.

NA is the average number of estimation attempts

required per term. This number is computed by the

natt empts variable (Fig. 4). Large samples provide

more information about the underlying distribution,

thus estimation of the distribution parameters for large

samples is more likely to be correct the first time. There-

fore, as the sample size increases, the number of estima-

tion attempts decreases and asymptotically approaches

1. This suggestion is supported by the graphs in Fig. 6a

that show the relation between nattempts (Y-axis) and

the sample size (X-axis) for various nP distributions.

ET is the time complexity of the MLE algorithm used

for the parameter estimation of nP distribution. From

the description of the algorithm (Agha & Ibrahim, 1984)

we determine that its time complexity is proportional

to the product of the nunber of single Poisson compo-

nents in the distribution (N), the sample size (S), and

the number of iterations (1) required to compute the

maximum likelihood estil-nate of the nP parameters:

ET=N.S.J

Although the number of single Poisson components may

vary, in our case it is bounded by the maximum number

of Poisson components n the nP distribution that we

recognise (which is equa to S). Thus N is a constant.

The sample size is the number of documents where a

given token occurs and is proportional to the total num-

ber of documents in the ,:ollection6: S = O(ndoc).

5The efficiency results for sample sizes of 3000 and under are

based on the execution of 100u tests for each sample size and every

n in r@. For sample sizes of over 3000 the results are based on

the execution of 200 tests for each sample size and every n in nP.
6The sample size, althol (gh proportional to ndoc, is usually

much smaller than ndoc. It i; equal to ndoc only for the tokens

that occur in every document, in the collection.
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Sample Size 1P 2P 3P 4P – 5P (jp

P (successful estimation) 100

3

0.993 0.862 0.830 0.788--0.772 0,729
500 0.998 0.957 0.960 0.951 0.963 0.970
1000 1.000 0.968 0.965 0.976 0.978 0.986
3000 1.000 0.983 0.981 0.982 0.985 0.992

P(successful estimation 100 0.993 0.841 0.769 0.701 0.647 0.569
on 1st attempt) 500 0.998 0.943 0.917 0.917 0.925 0.943

1000 1.000 0.952 0.925 0.937 0.949 0.957

3000 1.000 0.967 0.929 0.929 0.938 0.947

Figure 5: Accuracy of the Estimation Algorithm
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Figure 6: Efficiency of the Estimation Algorithm

1 is the number of iterations within the MLE algo-

rithm. To the best of our knowledge there is no ana-

lytical study of the relationship b(’tweeu the number of

iterations and the sample size for the MLE algorithm.

During the accuracy testing we also monitored the num-

ber of iterations within this algorithm. The results are

shown in Fig. 6b where Y-axis represents the average

number of iterations per estimation attelmpt and X-axis

represents the sample size. The results indicate that es-

timation of 1P distribution parameters requires a con-

stant number of iterations independent of the sample

size. For nP distributions with n > 1, the results indi-

cate that within our sample size range (100 to 20000) the

number of iterations required is not worse than linear

with respect to the sample size: I = O(S) = O(ndoc).

We suspect that the relationship between the number of

iterations and the sample size is not worse than linear

even for the larger samples. Therefore the time com-

plexity of the MLE algorithm is:

ET = C O(ndoc) I = O(ndoc) I

for ndoc > ‘20000

= C O(ndoc) O(ndoc) = 0(ndoc2)

for 100< ndoc <20000

OT is the handling overhead per token during the

estimation process. TIN,s overhead includes data table

mangement, X2 test, and the generation of the ran-

domised initial values of nP parameters. The time com-

plexity of the data table management and the y2 test

is proportional to the sample size. The time complex-

ity of the the generation of the initial values is propor-

tional to the number of single Poisson components in nP

distribution and is bounded by a constant – the maxi-

mum number of such colnponents recognised. Therefore

OT = O(ndoc).

The graphs in Fig. (5c show the average amount of

CPU time (in rns) that was spent in the inner while loop

of the algorithm (Fig. 4). The complexity oft his portion

of the algorithm can bc ciescribed as: NA . (ET+ OT).

The Y-axis represents the time in milliseconds and the

X-axis represents the sample size. These graphs confirm

that the time complexity of the algorithm clepends on

NA (Fig. 6a) and (ET + OT) (1, the main ,component

of ET, is shown in Fig. fib)

OA is the handling overhead per document collection

and is proportional to the management of two tables:

document table and token table, The size of the token

table is the number of unique tokens and is asymptot-

ically a constant. The size of the document table is

proportional to the number of documents. Therefore

the handling overhead is: OA = O(ndoc).

Substituting the values of NT, NA, ET, OT, and
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OA in the original complexity formula, we determine

that the complexity of the algorithm is:

NT. NA. (ET+ OT)+OA=

= c ~c . (O(ndoc) . I + O(ndoc)) + O(ndoc)

= O(ndoc) . I for ndoc >20000

= 0(ndoc2) for 100< ndoc <20000

ntok ndoc Time Collection

2062 1084 46 IiVYT-t

2678 1034 55 RAMR.t

2419 1084 57 INYT_w

3154 1034 7.5 RAMR.w
6540 3269 377 WS87-t 1

6582 3316 399 WS87-tz

7917 6750 609 FT85-t
11099 11212 1049 WS87_t3

11034 8151 1121 WS87-t4

10012 5177 1167 Ws87-te
12127 12463 1333 WS87-t5

12294 9111 1571 WS87_tT

13641 13938 1967 WS87-t

20565 13938 2001” WS87_w

Figure 7: Processing Times

Note that it is more expensive (time-wise) for the es-

timation process to fail than to succeed: if a token is not

nP then the algorithm would fail only after exhausting

all attempts (up to 10) for all n in nP (up to 8). If a

token is nP, then it is likely to be recognised early in the

process since the probability of successful estimation on

the first attempt is relatively high (Fig. 5). Therefore,

the proportion of nP tokens as well as the composition

of various nP functions affects the performance of the

algorithm for a given collection.

The initial experimental results on the test collections

used in this study support the timing complexity analy-

sis above. The timing results of applying the algorithm

to various collections are shown in Fig. 7. In this table

the time is given in CPU seconds; “_t” and “_w” suf-

fixes after the collection name indicate whether terms

or words were processed; subscripts denote various sub-

sets of the original collections. The sizes of collections

tested are relatively small to assume that the number of

unique tokens in the collection is a constant (see ntok

column in Fig. 7), thus NT = 0( ntok). Therefore the

time complexity of the algorithm for our test collections

is expressed as: O(ntok ndoc2).

The graph in Fig. 8 supports the complexity analy-

sis. It shows that for the tests performed in this study,

the time complexity of the algorithm is not worse than

O(ntok . ndoc2).

CPLI Time (see)

2500 ~

2000

1

... ................

.,””

1500 0.., .“”””””,.. .0.””.. “., ...
,. .,

1000 ; .?
.. .

: :,,.,
:@

500 :

()~
o 10000 20000 30000 40000

ntok ndoc2 10–s

Figure 8: Processing Times

5 Experiment Results

The goal of our experimfiut was to test assumption 3.1.

First we describe the r{ suits of the basic nP analysis

to verify the assumption. 3.1 with respect to words and

terms. The results indicate that most tokens that occur

frequently are indeed n ~.

The second part of the experiment is the initial analy-

sis of the composition of nP tokens. Here we investigate

what proportion of all n i-’ tokens are 1P, 2P, etc. The

results of this part of the experiment suggest that the

composition of n P tokens in a collection depends on the

token frequency and th- collection size.

5.1 Basic nP Analysis

The first and the main phase of the experiment was to

test the assumption 3.1 by analysing the WS87, FT85,

RAMR and lNYT collec [ions. The result of the analysis

is not a binary “yes” or “,1o” answer, but depends on the

collection frequency of t~~kens analysed. Large samples

of data result in better statistical analysis. The more

often a token occurs in the collection, the more likely

its frequency is high entmgh for the Xz goodness of fit

test. We represent the r(.,,ults of the study as a 2D graph

where the X axis is tht collection frequency of tokens

and the Y axis is the ~wrcentage of nP tokens whose

frequency is greater tbt, ) x:

ITNP1

y = ITI “ 100%’
T = {hlcfreg(C, h) > z]

TNP = {hlh E TAnp(h)}

The graphs in Figures 9 (terms) and 10 (words) rep-

resent the main results (,{ this study. The graphs show
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Figure 9: Proportion of ?W terms

that over 65’%0 of terms or words that occur more than

1000 times inthetwo largercollections (FT85, WS87)

are nP. In smaller collections (RAMR and IiVYT) over

8070 of terms occurring more than 500 times are nP.

Examining the graphs in Figures 9 and 10 one can

detect an important similarity between the proportion

of nP terms (Fig. 9) and the proportion of nP words

(Fig. 10). This similarity is not surprising, since the

terms are derived from words via word reduction (stem-

ming) process and elimination of stop words. This sim-

ilarity indicates that the word reduction process does

not significantly affect the proportion of nP tokens in

the collection.

Proportion of nP Words (%nP)

100 ~

80

60

40

20

()~

0 500 1000 1500 2000 2500

Figure 10: Proportion of nP tokens

The main difference between the word based nP anal-

ysis and the term based nP analysis is demonstrated

by examination of the r,wults for the smaller collections

(INYT and RAMR). Th~~ graphs suggest that most fre-

quently occurring stop words are nP. The right portiom

of the nP words proportion graphs for these collection~s

(Fig. 10) reflect the proportion of the frequently occur-

ring stop words which ar , excluded from the term based

analysis (that is why the lNYT and RAMR graphs are

significantly shorter in Fig. 9).

The results also suggest a relation between the col-

lection size and the proportion of the nP tokens. Con-

sider graphs for smaller collections (INYT and RAMR)

in Fig. 9 and 10. These graphs display higher proportion

of nP tokens (words and terms) than the graphs for the

larger collections (FT85 and WS87). WS87 collection is

larger than the FT85 collection and the graph showing

the proportion of nP terms in WS87 is very close to the

FT85 but is consistently below the FT85 graph (Fig. 9).

This examination suggests that the smaller document

collections have higher proportion of nP tokens. More

analysis is required to ~xplain this phenomenon ana-

lytically. Note that for the very small collections this

suggestion does not hol{i - in such collections tokens do

not occur frequently enough to facilitate any reasonable

nP testing.

The graphs in the Figures 9 and 10 provide positive

evidence that strongly supports assumption 3.1: approx-

imately 70% of the frequently occurring terms in doc-

ument collections are n P. It is possible that a high

proportion of terms occurring less frequently are also

nP, but their low freql!ency prevents us from testing

the goodness of the pal ~meter estimation with the X2

test.

The results of this part of the study suggest that:

●

●

●

Approximately 70% of the frequently occurring

terms and words in document collections are nP.

The proportion of nP terms is similar to the pro-

portion of nP words.

The proportion of nP tokens is higher in the smaller

collections and is lower in the larger collections.

5.2 Analysis of Collections of’ Sinlilar

Length Documents

In this section we describe the results of nP analysis c)f

collection of documents of similar length. For this pur-

pose we have created four collection subsets: FT85U,

FT85t, WS87W and WS87t. These sub collections con,-

tain documents with similar tlen and similar wlen. The

table in Fig. 11 shows the criteria for selecting doc-

uments in these subset collections. The intervals fclr

wlen and tlen were chosen around the average values

of wien and tlen for eacli collection so that the subcol-

lections contain a “reasonably large” number of docu-

ments. The proportion of nP tokens in these subcollec-
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Figure 11: Similar Document Length Collections

tions was compared with the proportion of 71P tokens in

the similar size subcollections of randomly chosen docu-

ments from FT85 and WS87, namely FT85. containing

1650 documents and WS87, containing 3300 documents.

The results of this analysis are shown in Figures 12 and

13.

Proportion of nP terms (%nP)

100 ~

V
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80 .7-”-”-’-%. ---
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... .. ..
...----- . .. .. ... .. .. .. .. ----,,. .. ..

60 ..’’””,.
<

40 ; FT85W ... ....

FT85t - –

o~
o 500 1000 1500 2000 2500

Figure 12: Similar Document Length FT85 Subset

The graphs indicate that the collections of documents

of similar lengths (either tlen or wien ) have a higher

proportion of nP terms than the similar size collections

of documents of different lengths. Although the sub-

collections do not contain documents of strictly equal

lengths, the lengths within the sub collections FT85,”,~

and WS87W ,t are more uniform than in FT85, and

WS87~ or the original FT85 and WS87 collections and

we suspect that the results of the analysis of the subcol-

lections show the general trend,

FT85t and FT85W (Fig. 12) as well as WS87t and

WS87W (Fig. 13) have very similar proportions of nP

terms as indicated by the closeness of the graphs rep-

resenting the nP analysis of the subcollections. This

suggests that the proportion of nP terms in the collec-

tions of documents with similar t lc n is very close to that

in the collections of documents with similar wlen.

The results described above are obtained by analysing

the nP proportion of terms in collections of similar
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0
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I I [ I
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Figure 13: Similar Dw,ument Length WS87 Subset

length documents. Other tests analysing np propor-

tions of words in collections of similar length documents

indicate that the propo~ tion of nP words is also higher

in collections of docume uts of similar lengths.

The results of the analysis of collections of similar

length documents are summarised as follows:

●

●

5.3

Collections of documents with similar lengths (ei-

ther tlen or wlen) have higher proportion of nP

terms (or words) t,~.an the collections of documents

with different lengths.

Collections of don.ments with similar tlen have

proportion of nP 1.rms corresponding to that in

the collections of d, ‘c uments with similar wien.

Composition of nP Distribution

Functions

In this section we descril)e the analysis of the composi-

tion of the nP distribution functions: the proportions

of 1P, 2P, 3P, etc. tc kens among all nP tokens in

a document collection. The results of this part of the

study are presented as bar-graphs showing the propor-

tions of n P terms with , specific n with respect to all

nP tokens. The proportions are shown for all token fre-

quencies (cfrey) using the intervals of 100. For each n

in nP, the graph is fern, ally described as follows:

y=
lTnP/

ITNPI ‘ 100%

T = {hllowlOC;’freg(C, h)) S z

< [,~wlOO(c~req(C, h)) + 100}

low100(z) = z -. (z rem 100)

TNP = {hlh c ‘“ A rip(h)}
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TnP = {hlh c TNP A N = n}

The diagrams in Figures 14, 15 and 17 show the pro-

portions of specific nP terms in FT85, WS87, RAMR

and INYT collections. The diagrams in Figures 16 and

18 show the proportions of specific nP words in WS87,

RAMR and IiVYT collections. The proportion of 6P

tokens is not shown since there are only two 6P terms

found in the I?T85 collection; only 11 6P terms and 6

6P words found in the WS87 collections.

100

5P

100
4P

100

.3P

100

2P

100

1P

FT85 (terms)

L 1 I I I I I I a

m

o 1000 2000 3000 4000

Figure 14: FT85 nP composition (terms]

The diagrams show that the n in nP tokens is rela-

tively low: most n P tokens are 2P, 3P and 4P. A small

number of 5P and 6P tokens was found in the two larger

collections (FT85 and WS87) and a small number of 1P

tokens was found in the two smaller collections (RAMR

and INYT). We can therefore conclude that most terms

in the collections examined can be described by 2P, 3P

or 4P distributions.

High frequency nP tokens tend to be the tokens with

a relatively high value of the n in nP. For example, in

FT85 collection (Fig. 14) there are no 2P terms among

the terms whose collection frequency is higher than 3100

and the proportion of 4P terms among the nP terms

with frequencies less than 2000 is relatively low. Ex-

amination of term and word distributions in the WS87’,

RAMR and INYT collections (Figures 15, 16, 17 and

18) confirms the FT85 analysis.

The results also suggest that the two larger collections

(FT85 and WS87) contain higher proportion of nP to-

kens with relatively large n in nP than the two smaller

collections (RAMR and INYT). The smaller collections,

on the other hand, have higher proportion of nP to-

kens with relatively small n: both RAMR and INYT
.—

have a significantly higher proportion of 1P and 2P to-

kens than the two larger collections. This suggests that

WS87 (terms)

100 ~ I I I 1 I I 1 d

5P

100 -
-~

4P

3P

2P

1P
1 1 I 1 1 1 I

o 1000 2000 3000 4000

Figure 15: WS87 n P composition (terms)

the collection size affect~ the nP composition of tokens

in the collections: large document collections are more

likely to have nP tokens with large n. nP tokens with

small n are more likely to occur in the small document

collections.

WS87 (words)

5p:~
4P

3P

100

2P

1P

o 1000 2000 3000 4()00

Figure 16: WS87 nP composition (words)

Another issue related to the composition of the nP

distribution functions is the lack of 1P tokens (terms or

words) in the FT85 and WS87 collections (Figures 14,

15 and 16). This seems LO contradict the suggestion c,f

Damerau (1965) and Stone and Rubiuoff (1968) that the

stop words are distribut,etl according to a single Poisson

distribution (1P).

Although the most common stop words were excluded

from the term based analysis (Figures 14 and 15) it is

very unlikely that we havi, excluded all of the stop words.
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RAMR INYT
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Figure 17: RAMR, INYT nP composition (terms)

No stop words were excluded from the word based anal-

ysis (Fig. 16) These stop words should have been clas-

sified as 1P tokens. The lack of 1P terms in the two

larger collections and the small number of 1P terms in

the two smaller collections can be explained as follows.

In large collections documents are written using differ-

ent writing styles and deal with a wide variety of topics.

This variety of writing styles and topics introduces a

certain “noise” in the otherwise perfect 1P distribution.

If the collection size is relatively small then the noise

is low and it is possible to recognise the stop word as

a 1P term (that is why there are still some 1P tokens

in the RAMR and INYT collections). If the collection

size is large then the effects of the noise are strong and

the stop words are either recognised as nP terms with

n > 1 or not recognised as nP terms at all.

The main results of this portion of the study are sum-

marised as follows:

●

●

●

●

●

6

The distribution of most of the nP tokens have rel-

atively few single Poisson components: 2, 3 or 4.

Composition of nP terms in a collection is similar to

the composition of nP words in the same collection.

High frequency nP terms tend to be the terms with

a relatively high value of n in nP.

Large document collections are more likely to have

nP tokens with the large n and less likely to have

nP tokens with the small n.

Stop words are unlikely to be distributed according

to 1P in large collections.

Summary

In this paper we described the results of the recent study

of the n-Poisson distribution of words and terms in full

RAMR INYT
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Figure 18: RAMR, INYT nP composition (words)

text document collections. We presented a practical al-

gorithm for determining lf a certain token is distributed

according to an nP distribution. The time complexity

of the algorithm is in the worst case asymptotically pro-

portional to the product of the number of documents

and the number of iterations required by the maximum

likelihood estimation algorithm. For collections where

individual terms occur m less than 20000 documents,

the time complexity is in the worst case quadratic with

respect to the number of documents.

The algorithm was applied to test the nP properties

of every word and tern] in four full text document col-

lections. We determim d that over 70% of frequently

occurring words and terms are indeed distributed ac-

cording to the Multiple Poisson distribution.

The analysis of composition of the nP distribution

functions was performed to determine the proportion of

the specific n-Poisson distributions (1P, 2P, etc) among

all of the nP tokens in our collections. The distributions

of most of the nP tokens were found to have relatively

few single Poisson components: two, three, or four. The

results also suggest the relation between the nP compo-

sition and the collection size and the token frequency.

In this study we pres nted strong evidence that the

n-Poisson distribution could be used as a basis for an

accurate and useful statistical model of large document

collections. There are nlany open questions, however,

and further research is required for the development of

such a model. The following are some of the issues that

would require further a]lalysis:

● Determining if the u-Poisson distribution paranle-

ters of individual text tokens can be used as char-

acteristics of document collections.

c Determining if not c nly words and terms, but other
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text units as well behave acco~cling to the n-Poisson

distribution: phrases, n-grams, etc.

Investigating the n-Poisson properties of non-

English language document collections.

Correlating nP properties of tokens with their “tra-

ditional” IR characteristics: inverse document fre-

quency, discrimination value, etc.

Another important issue for future research is the

development of an nP indexing and retrieval strategy.

This strategy is based on the following. Each nP token

divides a document collection into n subsets correspond-

ing to n classes of coverage. Therefore each nP token is

associated with (n — 1) “division points”. These division

points can be easily computed. We believe that these

points can be used for determining good index terms.

This approach is based on the sound statistical analysis

and we feel it will improve the efficiency of the search

and retrieval process.

We believe that further research in using the n-

Poisson distribution to model full text document collec-

tions will help in developing a comprehensive and useful

statistical model for such collections.
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