
A Direct Manipulation Interface for
Boolean Information Retrieval via

Natural Language Query

Peter G, Anick, Jeffrey D. Brennan, Rex A. Flynn, David R. Hanssen
Digital Equipment Corporation, 290 Donald Lynch Blvd., DLB5-2/B4. Marlboro, MA 01752-0749

Bryan Alvey, Jeffrey M. Robbins
Digital Equipment Corporation, 305 Rockrimmon Blvd South, CXO3-l/Q3 Colorado Springs, CO

80919-2398

Abstract

This paper describes the design of a direct manipulation user interface for Boolean
information retrieval. Intended to overcome the difficulties of manipulating explicit
Boolean queries as well as the “black box” drawbacks of so-called natural language
query systems, the interface presents a two-dimensional graphical representation of a
user’s natura3 language query which not only exposes heuristic query nansformations
performed by the system, but also supports query reformulation by the user via direct
manipulation of the representation. -The paper illustrates the operation of the interface as
implemented in the AI-STARS full-text information retrieval system.

1. Introduction

The AI-STARS project is an on-going research program at Digital Equipment Cor-
poration, investigating methods for improving full-text information retrieval. Our target
audience is Digital’s Customer Support Specialists, for whom ready access to on-line
technical information is indispensable for quick and accurate handling of a wide range
‘and heavy volume of customer inquiries. Specialists typically must conduct textual in-
formation searches while on the phone with the customer and without much time for

Pl arming a query. Hence system response time and ease of use are critical to effective
use of information retrieval technology in this environment. Our aim is to exploit lin-
guistic and domain knowledge to improve article indexing, query interpretation, and
query reformulation.

Permission to copy without fee all part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery; To copy otherwise, or to republish, requires a fee and/
or specific permission.

(c) 1990 ACM o-89791-408-2 90 0009 135 $1.50 . .

135

Our starting point for this research is STARS, the text retrieval system currently in
use at Digital’s Customer Support Centers. STARS provides full-text retrieval, given a
query expressed either as a Boolean expression or as a,natural language string. In inter-
views with STARS users, we found that natural language query is by far the preferred
input mode, since users need no training to express topics via the natural language meth-
ods of adjectival and prepositional phrase modification, relative clauses, nominal com-
pounds, etc. But, unlike Boolean queries, which provide an explicit semantics defining
the set of documents retrieved, natural language queries typically require some “behind
the scenes” transformations before they can be matched against a document set.
STARS, for example, performs word truncation to remove suffixes, removes
noisewords, adds in synonyms, and finally converts the result into a Boolean expression
for article matching.

When successful, natural language query is an ideal interface. However, our inter-
views revealed that natural language query users tend’to be confused by system results
that don’t confork to their expectations of what “should” happen and they often request
ways to override (supposed) system default behavior. Thus, the major advantage of
natural language query, its avoidance of more cumbersome input languages such as
Boolean expressions, is counterbalanced by the need for query-enhancing transforma-
tions which typically transpire without the user’s awareness.

This state of affairs presents a challenge to projects like AI-STARS, which have the
goal of implementing even more powerful “behind the scenes” intelligence. Our ap-
proach to this dichotomy is to augment a natural language query facility with a direct
manipulation “Query Reformulation Workspace”, which incorporates an explicit visual
Boolean semantics. This window gives the user a view into the heuristic decisions made
by the system and, at the same time, the ability to override, influence, or supplement
those decisions.

This paper describes our interface design. We begin with an overview of some of the
query reformulation techniques that are appropriate to natural language query systems
and describe our implementation of those techniques. We then enumerate a set of de-
sign goals we believe a human interface should meet and present a design which comes
close to satisfying those goals. We conclude with a discussion of the merits and shon-
comings of our approach.

2. Reformulation Techniques

Reformulation techniques can be applied at both article indexing time and at query
time to enhance the matching of natural language queries with articles. AI-STARS in-
corporates the following techniques.

l Stemmin g. N-STARS utilizes a lexicon of lcnown words, morphological paradigms,
and orthographic rules in order to reduce morphologically inflected forms to their
uninflected “citation” forms, This eliminates the need for the user to worry about
truncating query terms to increase recall.

l Phrase construction. The lexicon also stores uninflected forms of known contiguous
phrases, such as “database management system”. This allows the system to recog-

136

nize known phrases in a user query, obviating the need for the user to explicitly re-
quest that the terms be treated as a phrase. Articles are indexed by both the phrase
as a whole and the individual components of the phrase.

l Expression canonicalization. Special expressions, such as release version numbers
and date expressions, which have multiple surface realizations, are parsed and
canonicalized. For example, the variant surface forms “version 5.1 -a”, “~5. l-a” and
“v. 5.1 a” are indexed by a single canonical form, This eliminates the need to con-
struct and retrieve on a set of alternative forms at query time.

l Expression generalization Certain expressions, such as version numbers, encode
implicit generalizations. For example, “v5.Oa” is a specialization of “~5 .O” which is
in turn a specialization of “~5”. At indexing time, articles containing such expres-
sions are indexed on each generalization of such an expression. This allows for the
matching of articles with various levels of query expression specificity.

l Noiseword removal. Words unlikely to contribute to the content of a query, such as
articles and prepositions, are automatically excluded from the query.

l Use of thesaurus relations. AI-STARS maintains a database of related terms. Syno-
nyms may be ORed with terms in the query in order to improve recall. More speci&c
terms may be substituted for more general terms to improve precision.

Numerous other reformulation techniques have been investigated in the context of
other experimental natural language query systems. pEBILI88) discusses spelling cor-
rection, “explicitation” of implicit concepts recognized via morpho-syntactic frames,
and stemmatization relating words with their morphological derivatives. [SALTON75]
and @DILLON833 have experimented with phrasal normalization, relating word colloca-
tions appearing in semantically similar but syntactically different constructions, such as
“retrieval of information” and “in.formation retrieval.” wCEL88] associates word se-
quences with semantic filters. tSCHWARZ883 analyzes text into dependency trees re-
flecting head-modifier relations.

These techniques, while utilizing computational linguistics, stop short of attempting
to do a full parse and deep understanding of either the query or text. Researchers DO-
GUR4EV82, RAU883 have explored this approach to indexing and query interpretation
as well. However, our focus here will be on the former kinds of reformulation, those
designed to enhance the mapping of a natural language input into a traditional Boolean
query. In the STARS full-text system, for example, natural language queries are typi-
cally not sentences at all, but rather strings of words and phrases.

3. User Interface Design Goals

Given the context of a full-text information retrieval system which translates natural
language queries into Boolean expressions, our aim was to augment the interface to al-
low the user better understanding of and control over the actual query formulation. We
identified a number of design goals for an appropriate human interface for this task.

137

1. It should make explicit any “behind the scenes” operations done by the system. The
results of morphological analysis and other forms of canonicalization should be
view able. If noisewords are removed, this should be made obvious.

2. It should accommodate ambiguity in natural language expressions. Since the sys-
tem’s default interpretation of a query may depend on ambiguity resolution, the in-
terface should have a way to present the ambiguity and indicate the system’s re-
sponse to that ambiguity, For example, in a system which indexes and retrieves on
phrases, a natural language input containing a phrase is automatically ambiguous be-
tween two interpretations, one matching articles which contain the contiguous
phrase, the other matching articles which contain the component terms but not nec-
essarily in contiguous positions.

3. It should provide a natural way of visualizing the Boolean expression created as a
result of analyzing the natural language query.

4. It should facilitate query reformulation and experimentation, by making iterative ad-
justments to the query easy to perform. (e.g. Bates’ search formulation tactics
pATES791).

5. It should integrate smoothly with other information retrieval aids, such as a thesau-
NS.

4. AI-STARS User Interface

Our experimental realization of the above design goals takes the form of a direct ma-
nipulation “Query Reformulation Workspace”. This has been implemented using X-
windows on a DEC VAXstation as part of the AI-STARS prototype.’ As mentioned ear-
lier, input to AI-STARS is in the form of a natural l&nguage expression. Each word is
morphologically analyzed to identify its citation form (the uninflected form as it would
appear in a dictionary); meaningful phrases, composed of two or more consecutive
words, are recognized; special expressions are canonicalized and generalized; and
noisewords are idenrified. By default, the system makes noisewords, generalizarions,
and those words that are components of phrases (as opposed to the entire phrases) “inac-
tive”, meaning that they are not included in the query executed against the article data-
base. ALI other terms are initially “active”.

The results of this analysis are displayed in the graphical “Query Reformulation
Workspace.” Figure 1 illustrates the appearance of the workspace after the user has en-
tered the query “Copying backup savesets from tape under ~5.0”.

AU citation forms (for words, phrases, special expressions, generalizations and
noisewords) are laid out as tiles in two dimensions, $n a chart, or spreadsheet-like, for-
mat. The citation forms for the tokens in the original query are displayed horizontally
along the top of the chart, thereby defining colun@ of the chart. Phrases, multi-term
special expressions, and ambiguous interpretations of the query terms axe displayed be-
low the corresponding items of the top line. The two-word phrase “BACKUP saveset”,
for example, is displayed in a single tile covering the two columns delineated by its
component terms. The tiles of active query terms ate indicated by reverse video. The

138

fite Owabarer Mainteulnre Customize Sewrhes

GuelY copying backup savtsets from tape under 6.0

iruerv Mawhe:
lo

;

I AIIYlP chrngcr .
Figure 1 Initial Query

function words, “from” and “under” are inactive. Likewise, the components of the
phrase “BACKUP saveset” are inactive, as is the generalized term, “version 5”.

The two-dimensional layout provides a simple visual semantics for the Boolean in-
terpretation of a query, while accommodating ambiguity that may exist in a natural
lanmage expression. Roughly, tiles which overlap vertically are ORed and those which
do not are ANDed. The set of documents retrieved can be described as all those articles
containing some combination of tetis from any possible left-to-right path through the
chart. We will characterize the semantics of the display more completely in section 6.

The Boolean expression corresponding to the displayed configuration of tiles in fig-
ure 1 is

(“copy” AND “BACKUP saveset” AND “tape” AND (“~5.0” OR “version 5.0”)).

As a result of applying the query, the user is informed of the number of articles
matching the query and is given the option of viewing a list of their titles. Additionally,
the number of postings for each ten-n included in the query is displayed in the lower left-
hand comer of the tile corresponding to that term. This feedback can suggest to the user
which terms may require broadening or narrowing.

The workspace supports query reformulation via direct manipulation of the display.
The system’s default choices of active tiles are currently biased towards precision rather
than recall. However, each term can be individually included in or excluded from the
query by clicking on the tile (achich toggles its activation). Figure 2 illustrates the dis-
play after the user has deactivated the term “copy” and activated the terms “BACKUP”
and “saveset”. The Boolean interpretation of this new configuration is

(((“BACKUP” AND“saveset”) OR “BACKUP saveset”) AND “tape” AND (“~5.0”
OR “version 5.0”)).

139

;r%ixGz-,w,

Figure 2 Query after changing activations

In addition to toggling activasion of tiles, users can manipulate the search expression
further by moving tiles from one column to another Uia mousing and dragging. For ex-
ample, in figure 3, the user has moved the “tape” tie into the column below the tile
“saveset”, changing the configuration to mean

(((“BACKUP” AND (“saveset” OR “tape”)) OR “BACKUP saveset”) AND (“~5.0”
OR “version 5 -0”)).

Apptv Changes Display Titter

Figure 3 Query after movfng tile

140

Note that the column previously containing “tape” is empty as a result of the move
and is no longer displayed.

A tile can be made to extend across more or fewer columns by mousing and drag-
ging the edge of the tile. These operations allow the user complete control over how the
terms are to be ANDed or ORed with each other; the Query Reformulation Workspace
thus serves as a visually appetig alternative to manipulating Boolean expressions in
the form of parenthesized expressions or AND/OR trees.

5. Adding New Search Terms

It is well known that initial user queries rarely contain all the right terms to conduct
a successful search pATES86]. Many systems provide on-line thesauri mEI83, MC-
MATH89, THOMFSON89J or support relevance feedback [CROFT86, SALTON89J to
supplement an initial query with further search terms.

The AI-STARS system maintains a database of related terms, which are made ac-
cessible from the Query Reformulation Workspace. A user can click on a term in the
workspace to “select” it and then calI on a “related terms” pop-up window to display
terms that are related to the selected term in various ways: synonyms, terms containing
the term (or a portion of the ten-n) as a substring, phrases containing the term, and con-
ceptually related terms.

In figure 4, the term “tape” has been selected (as indicated by the surrounding
bolded rectangle) and the Terms window corresponding to the term “tape” has been dis-
played to the right of the Query Reformulation Workspace window.

l?srabas.es Maintc&re -Customize Gauchei..

hew copying backup sa~sets from tapr under v5.0

Ouery M3tCles

11 STms:tJuerv Retot~~htron Workspace
File TrWblS

Figure 4 Query after term substituted from terms display

141

The Terms window is composed of four subwindows, each with its own operational
semantics,

l

l

*

0

For phrases containing the term, selecting an item from the Terms window has the
effect of narrowing the query by substituting the item for the selected term in the
workspace. This is achieved by placin, * the item as an active tile into the same col-
umn(s) as the workspace selected term and making the workspace selected term in-
active.

For synonyms, selecting an item from the Terms window broadens the query by add-
ing the item as an active tile in the same column as the workspace selected term,
without changing the activation of the workspace term.

For concepu.rally related terms, selecting an item narrows the query by appending the
item as an active tile after the last occupied column of the chart (visually establish-
ing a new column).

Compound terms are superstrings of the term which contain at least one non-
alphabetic character. Such superstrings are common in a computer science domain,
where many terms, such as error messages and facility names, are composed of mne-
monic strings embedded in longer strings, using non-alphabetic characters as deline-
ators. When being added to a query, compound terms are treated in the same manner
as synonyms.

The association of a default semantics with each Terms subwindow minimizes user
effort in augmenting a query, since a user need only select the term to be added, without
first considering where the term should ti placed in the configuration. In figure 4, the
Query Reformulation Workspace has be-en updated to show the result of selecting the
phrase “scratch tape” in the Terms window. The phrase has been placed, as an active
ten-n, in the column below the term “tape”, which has been made inactive. As each de-
fault operation has an immediate visual manifestation, the user is free to adjust the
query if, in some circumstance, the default is not what is desired.

As illustrated in the above figures, we separate the natural language query input win-
dow from the Query Reformulation Workspace. The user can also add new terms to an
existing query by appending them to the original natural language query string. The new
terms are processed and added to the display, leaving the earlier portion of the query
display intact. This separation into two windows allows the user the option of interact-
ing solely through the neural language query window until the workspace facilities are
specifically needed.

6. Characterization of the Visual Boolean Semantics

The layout for our Query Reformulation Workspace was motivated by the desire to
preserve the left-to-right form of the initial natural I,anguage input, thereby making it
easy for the user to recognize how the tiles in the workspace correspond to the original
textual query. The use of the vertical dimension to display alternative terms provides a
natural way of representing the ambiguity between a phrase and the components of a
phrase taken individually. Yet, as the previous sections illustrate, the set of tile manipu-

142 1

lations available permits the construction
section, we describe the visual semantics
increasing complexity.

One Column Groups

The simplest configurations are those
column.

of
of

in

arbitrarily complex visual displays. In this
the workspace with a series of examples of

which none of the tiles span more than one

Each column constitutes a group of ORed terms. The ORs formed from each column
are ANDed from left to right. This is a standard conjunctive normal form interpretation.
We extend the conjunctive form to deal with situations where tiles have been deacti-
vated. If a single tile in one of the columns above is inactive, it simply does not partici-
pate in the OR for its column. If all of the tiles in one column are inactive, we have
chosen to ignore that column in the query. (The alternative choice would have been to
make the query unsatisfiable.) A common situation producing inactive columns is the
deactivation of function words, such as “from” and “under” in Figure 1.

Multi-column Groups

A multi-column g-roup exists .whenever a single active tile spans more than one col-
ulnn.

EIEIEI

LFI m

In this example, we consider tiles C, D and E to form a single multi-column group.
Within this group, C and D do not overlap, but together they overlap completely with E.
We therefore translate this group into the Boolean expression ((C AND D) OR E). The
expression for this group is then included in the overall query as if it were a single-
column g-roup (the resulting query is [(A OR B) AND ((C AND D) OR E)]).

There are some multi-column groups where tiles are
order in which the expression is generated.

EIEI

ELII

El F

In this configuration, D and F overlap completely, so
ANDing with C (and ORing the result of that with E).
this group is ((C AND (D OR F)) OR E).

not necessarily displayed in the

they are ORed together before
So, the resulting expression for

143

Multi-column group with partial overlap

Sometimes some of the tiles in a multi-column group are inactive.

El

-B-q

LD :

,+,

By analog to the situation in which a column contains no active tiles, there are two
ways the space left by tile D can be interpreted. Breaking down the group into two sub-
groups (C and “D” as one subgroup, and E as the other), either the subgroup containing
C cannot satisfy the query on its own, or it can. We have chosen the latter interpretation,
i.e. to ignore the “column” occupied by D in the subgroup, so the Boolean interpretation
for the whole group ends up being (C OR E).

Multi-column group with complex overlap

There are certain overlapping situations which are much harder to interpret.

FI ~r’lq

In this situation, we extend the notion of a group to include all of the tiles above. A
more formal definition of a group is that it consists of alI the active tiles in a series of
adjacent columns, where each of the boundaries between these adjacent columns has at
least one active tile sp arming it, but the boundaries on either side of the the outermost
columns in the group have no tiles sp arming them.

The major question for such a gtoup is how we would like it to k interpreted. It is
clear that an article containing both E and F should satisfy the query. Likewise, an arti-
cle containing both C and G should satisfy the query. It is not clear whether an article
containing C and F, but neither E nor G, should satisfy the query. The algorithm which
we use (and which is described in section 8) will allow this last possibility to satisfy the
query. We believe that this is consistent with how we have interpreted the other con-
figurations containing inactive tiles. Nevertheless, sukh situations are difficult to ana-
lyze.

Fortunately, such circumstances rarely occur. Where two terms overlap each other
in the way that E and G do, they tend to represent competing concepts. For example, if
the user typed in “operating system management,” the system might know about the
phrases “operating system” and “system management.” It is unlikely that the user
would want to query on both these concepts simm.ltaneously.

7. Explicit Boolean operators

The visual Boolean semantics described above allow the expression of any
propositional calculus expression formable using the connectives AND and OR. Even

144

so, there are queries that cannot easily be expressed in our two-dimensional graphical
language, such as ((A and B) or (C and D)). VisuaUy representing this query would re-
quire repetitions of the same terms at different points along the horizontal axis, as
shown here:

Furthermore, the traditional Boolean NOT operator is not available. While these are
potential shortcomings of this approach, they may have little practical consequence.
McAlpine and Lngwersen wCALPINE893, for example, limit their query-by-forms
search expression interface to conjunctions of URed terms, arguing that this is sufficient
in most cases.

I+evertheless, we are experimenting with the addition of an optional “escape hatch”
to full propositional calculus, by allowing the user to include the Boolean operators
AND, OR, and NOT directly in their natural language queries. When one of these terms
is encountered in a query, it is treated as ambiguous between the English word and the
Boolean operator, with the Boolean interpretation active by default. With the use of pa-
rentheses, this permits the formation of arbitrary Boolean expressions. Natural language
sequences appearing between Boolean operators are interpreted as above.

8. An Algorithm for Interpreting Chart Configurations

We implement the visual Boolean semantics described in section 6 by employing a
recursive divide-and-conquer strategy. Applied to any subgroup of terms generated
from the tiles in the workspace, it generates a tree of nodes, where the internal nodes are
Boolean query operators (AND, OR and NOT), and the leaves arc the workspace terms.
The “divide” part of the algorithm splits a group of terms into multiple smaller groups
of terms, to which the algorithm can be re-applied. The “conquer” part groups multiple
subtrees together into a single larger tree by supplying a new AND or OR internal node.
Once a tree is generated for all the terms in the workspace, it can be interpreted directly
to search the database of articles.

The same algorithm handles both the default workspace semantics and explicit
Boolean terms as described in the previous sections. The process of splitting and re-
grouping terms recursively into a tree is not complicated for explicit Boolean terms, and
is handled at the top levels of recursion.

The lower levels of recursion, which handle the default workspace semantics, in-
volve 3 basic steps.
1, “Find-fewest-spanning-terms.‘* Find the way to perform the recursive subdivide of a

group of terms supplied to it. A group of terms spans a set of columns in the work-
space. The algorithm finds a point between two of these columns that has the fewest
number of terms sp arming it. It splits the group of terms into 3 subgroups - Group
I contains all terms that are to the left of the point, Group 2 contains aU terms to the
right; and Group 3 contains any terms that span the point.

145

2

3.

Groups 1 and 2 together constitute a “compatible” interpretation of the query - i.e.
the results of processing the default algorithm against Group 1 can be ANDed
against the results of processing the algorithm against Group 2. If Group 3 is empty,
this is all that needs to be done. Otherwise, Group 3 constitutes an “incompatible”
interpretation: an alternative interpretation is constructed with Group 3 (see next
item), and the results of this are ORed with the AND of Groups 1 and 2.
“Construct-alternate-interpretation.” A new group of tiles is constructed by aug-
menting the sp arming tiles in Group 3 with some of the tiles in Groups 1 and 2. The
tiles that are included from Groups 1 and 2 are any ‘that do not overlap with at least
one of the tiIes in Group 3. This creates a new group with potential term overlaps in
it, but later recursions will resolve these overlaps correctly. Once a group is gener-
ated in this way, it is processed recursively.

In this speoific implementation, there are three degenerate cases which constitute the
stopping points of the recursion.

1. An empty cohmn, which returns nothing (we ignore empty columns).

2. A single term - this is returned as a leaf node.

3. A group of multiple terms, which all span the same columns - these are ORed to-
gether.

After the tree is generated, nested Boolean AND nodes and nested Boolean OR
nodes are merged, to reduce the number of Boolean operations on article sets further.

Example

c BACKUP SAVESET I

The starting group of terms is [A B C II]. “Find-fewest-spanning-terms” finds point
2 has no overlapping terms, and splits the group into Group 1, [A B C], and Group 2,
[II]. Group 1 is re-analyzed, and point 1 is found as having 1 overlapping term -- we get
Subgroup I as [A], Subgroup 2 as p], and Subgroup 3 a.s [C]. Subgroups 1 and 2 are
the second degenerate case - the terms are returned as nodes. Subgroup 1 and Sub-
group 2 are mutually compatible, and are ANDed together

“Construct-alternate-interpretation” finds no terms in Subgroups 1 and 2 that can be
included with Subgroup 3, so C is returned as the degenerate tree for the alternate inter-
pretation, and this is ORed with the prior AND node, which gives

146

I

Finally, the results of this (the original Group I) are compatible with Group 2, and
they are ANDed together,

9. User Feedback

In a preliminary study of the effectiveness of the proposed interface, we observed a
dozen users, already familiar with the STARS system, as they formulated queries using
the AI-STARS interface. Users were able to manipulate the Query Reformulation Win-
dow appropriately after several minutes of explanation and experimentation. Their feed-
back indicated that “opening up the black box” simplified the task of query
reformulation and made them more confident in the results of the search. For most real-
istic queries, the visual displays were readily interpretable with respect to their Boolean
semantics. As alluded to in section 6, cases of “complex overlap” of tiles were diEcult
to decipher in the contrived examples we presented to the users. However, users did not
encounter such cases while formulating queries on their own.

Further testing is required to generalize our fmdings to a large population. We are
particularly interested in ease of learnability for novice STARS users, and comparisons
of retrieval effectiveness with and without the reformdarion window.

10. Performance

Our interface supports query reformulation via interactive iterative refinement. This
mode of interaction requires quick query response times (i.e. within several seconds) to
be most effective. Using a cache to speed up lexicon access, our current prototype, op-
erating on a database of 3000 one-to-two page articles, satisfies our interactive response
requirements. As we scale up to databases in the 100,000 to 500,000 article range (the

. size of the existing STARS database), we expect the major cost to come from perform-
ing I/O’s on the inverted indices. For this reason, we have avoided including some of
the more expensive operations sometimes available in information retrieval systems,
such as term proximity constraints, word truncation, and wildcarding. Our hope is that
the indexing-of known contiguous phrases, morphological analysis, and the compound
terms window make these search term operations largely unnecessary.

11. Related -Work

A number of researchers have explored the use of graphics interfaces for informa-
tion retieval. Fischer and Nieper-Lemke [FISCHER89] support browsing and query

147

formulation with a visually displayed concept hierarchy. Croft and Thompson
[CROFI’86] allow users to graphically navigate a knowledge base consisting of a se-
mantic network of documents, terms, and concepts, enabling users to discover and indi-
cate relevant items as they browse. Spenke and %ilken [SPENKE89] generalize
Zloof’s ELOOF77] Query-by-Example paradigm for database retrieval with a spread-
sheet based interface for interactive logic programming. McAlpine and Ingwersen
mCALPINE891 show how a graphical forms-based interface can be applied over a
wide range of information retrieval tasks in the context of a “knowledge worker support
system.”

Our approach to the graphical representation of natural language input has also been
influenced by work in “chart parsing” mY80], for which a two-dimensional graphical
layout can be exploited to display constituent structure.

12. Conclusions

Lynch [LYNCH87] has argued that the introduction of heuristics into information
retrieval systems has an associated risk, that the “poaion of the user community who
understands how the information retrieval system really works and how to exploit the
full power of the retrieval system thus will grow smaller and smaller.” Corroborating
this prediction, our analysis of users’ problems with the STABS full-text retrieval sys-
tem revealed that the btnefrts of natural language queries were somewhat undermined
by the necessity of hidden query reformulation.

This paper has described an approach to opening up the “black box” that character-
izes many information retrieval systems accessed via natural language query. The result-
ing interface is a hybrid that, we believe, reaps the benefits of both natural language
queries and explicit Boolean query manipulation, while minimizing the drawbacks that
each approach has on its own.

Informal off-line testing by Customer Support Specialists has tended to validate this
hybrid approach. Users appear to learn the visua.3 semantics quickly and enjoy the ease
with which they can experiment with the form of a query. Thus, while we have not yet
had the opportunity to test our prototype on a wide number of users in a realistic setting,
we are optimistic about the effectiveness of this solutiofi for our target user community.

We are also evaluating potential shortcomings of the current approach.

* The display method is best suited for relatively short queries, since the visual repre-
sentation becomes less perspicuous as the number of tiles in the configuration in-
creases. While this limits the size of practical queries, our experience suggests that
most actual queries fall within the range accommo&ated by this approach.

l The existence of certain complex confrg-u.rations containing partially overlapping
tiles (mentioned above) may make it hard for users to map some configurations to
their Boolean equivalents. Again, our experience to date suggests that Wy complex
configurations are rarely produced in real queries, and that the interpretations of sim-
ple cases of partial overlap are easily learned by experience.

- The current system is based on mapping to an exact match Boolean expression.
While the ease of manipulating this expression removes some of the drawbacks of

148

exact match retrieval, we have not yet considered how this approach might be
adapted to an extended Boolean [SALT0N83] or probabilistic [SALTONSB] seman-
tics.

In addition to such issues, future research will investigate extensions to the current
set of workspace operations, the integration of structured data into a query via the work-
space, and integration with other on-line retrieval aids.

As we build more intelligence into the system, enabling more system-initiated query
reformulation, it will be interesting to see how well our model of user/system coopera-
tion through the visual workspace scales up. It is our belief that the ability to display the
results of system-initiated reformulation in a manner comprehensible to and easily
correctable by a user will be a major factor in user acceptance of and confidence in more
“intelligent” retrieval systems of the future.

References

@ATESS Bates, Marcia J., Terminological Assistance for the On-line Subject
Searcher, Proceedings of 2nd Conference on Computer Interfaces for Information Re-
trieval, 1986.

PATES793 Bates, Marcia J., Information Search Tactics, Journal of the American So-
ciety for Information Science, July 1979.

wOGURAEV823 Bog-uraev, B-K. and K. Sparck Jones, A Natural Language Analyser
for Database Access, Information Technology: Research and Development, L982,1,23-
39.
[CROFT861 Croft, W. B. and R. H. Thompson, I3R: A New Approach to the Design of
Document Retrieval Systems, COmS Technical Report 87-58, 1986.
mEBILI88] Deb& Fathi, Christian Fluhr, and Pierre Radasoa, About Reformulation in
Full-Text IRS, Proceedings of RIAO, 1988,343-360.
pILLON Dillon, M. and A. S. Gray, FASIT: A Fully Automatic Syntactically
Based Indexing System, 1983, Journal of the American Society for Information Sci-
ence, 34(2):99- 108.
IT;ISCHER89] Fischer, Gerhard and Helga Nieper-Lemke, HELGON: Extending the
Retrieval by Reformulation Paradigm, Pro&dings of CHI, 1989,357-362.
mI83] Frei, H. P. and J. F. Jauslin, Graphical Presentation of Information and Serv-
ices: a User-Oriented Interface, Information Technology: Research and Development,
1983,2(23-42).
WY803 Kay, M., Algorithm Schemata and Data Smctures in Syntactic Processing,
Xerox Palo Alto Research Center, Tech Report no. CSL-80-12, 1980.
&ANCEL88] Lancel, J. M. and N. Simonin, TEX-NAT: A Tool for Indexing and In-
formation Retrieval, Proceedings of RJAO, 1988,369-377.
[LYNCH873 Lynch, Clifford A., The Use of Heuristics in User Interfaces for Online
Information Retrieval Systems, Proceedings of the American Society for Information
Science, 1987, 148-151.
pMCALPINE89] McAlpine, Gordon and Peter Jngwersen, Integrated Information Re-
trieval in a Knowledge Worker Support System, Proceedings of the Twelfth~AnnuaJ In-

149

temational ACM SIGIR Conference on Research and Development in Information Re-
trieval, 1989.

wCMATH89] McMath, Charles F., Robert S. Tamqru, and Roy Rada, A Graphical
Thesaurus-Based Information Retrieval System, International Journal of Man-Machine
Studies, 1989, 31, 121-147.

MUSS] Rau, Lisa F., Conceptual Lnformation Extraction and Retrieval from Natural
Language Input, Proceedings of RIAO, 1988,424-437.

[SALTON Salton, Gerard, Automatic Text Processing: the Transformation Ana.ly-
sis, and Retrieval of Information by Computer, Addison-Wesley, 1989.

[SALTON86] Salton, Gerard, Another Look at Automatic Text Renieval Systems,
Communications of the ACM, 1986,29,648-656.

[SALTON Salton, Gerard, Edward A. Fox, and Harry Wu, Extended Boolean Infor-
mation Retrieval, Communications of the ACM, 1983, ‘26,1022-1036.

[SALTON75] Salton, G-, C. S. Yang, and C. T. Yu, A Theory of Term Irnpormnce in
Automatic Text Analysis, Journal of the American Society for Information Science,
1975,26(1):33-&I.

[SCHWARZ88] Schwarz, Christoph, The TINA Project: Text Content Analysis at the
Corporate Research Laboratories at Siemens, Proceedings of RIAO, 1988,361-368.
[SPENKE89] Spenke, Michael and Christian Btilken, A Spreadsheet Interface for Logic
Prog-r arnming, Proceeding of CHI, 1989,75-80.
mOMPSON89] Thompson, R. H. and W. B. Croft, $upport for Browsing in an InteI-
ligent Text Retrieval System, International Journal of’Man-Machine Studies 1989, 30,
639-668.
[ZLOOF77J Aloof, Moshe M., Query-by-Example: a Data Base Language, IBM System
Journal 16(4), 1977,324-343.

150

