
EntiTables: Smart Assistance for Entity-Focused Tables
Shuo Zhang

University of Stavanger

shuo.zhang@uis.no

Krisztian Balog

University of Stavanger

krisztian.balog@uis.no

ABSTRACT
Tables are among the most powerful and practical tools for organiz-

ing and working with data. Our motivation is to equip spreadsheet

programs with smart assistance capabilities. We concentrate on

one particular family of tables, namely, tables with an entity focus.

We introduce and focus on two speci�c tasks: populating rows

with additional instances (entities) and populating columns with

new headings. We develop generative probabilistic models for both

tasks. For estimating the components of these models, we consider

a knowledge base as well as a large table corpus. Our experimental

evaluation simulates the various stages of the user entering content

into an actual table. A detailed analysis of the results shows that

the models’ components are complimentary and that our methods

outperform existing approaches from the literature.
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1 INTRODUCTION
Tables are one of the most e�ective and widely used tools for orga-

nizing and working with data. Spreadsheet programs are among

the most commonly used desktop applications, both in business

environments and in personal use, because of their ease of use

and �exibility. �e overall objective of this study is to develop an

intelligent personal assistant that can o�er smart assistance for

people working with tables. It may be imagined as the infamous

O�ce Clippy, albeit we prefer it to be less obtrusive. �is study

represents the �rst step towards this ambitious endeavor.

�e scenario we consider in this paper is the following. We

assume a user, working with a table, at some intermediate stage

in the process. At this point, she has already set the caption of the
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Figure 1: Envisioned user interface. Column headings and
the le�most column are marked with a grey background.
�e user can populate the table with (A) additional entities
(rows) and (B) additional column headings. �e suggestions
in the pop-ups are updated dynamically as the content of
the table changes.

table and entered some data into the table. �e table is assumed to

have a column header (located above the �rst content row), which

identi�es each column with a unique label. We further narrow the

focus of our study to tables with an entity focus. It means that the

le�most column of the table contains entities. �is can also be

imagined as having a designated row heading, which may contain

only (unique) entities. An entity in the context of this work is a

speci�c object with a unique identi�er. (We shall show later in the

paper, in §6.2, that a signi�cant portion of tables have an entity

focus.) Against this se�ing, our objective is to aid the user by

o�ering “smart suggestions,” that is, recommending (i) additional

entities (rows) and (ii) additional column headings, to be added to

the table. We shall refer to these tasks as row population and column
population, respectively. See Figure 1 for an illustration.

Let us point out here that some elements of these tasks have

been addressed in prior work. Our work, however, has not only a

di�erent overall motivation, but the speci�c tasks we tackle have

not been addressed in these �avors before. We also introduce a

number of innovative elements on the component level.

�e task of row population relates to the task of entity set expan-
sion [4, 8, 10, 16, 26, 29], where a given set of seed entities (examples)

is to be completed with additional entities. We also have a seed set

of entities from the le�most table column. But, in addition to that,

we can also make use of the column heading labels and the caption

of the table. We show in our experiments, that utilizing these can

lead to substantial improvements over using only the seed entities.

�e second task, column population, shares similarities with the

problem of schema complement [2, 8, 12, 30], where a seed table is

to be complemented with related tables that can provide additional
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columns. Many of these approaches utilize the full table content

and also address the task of merging data into the seed table. Here,

our focus is only on �nding proper column headings, using the

same sources as for row population (i.e., le�most column, header

row, and table caption). We show in our experiments that this task

can be performed e�ectively.

In summary, this paper makes the following novel contributions:

• We introduce and formalize two speci�c tasks for provid-

ing intelligent assistance with tables: row population and

column population (§3).

• We present generative probabilistic methods for both tasks,

which combine existing approaches from the literature

with novel components (§4 and §5).

• We design evaluation methodology and develop a process

that simulates a user through the process of populating a

table with data (§6).

• We perform an experimental evaluation and carry out a

detailed analysis of performance (§7 and §8).

All resources developed within this study are made publicly avail-

able at h�p://bit.ly/sigir2017-table.

2 RELATEDWORK
�ere is a growing body of work on web tables and spreadsheets,

addressing a range of tasks, including table extension, table com-

pletion, table search, table mining, etc. �e task of row population

is also related to the problem of entity set completion.

Table Extension/Completion. Extending a local table with addi-

tional columns based on the corpus of tables is a relatively new

research area. �e Mannheim Search Joins Engine [12] operates

on a corpus of web tables, searches for tabular data describing

entities in the local table, and then picks relevant columns from

the top-k candidate tables to merge. With a focus on Wikipedia

tables, Bhagavatula et al. [2] target column-matched tables with

the local table and perform correlation mining to �nd “interesting”

numeric columns. InfoGather [30] is a table augmentation frame-

work based on topic sensitive PageRank for matching the local table

against web tables. �e context surrounding the tables is leveraged

in a machine learning framework, where the similarity between

two tables is captured via a set of features. Related tables can be

utilized not only for column extension, but for row extension as

well. Methods to detect related tables are proposed for the relat-

edness capture framework in [8]. Two types of table relatedness

are identi�ed: entity complement and schema complement. Entity

complement tables can be united to produce a meaningful table,

and schema complement tables can provide additional meaningful

columns. Table completion refers to the task of �lling missing values

in a local table. Ahmadov et al. [1] propose a hybrid data imputa-

tion approach, relying on the characteristics of missing values, in

order to (i) look up missing values from web data, (ii) predict them

using machine learning methods, or (iii) combine both to �nd the

most appropriate values. To look up missing values, two keyword

subqueries are created from the input table, to search entities and

a�ributes separately. �ese resemble our row and column populat-

ing subtasks. However, Ahmadov et al. [1] have a di�erent target

and merge the two search results for table selection.

Table Search and Mining. �ere has been an increasing research

interest in mining and searching table content, see, e.g., [5, 6, 15,

22, 25, 32]. Wikipedia’s tables contain rich, semi-structured ency-

clopedic content that is hard to query. Muñoz et al. [18] extract

factual content from Wikipedia tables in the form of RDF triples,

contributing to recovering table semantic and discovering table re-

lations. Apart from the factual content extraction from web tables,

table mining also covers tasks like table interpretation [6, 18, 25]

and table recognition [7, 33].

Cafarella et al. [6] extracted 14.1 billion HTML tables from a

Google crawl, estimating that 154 million of them contain high-

quality relational data. �e relations extracted from these represent

a valuable data resource. To disambiguate web tables, Zwicklbauer

et al. [33] propose a methodology to annotate table headers with

semantic type information based on the column’s content. Simi-

larly, Crestan and Pantel [7] present a supervised framework for

classifying HTML tables into their taxonomy. In addition to fac-

tual content and relations, numeric a�ributes are present in a vast

number of web tables. However, web tables are not systematic and

cannot be used, e.g., for aggregation. To improve the usability of

quantities in heterogenous web tables, a line of work aims at de-

tecting quantity mention [9, 11, 14, 21, 24] and canonicalizing table

quantities [3, 11, 13, 19]. Another line of work focuses on extracting

and fusing numeric a�ribute values and numeric expressions in

natural language text [9, 14, 21, 24].

Tables could be well searched and mined for question answering

or for extending knowledge bases. Yin et al. [31] investigate the

task of executing queries on knowledge base tables using Neural

Enquirer, which is a fully neuralized DNNs model, both for query

planning and for query execution. Sekhavat et al. [23] describe

a probabilistic method that augments an exiting knowledge base

(YAGO). In [28], a table search engine is applied to further expand

and enrich Probase, which is a universal probabilistic taxonomy

framework capable of understanding the entities, a�ributes and

values in web tables. Knowledge Vault is created as a probabilistic

knowledge base [9] by analyzing the extracted content from tabular

data, along with other web resources.

Entity Set Completion. �e problem of row population is related

to the task of set completion or list expansion, which is to generate

a ranked list of entities starting from a small set of seed entities [8].

Bron et al. [4] propose an approach that combines structure-based

and text-based similarity between a candidate entity and the seed

entities. �e QBEES framework [16] is designed as an aspect-based

entity model to �nd similar entities based on one or more example

entities. He and Xin [10] focus on entity list data, by picking the

top-k entities based on relevance between the candidate entity

and seed entities, and then iteratively ranking them according to a

combination of relevance and coherence. Similar iterative steps are

conducted in [26, 29]. Wang and Cohen [29] use a random walk

method for ranking during iterations. Wang et al. [26] focus on web

tables, instead of entity lists, with the help of a web table search

engine, called WTS.

3 PROBLEM STATEMENT
In this section, we provide a formal description of the tasks we

propose to undertake. We refer to Table 1 for our notation.
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Table 1: Notation used in this paper.

Symbol Description

T Table

c Table caption

E Seed entities E = (e1, . . . , en )

L Seed column labels L(j ) = (l1, . . . , lm )

Definition 1 (Table): A table T is grid of cells, which hold values,
arranged in n + 1 rows and m columns. �e top row is a special
designated place, where the column headings reside. It is followed by
n regular (content) rows. We let L = (l1, . . . , lm ) be the list of column
heading labels. In addition to the grid content, the table also has a
caption c .

Definition 2 (Entity-Focused Table): A table is said to be entity-
focused, if its le�most column contains only entities as values, and
those entities are unique within the column. We let E = (e1, . . . , en )
be the list of entities corresponding to the le�most table column. I.e.,
the table takes the following shape:

T =



l1 l2 . . . lm
e1 v1,2 . . . v1,m
e2 v2,2 . . . v2,m
...

...
. . .

...

en vn,2 . . . vn,m



,

where vi, j (i ∈ [1..n], j ∈ [2..m]) denote the cell values.

Our objective is to provide intelligent assistance for an user who is

working on an entity-focused table. We shall refer to the table that

is being edited by the user as seed table. We assume that the seed

table has already been given a caption, and contains some heading

labels (seed labels) in the top row and some entities (seed entities) in

the le�most column. Note that we do not make any assumptions

about the values in the other table cells. Essentially, the vi, j values

are immaterial, therefore, we omit them in the followings.
1

When

we talk about a table containing entity e , we always mean the

le�most table column.

Our goal is to present suggestions for the user for extending the

seed table with (i) additional entities, and (ii) additional column

heading labels. Both tasks are approached as a ranking problem:

given a seed table, generate a ranked list of entities (for row popu-

lation) or column labels (for column population).

Definition 3 (Row Population): Row population is the task of
generating a ranked list of entities to be added to the le�most column
of a given seed table, as en+1.

Definition 4 (Column Population): Column population is the
task of generating a ranked list of column labels to be added to the
column headings of a given seed table, as lm+1.

1
We note that thevi, j values may also be utilized for row/column population. However,

this is le� for future work.

In the following two sections, we present our approaches for

row and column population. Following prior studies [1–3, 6–8, 12,

23, 25, 26, 28, 30, 31], we rely heavily on the availability of a large

table corpus as an external resource (which, in our case, is extracted

from Wikipedia). Additionally, we also exploit information stored

about entities in a knowledge base (in our case, DBpedia). Further

speci�cs about our data sources are provided in §6.1.

4 POPULATING ROWS
In this section, we address problem of row population using a two-

step approach. We assume that a seed table is given, with a list of n
seed entities E, a list ofm seed column labels L, and a table caption

c . �e task is to generate a ranked list of suggestions for entity

en+1, which may be added to the seed table as a new row. First, we

identify a set of candidate entities (§4.1), and then rank them in a

subsequent entity ranking step (§4.2).

4.1 Candidate Selection
We identify candidate entities using two sources: knowledge base

(KB) and table corpus (TC). In the knowledge base, each entity e
is described by a set of properties Pe . We focus on two speci�c

properties: types and categories. We discuss these notions in the

context of DBpedia, but note that all knowledge bases employ

some taxonomy of types. Types in DBpedia are assigned from a

small ontology (the DBpedia Ontology, containing a few hundred

classes). Categories originate from Wikipedia; these do not form

a strict is-a hierarchy, and may be seen more like “semantic sets.”

Categories are in the order of several 100K. Intuitively, an entity e
that has several types or categories overlapping with those of the

seed entities represents a good candidate. �us, we rank entities

based on the overlap of these properties, and then take the top-k
ones as the set of candidates:

score(e,E) =
����Pe ∩

(
∪ni=1

Pei
) ���� .

When using the table corpus, we search for tables that contain

the seed entities or have a similar caption to that of the seed table.

�is can be e�ciently performed using existing retrieval methods

against an inverted index of tables. Speci�cally, we use either the

seed table’s caption or seed entities as the search query and rank

tables using the BM25 retrieval algorithm.

4.2 Ranking Entities
We introduce a probabilistic formulation and rank candidate enti-

ties according to the multi-conditional probability P (e |E,L, c ). By

applying Bayes’s theorem and making a full independence assump-

tion between table caption, seed entities, and seed column labels,

we factor this probability as follows:

P (e |E,L, c ) =
P (E,L, c |e )P (e )

P (E,L, c )

=
P (E |e )P (L|e )P (c |e )P (e )

P (E)P (L)P (c )

∝ P (e |E)P (L|e )P (c |e ) . (1)

In the last step, we rewrote P (E |e ) using Bayes’ rule (which can-

celled out P (e ) and P (E)). We further dropped the probabilities P (L)
and P (c ) from the denominator, since those are the same across all
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candidate entities and thus do not in�uence their ranking. �en, en-

tities are ranked by multiplying (i) the posteriori probability P (e |E)
that expresses entity similarity, (ii) the column labels likelihood

P (L|e ), and (iii) the caption likelihood P (c |e ). �e reason for keep-

ing the la�er two probabilities conditioned on the candidate entity

is that column labels and captions are very short. In those cases,

the candidate entity o�ers a richer observation. Below, we discuss

the estimation of each of these probabilities.

Note that entities may be ranked using any subset of the com-

ponents in Eq. (1). We explore all possible combinations in our

experimental section (§7). It is our expectation that using all three

sources of evidence (seed entities, seed column labels, and table

caption) would result in the best performance.

4.3 Entity Similarity
�e estimation of P (e |E) corresponds to the task of entity list com-
pletion (also known as set/concept expansion or query by example):
given a small set of seed entities, complement this set with addi-

tional entities. �e general idea is to measure the semantic similarity

between the candidate entity and the set of seed entities. One line

of prior work [4, 16] relies on a knowledge base for establishing

this semantic similarity. Another family of approaches [8, 26, 29]

leverages a large table corpus for collecting co-occurrence statistics.

We combine both these sources in a single model:

P (e |E) = λEPKB (e |E) + (1 − λE )PTC (e |E) , (2)

where PKB is based on the knowledge base and PTC is the estimate

based on the table corpus.

4.3.1 Estimation Using a Knowledge Base. Bron et al. [4] create

a structured entity representation for each entity from the RDF

triples describing that entity. �e structured representation of an

entity is comprised by the set of relations of the entity. Each relation

r is modeled as a pair, by removing the entity itself from the triples.

E.g., given the triple 〈dbr:Japan, dbo:capital, dbr:Tokyo〉
describing the entity Japan, the corresponding relation becomes

(dbo:capital, dbr:Tokyo). We write ê to denote the structured

representation of entity e . Formally, given a set of subject-predicate-

object (s,p,o) triples describing the entity (i.e., the entity stands

either as subject or object):

ê = {(p,o) : (s = e,p,o)} ∪ {(s,p) : (s,p,o = e )} .

Similarly, each seed entity is represented as a set of pairs: ê1, . . . , ên .

�e set of seed entities is modeled as a multinomial probability

distribution θE over the set of relations. �e probability P (e |E)
is then obtained by considering all relations that appear in the

representation of the candidate entity:

PKB (e |E) =
∑
r ∈ê

P (r |θE ) =
∑
r ∈ê

∑n
i=1

1(r , êi )

|θE |
,

where 1(r , êi ) is a binary indicator function, which is 1 is r occurs

in the representation of êi and is 0 otherwise. �e denominator is

the representation length of the seed entities, i.e., the total number

of relations of all seed entities: |θE | =
∑n
i=1

∑
r ∈êi 1(r , êi ).

Instead of using a single model built for the set of seed entities,

we also explore an alternative approach by taking the average

pairwise similarity between the candidate and seed entities (similar

in spirit to [8, 10]):

PKB (e |E) ∝
1

n

n∑
i=1

sim(e, ei ) ,

where sim(e, ei ) is a similarity function. We consider two alterna-

tives for this function. �e �rst is the Wikipedia Link-based Measure
(WLM) [17], which estimates the semantic relatedness between two

entities based on other entities they link to:

simWLM (e, ei ) = 1 −
log(max( |Le |, |Lei |)) − log( |Le ∩ Lei |)

log( |E | − log(min( |Le |, |Lei |)))
,

where Le is the set of outgoing links of e (i.e., entities e links to)

and |E | is the total number of entities in the knowledge base. �e

second similarity function is the Jaccard coe�cient, based on the

overlap between the outgoing links of entities:

simJacc (e, ei ) =
|Le ∩ Lei |

|Le ∪ Lei |
.

4.3.2 Estimation Using a Table Corpus. Another way of estab-

lishing the similarity between a candidate entity e and the set of

seed entities E is to obtain co-occurrence statistics from a table

corpus (as in [1, 8]). We employ a maximum likelihood estimator:

PTC (e |E) =
#(e,E)

#(E)
,

where #(e,E) is the number of tables that contain the candidate

entity together with all seed entities, and #(E) is the number of

tables that contain all seed entities. Provided that the table corpus

is su�ciently large, we expect this simple method to provide an

accurate estimate.

4.4 Column Labels Likelihood
For computing P (L|e ), we consider the tables from the table corpus

where the entity appears in the le�most column. We obtain and

combine two di�erent estimates. �e �rst one is the representa-

tion of the entity in terms of the words of the column labels, i.e.,

an unigram language model (LM). �e second one is a maximum

likelihood estimate using exact label matching (EM), i.e., without

breaking labels up to words. We consider each individual label l
from the seed column labels and combine the above two estimates

using a linear mixture:

P (L|e ) =
∑
l ∈L

(
λL

(∏
t ∈l

PLM (t |θe )
)
+

(1 − λL )

|L|
PEM (l |e )

)
.

�e �rst component is a Dirichlet-smoothed unigram language

model, calculated using:

PLM (t |θe ) =
t f (t , e ) + µP (t |θ )

|e | + µ
,

where t f (t , e ) is the total term frequency of t in column heading

labels of the tables that include e in their le�most column. One

may think of it as concatenating all the column heading labels of

the tables that include e , and then counting how many times t
appears in there. �e length of the entity |e | is the sum of all term

frequencies for the entity (|e | =
∑
t ′ t f (t

′, e )). �e background

language model P (t |θ ) is built from the column heading labels of

all tables in the corpus.
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�e exact label matching probability is estimated using:

PEM (l |e ) =
#(l , e )

#(e )
,

where #(l , e ) is the number of tables containing both e and l , and

#(e ) is the total number of tables containing e .

4.5 Caption Likelihood
To estimate the caption likelihood given an entity, P (c |e ), we com-

bine two di�erent term-based entity representations: one from the

knowledge base and one from the table corpus. Formally:

P (c |e ) =
∏
t ∈c

(
λcPKB (t |θe ) + (1 − λc )PTC (t |e )

)
.

�e knowledge base entity representation is an unigram language

model constructed from the entity’s description (speci�cally, its

abstract in DBpedia). Smoothing is done analogously to the column

labels language model, but the components of the formula are

computed di�erently:

PKB (t |θe ) =
t f (t , e ) + µP (t |θ )

|e | + µ
,

where t f (t , e ) denotes the (raw) term frequency of t in the entity’s

description, |e | is the length (number of terms) of that description,

and P (t |θ ) is a background language model (a maximum likelihood

estimate from the descriptions of all entities in the KB).

To construct a term-based representation from the table corpus,

we consider the captions of all tables that include entity e:

PTC (t |e ) =
#(t , e )

#(e )
,

where #(t , e ) denotes the number of tables that contain term t in the

caption as well as entity e in the le�most column. �e denominator

#(e ) is the total number of tables containing e .
2

5 POPULATING COLUMNS
In this section, we address the problem of column population using

a two-step approach: we identify a set of candidate column heading

labels (or labels, for short), and then subsequently rank them.

5.1 Candidate Selection
We use (i) the table caption, (ii) table entities, and (iii) seed column

heading labels to search for similar tables. �e searching method

is the same as in §4.1, i.e., we use BM25 similarity using either

of (i)–(iii) to get a ranking of tables from the table corpus. From

these tables, we extract the column heading labels as candidates

(excluding the seed column labels). When searching is done using

the seed column labels as query, our method is equivalent to the

FastJoin matcher [27] (which was also adopted in [12]).

5.2 Ranking Column Labels
We are interested in estimating the probability P (l |E, c,L), given j
seed labels, the table caption, and a set of entities from the rows.

2
We also experimented with constructing a smoothed language model, similar to how

it was done for the KB, but that gave inferior results.

5.2.1 Baseline Approach. Das Sarma et al. [8] consider the “ben-

e�ts” of additional columns. �e bene�t of adding l to table T is

estimated as follows:

P (l |L) = LB (L, l ) =
1

|L|

∑
l1∈L

cs (l1, l2) , (3)

where L denotes column labels and cs is the AcsDB [6] (A�ribute
Correlation Statistics Database) schema frequency statistics, which

is given in Eq. (4). It is more e�ective to derive the bene�t measure

by considering the co-occurrence of pairs of labels, rather than the

entire set of labels [8]. Eq. (4) determines the consistency of adding

a new label l2 to an existing label l1:

cs (l1, l2) = P (l2 |l1) =
#(l1, l2)

#(l1)
, (4)

where #(l1, l2) is number of tables containing both l1 and l2, and

#(l1) is the number of tables containing l1.

5.2.2 Our Approach. Instead of estimating this probability di-

rectly, we use tables as a bridge. We search related tables sharing

similar caption, labels, or entities with the seed table. Searching

tables with only one aspect similarity is thought as a single method,

e.g., searching tables with similar caption has the probability of

P (T |c ). All these related tables are candidate tables acting as bridges.

Each candidate table is weighted by considering its relevance with

each candidate label, denoted as P (l |T ).
By applying the law of total probability, we get:

P (l |E, c,L) =
∑
T

P (l |T )P (T |E, c,L) ,

where P (l |T ) is the label’s likelihood given a candidate table (see

§5.3), and P (T |E, c,L) expresses that table’s relevance (see §5.4).

5.3 Label Likelihood
Label likelihood, P (l |T ), may be seen as the importance of label l
in a given table T . �e simplest way of se�ing this probability is

uniformly across the labels of the table:

P (l |T ) =



1, if l appears in T

0, otherwise .

5.4 Table Relevance Estimation
Table relevance expresses the degree of similarity between a candi-

date table and the seed table the user is working with. Tables with

higher relevance are preferred. Speci�cally, we search for tables by

considering the similarity of the set of entities, table caption, and

column labels. �e probability of a candidate table is factored as:

P (T |E, c,L) =
P (T |E)P (T |c )P (T |L)

P (T )2
.

Notice that an independence assumption between E, c , and L(j )

was made. Further, assuming that the prior probability of a table

follows a uniform distribution, the denominator can be dropped.

�e components of this model are detailed below.
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5.4.1 Entity Coverage. When selecting a candidate table, the

coverage of the tables’ entity set is a important factor [1, 8]. We com-

pute the fraction of the seed table’s entities covered by candidate

table as:

P (T |E) =
|TE ∩ E |

|E |
.

We note that the same concept is used in [8], where it is referred to

as entity coverage.

5.4.2 Caption Likelihood. Having similar captions is a strong

indicator that two tables are likely to have similar contents. An

e�ective way of calculating caption similarity is to use the seed

table’s caption as a query against a caption index of the table corpus.

We can use any term-based retrieval model (like BM25 or language

modeling) for measuring caption similarity:

P (T |c ) ∝ sim(Tc , c ) .

5.4.3 Column Labels Likelihood. Finally, we estimate the col-

umn labels likelihood similar to Lehmberg et al. [12], who rank

tables according to the number of overlapping labels:

P (T |L) =
|TL ∩ L|

|L|
.

6 EXPERIMENTAL DESIGN
We present the data sets we use in our experiments and our evalua-

tion methodology. We develop an approach that simulates a user

through the process of populating a seed table with data.

6.1 Data
We use the WikiTables corpus [3], which contains 1.6M tables

extracted from Wikipedia. �e knowledge base we use is DBpedia

(version 2015-10). We restrict ourselves to entities which have an

abstract (4.6M in total).

We preprocess the tables as follows. For each cell that contains

a hyperlink we check if it points to an entity that is present in

DBpedia. If yes, we use the DBpedia identi�er of the linked entity

as the cell’s content (with redirects resolved); otherwise, we replace

the link with the anchor text (i.e., treat it as a string).

6.2 Entity-Focused Tables
Recall that we de�ned an entity-focused table as one that contains

only unique entities in its le�most column (cf. §3). In addition

to being an entity-focused table, we require that the table has at

least 6 rows and at least additional 3 columns (excluding the entity

column). We introduce these constraints so that we can simulate a

real-world scenario with su�cient amount of content.

In Table 2, we report statistics based on what percentage of cells

in the le�most column contains entities. Let us note here that only

those entities are recognized that have a corresponding Wikipedia

article. �us, the reported numbers should be treated as lower

bound estimates. It is clear that many tables have an entity focus.

To be able to perform an automated evaluation without any

human intervention, we apply the most strict conditions. Out of

the tables that contain 100% unique entities in their le�most column

and have at least 6 rows and at least 4 columns (53 K in total), see

Table 2, we randomly select 1000 tables as our validation set (used

for parameter tuning) and another 1000 tables as our test set. We

Table 2: Statistics of table corpus. Constraints mean having
> 5 rows and > 3 columns.

le�most column # tables # tables with

(X% are entities) total constraints

Existing entity 726913 212923

60% 556644 139572

80% 483665 119166

100% 425236 78611

100% unique 376213 53354

Row population

E 
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L 

seed table

Column population

E 
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…
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…
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…
ei
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…
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Figure 2: Illustration of our evaluation methodology. A
part of an existing table is designated as seed table; the en-
tities/column labels outside the seed table serve as ground
truth. �e arrows indicate the direction of the population.

use a di�erent random selection of validation/test tables for row

and column population. �e validation and test sets are excluded

from the table corpus during training. It is important to note that

we use all other tables from the corpus when computing statistics,

and not only those that classify as entity-focused.

6.3 Simulation Process
We evaluate row/column population by starting from an actual

(complete) entity-focused table, with n content rows (with an entity

in each) and m column headings. We simulate an user through

the process of completing that table by starting with some seed

rows/columns and iteratively adding one row/column at a time.

• For evaluating row population, we take entities from the

�rst i rows (i ∈ [1..5]) as seed entities E, and use the entities

from the remaining rows as ground truth, Ê. We use all

column heading labels.

• For evaluating column population, we take labels from the

�rst j column (j ∈ [1..3]) as seed column labels L, and use

the labels from the remaining columns as ground truth, L̂.

We use all entities from the table’s rows.

See Figure 2 for an illustration. Notice that we are expanding in a

single dimensions at a time; populating both rows and columns at

the same time is le� for future work.

6.4 Matching Column Labels
For the column population task, we are matching string labels

(as opposed to unique identi�ers). Let us consider Date as the

ground truth column label. When the suggested labels are compared

against this using strict string matching, then date, Dates, date:,

etc. would not be accepted as correct, despite being semantically
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identical. �erefore, we apply some simple normalization steps, on

both the ranked and ground truth column labels, before comparing

them using strict string matching. When multiple ranked labels are

normalized to the same form, only the one with the highest score

is retained.

6.5 Evaluation Metrics
Given that the relevance judgments are binary, we use Mean Aver-

age Precision (MAP) as our main evaluation metric. In addition, we

also report on Mean Reciprocal Rank (MRR). We measure statistical

signi�cance using a two-tailed paired t-test. To avoid clu�ering the

discussion, we report signi�cance testing only for our main metric.

7 EVALUATION OF ROW POPULATION
�is section presents the evaluation of row population.

7.1 Candidate Selection
In §4.1, we have introduced four individual methods to select candi-

dates: entity category (A1) and entity type (A2) from the knowledge

base, and table caption (B) and table entities (C) from the table cor-

pus. �ese methods involve a cut-o� threshold parameter k ; the

top-k entities are considered as candidates for the subsequent rank-

ing step. A larger k value typically implies higher recall. At the

same time, each of the candidate entities will need to be scored,

which is a computationally expensive operation. �erefore, we

wish to �nd a se�ing that ensures high recall, while keeping the

number of candidate entities manageably low (to ensure reasonable

response time). We use the validation set to explore a range of k
values: 2

6
, 2

8
, 2

10
, and 2

12
. For each method, we select the k value

that produces the best recall and candidate entity number ratio.

�e results are reported in the top block of Table 3. We ob-

serve that more seed entities we have, the be�er recall gets. �is

is expected behavior. Out of the two entity properties from the

knowledge base, categories and types, categories performs far bet-

ter. For types, even with k = 4096, the recall is still unsatisfactory.

�is is because many of the DBpedia entities have no ontology type

information assigned to them. Moreover, ontology types are more

general than categories and result in too many candidates. �e

best individual method is (C) table entities; it is the most e�ective

(achieves the highest recall) and the most e�cient (produces the

lowest number of candidates) at the same time.

To further enhance performance, we combine the individual

methods. However, we exclude type (A2) from this combination,

because of its low performance. We �nd that all combinations

improve over the single methods. �is means that they capture

complimentary aspects. Combining all three methods (A1+B+C)

leads to the best overall performance. �e last two lines of Table 3

show the performance of this combination (A1+B+C) using two

di�erent k values. We �nd that with a high k value (4096), we are

able to achieve close to perfect recall. �e number of candidates,

however, is a magnitude larger than with a low k (256). Motivated

by e�ciency considerations, we decided not to pay this price and

chose to use k = 256, which still gives us very high recall.

Figure 3: E�ect of varying the interpolation parameters for
P (e |E) (Le�), P (L|e ) (Middle), and P (c |e ) (Right). �e plots
show MAP scores measured on the validation set.

7.2 Entity Ranking
Our entity ranking model is comprised of three components: entity

similarity (P (e |E)), column labels likelihood (P (L|e )), and caption

likelihood (P (c |e )). Each of these methods involve an interpolation

parameter (λE , λL , and λc , respectively). We train these parameters

on the validation set, by performing a sweep in 0.1 steps over the

[0..1] range. �e e�ect of varying the parameter values is shown in

Figure 3. It can be seen that the value 0.5 provides the best se�ing

everywhere. We also found that there is very li�le di�erence in

terms of performance when λ is in the 0.3..0.7 range (hence the

choice of showing the 0.1 and 0.9 values on the plots).

We start by discussing the performance of individual compo-

nents, reported in the top block of Table 4. �e two-component

entity similarity model combines estimated based on the knowledge

base and the table corpus (cf. Eq. (2)). For the former, we compare

three alternatives: using relations of entities, as in [4] (A1), and two

similarity methods based on outgoing links of entities: WLM (A2),

and Jaccard similarity (A3). Out of the three methods, (A1) Relations

has the best performance. However, (A3) has only marginally lower

retrieval performance, while being computationally much more

e�cient. �erefore, we choose (A3), when it comes to combining

it with the other elements of the entity ranking model. Compared

to entity similarity (P (e |E)), the other two components (B and C)

have much lower performance. �e di�erences (A3) vs. (B) and

(A3) vs. (C) are highly signi�cant (p < 10
−5

). �is means that the

knowledge base contributes more.

Next, we combine the individual components to further enhance

performance. �e middle block of Table 4 reports results when two

components are used. We �nd that these combinations improve

signi�cantly over the individual methods in all cases (p < 10
−5

). It is

interesting to note that while (C) caption likelihood outperforms (B)

column labels likelihood in the individual comparison (signi�cantly

so for #1..#3 seed entities, p < 0.001), the two perform on a par

when combined with (A3) entity similarity.

As expected, using all three component (A3 & B & C) results

in the best performance. �e di�erences between this vs. (A3 &

C) and vs. (B & C) are signi�cant for any number of seed entities

(p < 0.001); regarding (A3 & B & C) vs. (A3 & B), the di�erences are

signi�cant only for seed entities #1 and #5 (p < 0.05). �is means

that combining information from the knowledge base with column
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Table 3: Candidate selection performance for the row population task on the validation set. #cand refers to the number of
candidate entities. Highest recall values are typeset in boldface.

#Seed entities (|E |)
Method 1 2 3 4 5

Recall #cand Recall #cand Recall #cand Recall #cand Recall #cand

(A1) Categories (k=256) 0.6470 1721 0.6985 2772 0.7282 3678 0.7476 4507 0.7604 5224

(A2) Types (k=4096) 0.0553 7703 0.0577 8047 0.0585 8225 0.0605 8419 0.0600 8551

(B) Table caption (k=256) 0.3966 987 0.3961 987 0.3945 987 0.3938 987 0.3929 987

(C) Table entities (k=256) 0.6643 312 0.7212 458 0.7435 589 0.7564 689 0.7639 759

(B) & (C) (k=256) 0.7090 1250 0.7464 1383 0.7626 1505 0.7732 1599 0.7788 1664

(A1) & (B) (k=256) 0.7642 2671 0.7969 3711 0.8157 4610 0.8305 5434 0.8405 6145

(A1) & (C) (k=256) 0.8434 1962 0.8885 3118 0.9038 4117 0.9196 5014 0.9285 5773

(A1) & (B) & (C) (k=256) 0.8662 2880 0.8997 4018 0.9154 5005 0.9255 5894 0.9329 6645

(A1) & (B) & (C) (k=4096) 0.9576 28733 0.9718 40171 0.9787 49478 0.9811 58021 0.9821 65204

labels from the table corpus yields signi�cant bene�ts; considering

the captions of tables on top of that leads to li�le additional gain.

For baseline comparison, we employ the method by [4], which

combines text-based and structure-based similarity. Note that we

used only the structure-based part of their method earlier, as (A1);

here, we use their approach in its entirety. It requires a keyword

query, which we set to be the table caption. We �nd that our

methods substantially and signi�cantly (p < 10
−5

) outperforms

this baseline; see the bo�om two rows in Table 4.

One �nal observation is that performance climbs when moving

from a single to two and three seed entities; a�er that, however, it

plateaus. �is behavior is consistent across all methods, including

the baseline. �e phenomena is known from prior work [4, 16, 20].

7.3 Analysis
Now that we have presented our overall results, we perform further

examination on the level of individual tables. Figure 4 shows the

average precision (AP) scores for the 1000 test tables, ordered by

decreasing score. Statistically, there are 285 tables having AP = 1,

193 tables having 0.4 < AP < 0.6, and 42 tables having AP = 0.

To understand the reasons behind this, we check the recall of the

candidate selection step for these three categories; see Figure 5.

In this �gure, we can observe that higher recall generally leads

to be�er AP. Delving deeper, we compute the average number of

tables containing at least one ground truth entity, for each of the

three groups. When AP = 0, the number is 18, for 0.4 < AP < 0.6

it is 79, and for AP = 1 it is 127. It appears that we could provide

excellent suggestions, when there were enough similar tables to

the seed table in the table corpus. However, for tables that are “too

unique,” we would need alternative methods for suggestions.

8 EVALUATION OF COLUMN POPULATION
�is section presents the evaluation of column population. �is

task relies only on the table corpus; the data set is exactly the same

as for row population, see §6.1.

8.1 Candidate Selection
In §5.1, we have introduced three individual methods to select

candidates: table caption (A), column heading labels (B) and table

Figure 4: Performance of individual tables, ordered by de-
creasing Average Precision, for row population.

Figure 5: Recall of candidate selection against entity rank-
ing performance, for row population.

entities (C). Method (B) actually corresponds to the FastJoin matcher

in [27]. �ese methods also involve a cut-o� threshold parameter

k , for the same reasons we already discussed in §7.1. �e results

are reported in the top block of Table 5. We observe that the more

seed labels we have the be�er recall gets when using labels. We

also explore combinations of pairs of methods as well as using

all three. We �nd that all combinations improve over the single

methods, and that combining all three methods leads to the best

overall performance. Our selected method is the second to last in

Table 5, motivated by e�ciency considerations; for comparison, we

also show the performance for k = 4096.

8.2 Column Label Ranking
Our column label ranking model is comprised of two components:

table relevance and label likelihood. For estimating candidate table

relevance, we have three individual methods, using table caption
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Table 4: Entity ranking performance on the test set.

#Seed entities (|E |)
Method 1 2 3 4 5

MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

(A1) P (e |E) Relations (λ = 0.5) 0.4962 0.6857 0.5469 0.7297 0.5687 0.7415 0.5734 0.7294 0.5693 0.7274

(A2) P (e |E) WLM (λ = 0.5) 0.4674 0.6246 0.5154 0.6901 0.5293 0.6930 0.5331 0.6861 0.5258 0.6789

(A3) P (e |E) Jaccard (λ = 0.5) 0.4905 0.6731 0.5427 0.7086 0.5617 0.7270 0.5662 0.7098 0.5609 0.7058

(B) P (L|e ) 0.2857 0.3558 0.2878 0.3518 0.2717 0.3463 0.2651 0.3365 0.2585 0.3336

(C) P (c |e ) 0.2348 0.2656 0.2366 0.2676 0.2371 0.2656 0.2350 0.2614 0.2343 0.2602

(A3) & (B) 0.5726 0.7593 0.6108 0.8055 0.6189 0.7879 0.6182 0.7755 0.6108 0.7689
(A3) & (C) 0.5743 0.7467 0.6108 0.7749 0.6221 0.7746 0.6211 0.7668 0.6156 0.7447

(B) & (C) 0.3677 0.4521 0.3715 0.4508 0.3712 0.4455 0.3688 0.4408 0.3667 0.4378

(A3) & (B) & (C) 0.5922 0.7729 0.6260 0.8000 0.6339 0.7849 0.6348 0.7800 0.6310 0.7630

Baseline [4] 0.3076 0.4967 0.3273 0.5156 0.3404 0.5326 0.3428 0.5290 0.3406 0.5202

Table 5: Candidate selection performance for the column population task on the validation set.

#Seed column labels (|L|)
Method 1 2 3

Recall #cand Recall #cand Recall #cand

(A) Table caption (k=256) 0.7177 232 0.7115 232 0.7135 231

(B) Column labels (k=256) 0.2145 115 0.5247 235 0.7014 357

(C) Table entities (k=64) 0.7617 157 0.7544 156 0.7505 155

(A) (k=256) & (B) (k=256) & (C) (k=64) 0.8799 467 0.8961 572 0.9040 682

(A) (k=4096) & (B) (k=4096) & (C) (k=4096) 0.9211 2614 0.9292 3309 0.9351 3978

(A), column labels (B), and table entities (C). All methods use the

same estimation of label likelihood (cf. §5.3).

We start by discussing the performance of individual methods,

which is reported in the top block of Table 6. Of the three, method

(C) outperforms the other two, and does signi�cantly so (p < 10
−5

).

Looking at the tendency of MAP, the increasing number of seed

column labels only contributes to method (B). When combining

two of the methods, all combinations improve signi�cantly over the

individual methods (p < 10
−5

). Out of the three, (B) & (C) performs

best in terms of both MAP and MRR. In the end, pu�ing together all

three individual methods delivers the best results. Also, this combi-

nation (A & B & C) improves signi�cantly over the combination of

any two of the methods (p < 10
−5

).

For baseline comparison, we employ the method by Das Sarma

et al. [8]. �ey consider the “bene�ts” of adding additional columns,

which expressed in Eq. (3). We �nd that our three-component

method substantially and signi�cantly (p < 10
−5

) outperforms

this baseline. It should be noted that the baseline in [8] uses our

candidate selection method to make it comparable; this actually

performs be�er than their original approach.

8.3 Analysis
Figure 6 plots the performance of individual (test) tables, in decreas-

ing order of average precision score. We �nd that there are 427

tables having AP = 1, 122 tables having 0.4 < AP < 0.6, and 186

tables having AP = 0. We examine these three table groups, based

on performance, in terms of their corresponding recall values from

the candidate selection step. Figure 7 shows these values (averaged

Figure 6: Performance of individual tables, ordered by de-
creasing Average Precision, for column population.

Figure 7: Recall of candidate selection against column label
ranking performance, for column population.

over all tables that fall in the given performance group). Looking at

the number of tables containing at least one ground truth column

heading label, it is 204 for AP = 0, 403 for 0.4 < AP < 0.6, and 1114

for AP = 1. We can draw similar conclusions here as we did for

entity ranking.
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Table 6: Column label ranking performance on the test set.

#Seed column labels (|L|)
Method 1 2 3

MAP MRR MAP MRR MAP MRR

(A) Table caption 0.2584 0.3496 0.2404 0.2927 0.2161 0.2356

(B) Column labels 0.2463 0.3676 0.3145 0.4276 0.3528 0.4246

(C) Table entities 0.3878 0.4544 03714 0.4187 0.3475 0.3732

(A) & (B) 0.4824 0.5896 0.4929 0.5837 0.4826 0.5351

(A) & (C) 0.5032 0.5941 0.4909 0.5601 0.4724 0.5132

(B) & (C) 0.5060 0.5954 0.5410 0.6178 0.5323 0.5802

(A) & (B) & (C) 0.5863 0.6854 0.5847 0.6690 0.5696 0.6201
Baseline [8] 0.4413 0.5473 0.4640 0.5535 0.4535 0.5079

9 CONCLUSION
In this paper, we have introduced the idea of a smart table assistant

and have taken the �rst steps towards its realization. Speci�cally, we

have concentrated on tables with an entity focus, and investigated

the tasks of row population and column population. We have

devised methods for each task and showed experimentally how

the di�erent components all contribute to overall performance.

For evaluation, we have developed a process that simulates a user

through her work of populating a table with data. Our overall

results are very promising and substantially outperform existing

baselines.

In future work, we plan to extend the capabilities of our assistant

to be able to populate data cells as well with values. Further along

the road, we also wish to relax our requirement regarding the entity

focus, and make our methods applicable to arbitrary tables.
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