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ABSTRACT
Incorporating features extracted from clickthrough data (called 
clickthrough features) has been demonstrated to significantly 
improve the performance of ranking models for Web search ap-
plications. Such benefits, however, are severely limited by the 
data sparseness problem, i.e., many queries and documents have 
no or very few clicks. The ranker thus cannot rely strongly on
clickthrough features for document ranking. This paper presents
two smoothing methods to expand clickthrough data: query clus-
tering via Random Walk on click graphs and a discounting me-
thod inspired by the Good-Turing estimator. Both methods are 
evaluated on real-world data in three Web search domains. Expe-
rimental results show that the ranking models trained on smoothed 
clickthrough features consistently outperform those trained on 
unsmoothed features. This study demonstrates both the impor-
tance and the benefits of dealing with the sparseness problem in 
clickthrough data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Clickthrough Data, Smoothing, Random Walk, Discounting,
Learning to Rank, Web Search

1. INTRODUCTION
We consider the task of ranking Web search results, i.e., a set of 
retrieved Web documents (URLs) are ordered by relevance to a 
query issued by a user. In this paper we assume that the task is 
performed using a ranking model (also called ranker for short) 
that is learned on labeled training data, i.e., human-judged query-
document pairs. The ranking model is a function that maps the 
feature vector of a query-document pair to a real-valued relevance 
score. Such a learned ranking model is shown to be superior to 
classical retrieval models [6, 11] largely due to its ability to inte-
grate both traditional criteria such as TF-IDF and BM25 values,
and non-traditional features such as hyperlinks.

In general Web search, a document can be described by mul-
tiple text streams. Some of the most useful text streams for Web 
search are (1) a content stream consisting of all the title and body 
texts in a page, (2) an anchor stream consisting of all the anchor 

s incoming links, and (3) a clickthrough stream
consisting of all the user queries that have click(s) on the docu-
ment. Recent research shows that incorporating features extracted 
from the clickthrough stream (called clickthrough features) could 
significantly improve the performance of ranking models for Web 
search because the clickthrough stream can provide complementa-
ry information about a user s intention [1].

However, clickthrough data typically suffer from the sparse-
ness problem. Two related aspects are involved.  First, for a
query, users only click on a very limited number of documents,
thus the clicks are not complete. We refer to it as the incomplete 
click problem. Second, for many queries and documents, no click
at all is made by users. We call this the missing click problem.  As 
a consequence, the clickthrough streams for most of documents 
are either short or empty. Although one can use such raw text 
streams to extract some clickthrough features as in previous stu-
dies (e.g., [1, 6, 7]), their potential is severely limited because of 
the following reasons: First, with incomplete clicks, the click-
related features that we can generate for a document-query pair 
are also incomplete and unreliable. Second, no clickthrough fea-
tures can be generated for pairs without clicks.  In the rankers 
used in most previous studies [1, 6, 7], this is equivalent to assign-
ing zero values for clickthrough features. In ranker training, the 
zero-valued features make a categorical difference between the 
documents with and without clicks, and severely penalize the 
documents without clicks. However, in reality, r-
ence between these documents may be much smaller because a 
document could be unclicked for a variety of reasons even if the 
document is relevant.  

The missing click problem bears a strong resemblance to the 
problem of determining the frequency or probability of an unseen 
event, which has been well-studied in the context of estimating n-
gram language models [8]. Various smoothing techniques have 
been proposed and successfully used to deal with this problem,
including clustering (by grouping observations on similar n-grams)
and discounting (by assigning some counts to unseen n-grams) [8, 
14]. In the case of clickthrough data, we can consider a click for a 
document-query pair as an n-gram. Then clickthrough data can 
also be smoothed in two directions: by clustering similar queries 
or by assigning non-zero values to the clickthrough features of 
unclicked documents through discounting. In this paper, we pro-
pose to perform query clustering via Random Walk on click 
graphs, and a discounting method inspired by the Good-Turing 
estimator [13]. The Random Walk method is intended to address 
the incomplete click problem. In some particular settings, such as 
image retrieval [9] and query classification [21], it has been 
shown that expanding clicks to similar documents and queries via 
Random Walk can lead to significant improvements. However, to 
our knowledge, no study has been carried out on general Web 
search applications showing a similar improvement. Our experi-
ments show that the expanded clickthrough data is noisy, and it 
should be used with caution. Effective improvement is possible 
only when we extract those features that are robust to noise for 
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ranking. Notice that documents and queries with no click cannot
be enriched through Random Walk.  

Thus, inspired by the Good-Turing method [13, 20], we
present a discounting method to estimate the values of the click-
through features for the documents without clicks.

Our experiments will show that both smoothing techniques 
can significantly improve the retrieval effectiveness compared to 
the utilization of raw clickthrough data. In particular, the simple 
discounting method will prove to be effective on all the three test 
datasets. This series of experiments strongly indicate that sparse-
ness is a crucial problem in clickthrough data, and an appropriate 
solution to this problem allows us to better take advantage of 
clickthrough data. 

In the rest of the paper, Section 2 describes background in-
formation on clickthrough data and rankers. Section 3 presents 
two smoothing techniques. Section 4 presents experiments. Re-
lated work and conclusions are presented in Sections 5 and 6.

2. BACKGROUND
In this section, we first describe the clickthrough data we use and
the way a Web document is represented by a clickthrough stream.
Then, we present the clickthrough features to be incorporated in 
ranking models. Finally, we review the ranking model used in our 
experiments. Notice that we focus on clickthrough features in this 
paper. The features extracted from other text streams will remain 
unchanged and be used in the same manner as before.

2.1 Clickthrough Streams for Documents
Clickthrough data used in this study consists of a set of query 
sessions that were extracted from one-year log files of a commer-
cial Web search engine.  A query session contains a query issued 
by a user and a rank list of (top-10) links browsed by the same 
user (with or without click).  Following the notations in [18], a 
query session is represented by a triplet (q, r, c) consisting of the 

query q, the ranking r presented to the user, and the set c of links 
(documents) the user clicked on.  Figure 1 shows a query session 

clicked by the user, and the dates and times of the two clicks are 
also recorded.

Previous work has utilized clickthrough data as implicit feed-
back for Web search ranking in two different ways. The first ap-
proach is to derive training data from clickthrough data directly
[18, 19, 26]. In particular, [19] argued that relative preferences 
derived from clicks are reasonably accurate.  For example, in 
Figure 1, the document #2 is assumed to be more relevant to the 

#1 because #2 is clicked, and #1, 
though ranked higher than #2, is not clicked.  By doing so, one 
could derive a large amount of preference pairs.  Then a ranking 
algorithm, such as LambdaRank [6], can be trained on such prefe-
rence pairs.  

The second category of work is to derive features from the 
clickthrough data and incorporate them into a ranking model [1, 
28]. Our approach belongs to this category. The method is based 
on the assumption that all the queries that have clicks on a docu-
ment form a description of the document from perspective.
One can see an example of such a clickthrough stream in Figures 
2 for the document webmessenger.msn.com . It consists of all the 
queries that have one or more clicks on the document. In Figure 2, 
each line in a clickthrough stream consists of a query and a click-
through score Score(d, q), which can be considered as the impor-
tance of the query q in describing the document d, similarly to the 
TF-IDF scores. The score can be derived from raw click informa-
tion recorded in log files heuristically. In our experiments, one of 
the simplest functions that work well across all data sets is:

,

=
( , , ) + ( , , _ )

( , )
, (1)

where ( , ) is the number of times that d is shown to the users 
when q is issued (so, ( , ) is sometimes called the number of 
impressions), ( , , ) is the number of times that d is 

1. Message Web Design Home
www.message.uk.com

2. MSN Web Messenger
webmessenger.msn.com
2008-11-01 15:01:15

3. High School Baseball Web
www.hsbaseballweb.come/message_boards.htm

4. Send a Wireless Web Message
messaging.sprintpcs.com

5. SprintPCS 2Way SMS
messaging.sprintpcs.com/sml/guestcompose.do

6. Email on the Web
webmail.netzero.net

7. USA MOBILITY
www.arch.com/message

8. Message Boards rootsweb.com
boards.rootsweb.com

9. Yahoo! Messenger Chat, Instant message
messenger.yahoo.com
2008-11-01 15:00:59

10. Yahoo! Message Boards Home
messages.yahoo.com

Figure 1.
Marked in bold are the links the user clicked on. 

msn web 0.6675749
webmensseger 0.6621253

msn online 0.6403270
windows web messanger 0.6321526
talking to friends on msn 0.6130790

school msn 0.5994550
msn anywhere 0.5667575

web message msn com 0.5476839
msn messager 0.5313351

hotmail web chat 0.5231608
messenger web version 0.5013624

instant messager msn 0.4550409
browser based messenger 0.3814714

im messenger sign in 0.2997275
msn web browser download 0.0926431

msn passport 0.0035466
download msn messenger 6  0.0027844

install msn toolbar 0.0027248
msn people 0.0025993

Figure 2. Fragments of the clickthrough stream for the link 
http://webmessenger.msn.com
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clicked for q, and ( , , _ ) is the number of times that d
is the temporally last click of q in clickthrough data. For example,
in Figure 1 the documents #2 and #8 are the clicks of the query,
but only #2 is the last click. Here, the weight is a scaling factor,
empirically tuned ( = 0.2 in our experiments). Intuitively, if a 
document is the last click of a query, there is a higher chance that 
the user is satisfied by this document and no additional document 
is necessary. Therefore, we boost the score of the last-clicked 
documents in the above formula. 

2.2 Clickthrough Features for Ranking
In modern Web search engines, search results are ranked based on 
a large number of features extracted from query-document pairs.  
Since a document is described by multiple text streams, multiple 
sets of features can be extracted, one from each stream (with re-
spect to the query).  Therefore, using clickthrough data for rank-
ing is equivalent to incorporating the clickthrough features, which 
are extracted from the clickthrough steam, in the ranking algo-
rithm. As described in [1], during training, the ranker can be 
learned as before but with additional features.  At runtime, the 
search engine would fetch the clickthrough features associated 
with the given query-document pair and determine a relevance 
score.

Figure 3 lists some of the most important clickthrough fea-
tures we used in our experiments, and describes how their values 
are computed from the clickthrough scores of the matched queries 
(to an input query). Let us illustrate this by an example.  Consider 
a clickthrough stream consisting of 4 query-score pairs, as follows.

Query Score
A B C D S1

B C A S2
E A B C D F S3

B A E S4

Now, given a 4-word input query A B C D, the values of the
clickthrough features are as follows.

StreamLength_w 16
StreamLength_q 4

WordsFound 1
PerfectMatches S1

CompleteMatches S1 + S2
ExactPhrases S1 + S3

Occurrences_1 S1 + S2 + S3 + S4

2.3 Ranking Model and Quality Measure in 
Web Search

Many rankers can be used to incorporate a set of features, such as 
RankSVM [18], or RankNet [7]. In this study, we will use Lamb-
daRank. Details can be found in [6]. We only sketch it here.

We assume that training data is a set of input/output pairs (x,
y). x is a feature vector extracted from a query-document pair,
where the document is represented by multiple text streams as 
described in Section 2.1. We use about 300-400 features extracted 
from content and anchor text streams, including dynamic ranking 
features such as term frequency and BM25 value and static fea-
tures similar to PageRank, as well as a set of  (44 or 30) click-
through features. y is a human-judged relevance score, from 0 to 
4, with 4 as the most relevant.

LambdaRank is a neural net ranker that maps a feature vector 
x to a real value y that indicates the relevance of the document
given the query. For example, a linear LambdaRank simply maps 
x to y with a learned weight vector w such that = . Several 
non linear functions are provided in LambdaRank. LambdaRank 
is particularly interesting to us due to the way w is learned. Typi-
cally, w is optimized with respect to a cost function using numeri-
cal methods if the cost function is smooth and its gradient with 
respect to w can be computed easily. In order for the ranker to 
achieve the best performance in document retrieval, the cost func-
tion used should be the same as, or as close as possible to, the 
measure used to assess the final quality of the system. In Web 
search, Normalized Discounted Cumulative Gain (NDCG) [17] is 
widely used as quality measure.  For a query q, NDCG is com-
puted as follows:

=
2 1

log 1 +
=1

, (2)

where ( ) is the relevance level of the j-th document, and the 
normalization constant Ni is chosen so that a perfect ordering 
would result in = 1. Here L is the ranking truncation level at 
which NDCG is computed.  The are then averaged over a 
query set.  However, NDCG, if it were to be used as a cost func-
tion, is either flat or discontinuous everywhere. It thus presents
particular challenges to most optimization approaches that require 
the computation of the gradient of the cost function.

LambdaRank solves the problem by using an implicit cost 
function whose gradients are specified by rules. These rules are
called -functions. Burges et al. [6] studied several -functions 
that were designed with the NDCG cost function in mind. They 
showed that LambdaRank with the best -function outperforms 
significantly a similar neural net ranker, RankNet [7], whose pa-
rameters are optimized using the cost function based on cross-
entropy. In this paper, we will use LambdaRank with a sigmoid 

StreamLength_w # of words in CS

StreamLength_q # of queries in CS
WordsFound Ratio between # of words in q that occur in 

CS and # of words in q
Complete-
Matches

Sum of the scores of the queries in CS all of 
whose words are included in q

PerfectMatches Sum of the scores of the queries in CS that 
match q (as a single string)

ExactPhrases Sum of the scores of the queries in CS that 
contain q as a substring

Occurrences_i Sum of the scores of the queries in CS that 
contain the i-th (i N) word of q

Bigrams Sum of the scores of the queries in CS that 
contain any word-pair in q

InorderBigrams Sum of the scores of the queries in CS that 
contain any word-bigram in q

Figure 3. Some clickthrough features used in ranking models, 
where q is the input query, containing N query words (stop words 
are removed); CS is the clickthrough stream that consists of a set 
of query-score pairs. 
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function, as our ranker and we explore different ways to integrate 
clickthrough features in it.

3. TWO SMOOTHING TECHNIQUES
An analysis of the data sets in all the three search domains of our 
study reveals a severe sparseness problem of the clickthrough data.  
Take the Japanese training data as an example. Around 75% of 
2.62 million samples (i.e., query-document pairs) do not have any 
click (see Figure 4). That is, the clickthrough features of about
1.95 million samples are assigned a zero value (the missing click
problem). For the rest of the data, the lengths of the clickthrough 
streams have a very skewed distribution, with a majority of sam-
ples having very short (< 5 queries) clickthrough streams, as illu-
strated in Figure 4 (the incomplete click problem).

These sparseness problems are largely attributable, on the one 
hand, to the bias of the search results retrieved by an imperfect 
search engine (i.e., most users only see a few top, typically 10,
search results and do not see the others), and on the other hand, to 
the incomplete clicks by the user even if many relevant documents 
are shown to the user. Both sparseness problems have their coun-
terparts defined and studied in the machine learning research 
community.  The missing click problem can be viewed as a par-
ticular example of the missing data problem [22], and the incom-
plete click problem is related to confidence-weighted learning 
presented in [10].  We will return to the related work in Section 5.

This situation makes it clear that the raw clickthrough data is 
imperfect and unreliable (in the sense that an unclicked document 
is not necessarily non-interesting). Instead of using the raw click-
through data, a better approach is to derive a new clickthrough 

which the raw clickthrough features are generalized or expanded 
to other documents. This idea is very similar to smoothing in sta-
tistical language modeling (SLM). Many studies showed that the 
model trained with expected counts can better capture the lan-
guage usage than the raw counts. It can then be expected that a 
similar processing on raw clickthrough data could produce a simi-
lar effect.

Inspired by the smoothing techniques for SLM, we propose 
two methods to smooth clickthrough data: clustering and dis-
counting.

3.1 Random Walk
Clustering techniques have been widely used in language model-
ing to improve the reliability of probability estimation [5, 14, 15].
Consider a large text corpus containing N words in which a word 
w1 occurs once and another word w2 occurs twice.  If a unigram 
model were built using maximum likelihood estimation without
smoothing, the model would say that the probability that w2 oc-
curs in a new text, P(w2), is twice as large as that of w1, P(w1). 
However, these probabilities are not reliable because they are 
estimated on few samples. Now suppose that we could group sim-
ilar words into clusters.  Assume that W1 and W2 are the clusters 
of w1 and w2, respectively.  If W1 occurs 200 times, and W2 400 
times, then one is more confident to say that P(W2) is twice as 
large as P(W1). 

The same idea can also be used to smooth clickthrough fea-
tures.  Consider the StreamLength feature as an example. We
would not be confident to say that a document d1, with Stream-
Length_q = 2, is twice as popular as a document d2, with Stream-
Length_q = 1.  However, if we could expand the stream with 

are not recorded in log data for some reason, and observe that the 
expanded streams of d1 and d2 are 200 and 100 in Stream-
Length_q, respectively, then we are more confident to say that d2
is more popular. Similar idea applies to other clickthrough fea-
tures.

Now, the question is how to determine similar queries that 
should have clicked on the document. One can use a similarity 
defined according to query terms. However, this would unlikely 
add very different queries into the click stream. Another solution 
is to exploit co-clicks: queries for which users have clicked on the 
same documents can be considered to be similar. This principle 
has been successfully used in several studies [e.g., 3, 9, 27]. We 
follow the same principle here, but use a different approach: in-
stead of defining a static function of similarity according to the 
number of co-clicks, we use random walk to derive it dynamical-
ly. This approach has been successfully used in [9]. Figure 5 gives 
an example that illustrates this idea.

Formally, we construct a click graph which is a bipartite-graph 
representation of clickthrough data. We use =1 to represent a 
set of query nodes and 

=1
a set of document nodes. We fur-

ther define an  × matrix in which element represents 
the click count associated with , . This matrix can be norma-
lized to be a query-to-document transition matrix, denoted by ,

where = (1)( | ) is the probability that transits to in 
one step.  Similarly, we can normalize the transpose of to be a 
document-to-query transition matrix, denoted by , where , =
(1)( | ).  It is easy to see that using and we can compute 

the probability of transiting from any node to any other node in 
steps.  There are various ways of evaluating query similarities 
based on a click graph, e.g. using hitting time [25].  In this work, 
we use a simple measure which is the probability that one query 
transits to another in 2s steps; and the corresponding probability 
matrix is given by ( ) . Although longer transitions could be 
used, the most effective transitions are the first ones, and longer 
transitions also raise the problem of efficiency. So, in our experi-
ments, we limit s to 1.

Figure 4. Length distribution of the clickthrough streams (with 
training data, where x-axis 

is the stream length, and y-axis is the number of training samples;
Bars at x = 0 shows the number of documents without click. Black 
bars correspond to the raw click counts and grey bars to the 
smoothed counts using Random Walk. 
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Based on this measure, we propose two heuristics for click-
through stream expansion. For each query in the original click-
through stream, we select up to 8 similar, previously absent que-
ries to be added into the expanded stream. A newly added similar 
query must satisfy 2 > , where is tuned empirical-
ly on validation data ( = 0.01 in all the experiments in Section 
4). Alternatively, we can select similar queries if 2 > .
Empirical experiments show no significant difference in using 
these two heuristics. In Figure 4, one can observe the effect of 
Random Walk smoothing. The length of clickthrough stream is 
generally increased and we can expect more reliable clickthrough 
features to be extracted. However, we observe that the number of 
streams of length 0 remains the same because they are not af-
fected by Random Walk smoothing. The technique of discounting 
described in the next subsection aims to solve this problem.

3.2 Discounting
Many smoothing methods have been proposed in SLM to deal 
with unseen words [13, 20]. Our method is inspired by the Good-
Turing estimator, which will be reviewed briefly.

Let N be the size of a sample text, and nr be the number of 
words which occur in the text exactly r times, so that

= . (3)

Good- s estimate PGT for a probability of a word that oc-
curred in the sample r times is

= (4)

where
= + 1

+1
. (5)

The procedure of replacing an empirical count r with an adjusted 
count r* is called discounting, and the ratio r*/r is a discount coef-
ficient. When applying Good-Turing discounting to estimating n-
gram language model probabilities, Katz [20] suggested not dis-
counting high values of counts, considering them as reliable.  That 
is, for r > k (typically k = 5), we have r*=r.

Notice that + 1 +1 is the total count of words with fre-
quency r+1. Let us denote it by Cr+1. Then Equation (5) can be 
rewritten as:

=
+1
. (6)

One of the most straightforward manners of applying the 
Good-Turing method to our case is to replace a raw click count, 
such as ( , , ) and  , , _ in Equation (1), 
with its adjusted count according to Equation (5). However, this
does not work here. While the clickthrough scores are derived 
from the raw click counts, the values of the clickthrough features 
are computed based on not only the clickthrough scores but also 
the specific words in the clickthrough stream, as illustrated in 
Figure 3.  If we were to adjust the raw click counts, we would 
have expanded the clickthrough stream of a document to an infi-
nitely large set by assigning a non-zero score to any possible 
query that does not have a click on the document. This would 
make most of the features, whose values are based on word or n-
gram matching, meaningless. Therefore, instead of discounting 
raw click counts as in the Good-Turing estimator, we have devel-
oped a heuristic method, inspired by the Good-Turing estimator,
which directly discounts the clickthrough feature values. 

Let fr be the value of a clickthrough feature in a training sam-
ple whose clickthrough stream is of length r, where the length is 
measured as the number of the queries that have click(s) on the 
document (i.e., StreamLength_q in Figure 3). Assume that the 
feature values fr, for r > 0, have been smoothed using the Random 
Walk based method described in Section 3.1. To address the miss-
ing click problem, we only need to estimate an adjusted click-
through feature value f0*. Obviously, we have f0 = 0 for all the
raw clickthrough features.

Let f1,i, i n1, be the value of a feature in the i-th training 
sample whose clickthrough stream is of length 1. The sum of f1,i
over all the training samples is 1,

1

=1 . Then, similar to Equa-
tion (6), f0* is computed as 

0 =
1,

1

=1

0

. (7)

where n0 is the number of the samples whose clickthrough streams
are empty. Notice that the average value of f1 over all training 
samples is 1 = 1/ 1 1,

1

=1 . Since 0 1, as shown in Fig-
ure 4, we have 1 0 > 0 = 0. That is, for each type of click-
through features, Equation (7) assigns a very small non-zero con-
stant if the feature is in a training sample whose clickthrough 
stream is empty (i.e., the raw feature value is zero). This will 
prevent the ranker from considering unclicked documents to be 
categorically different from clicked ones. As a consequence, the 
ranker can rely more on the smoothed features. Before we empiri-
cally test the impact of the smoothing method in the next section, 
here is an example of illustrating why this simple method might 
work. 

Assume that given a query q, two documents, d1 and d2, have 
been retrieved based on their content streams. Now, we want to 
adjust their ranks based on their clickthrough streams (i.e., using 
their clickthrough features such as PerfectMatches in Figure 3).
Assume that d1 has a lot of clicks and d2 has no click because d2 is 
a new URL and we have not collected enough click data for d2 yet.
If PerfectMatches = 0 for both d1 and d2, intuitively d2 should be 
ranked higher because the fact that q does not match any queries,
collected previously, which have clicks on d2 seems to provide a
piece of evidence that d1 might be irrelevant, whereas there is no
evidence about the (ir)relevance of d2. Using the discounting 
smoothing method of Equation (7), d2 would be ranked higher, in 
agreement with our intuition. 

Figure 5. Before expansion, document 3 has a clickthrough 
stream consisting of query 2 only; after expansion, the click-
through stream is augmented with query  1 which has a similar 
click pattern as 2.
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4. EXPERIMENTS
4.1 The Data
We evaluated the two smoothing methods in three Web search 
domains, namely (1) a person name search domain, which con-
sists of only person name queries, (2) a long query domain, which 
consists of queries containing four or more words, and (3) a Japa-
nese query domain, which consists of queries users submitted to 
the Japanese search market. The statistics of these data sets are 
shown in Tables 1 to 3.  We chose English name queries and long 
queries for our experiments because we've collected large 
amounts of clickthrough data in these domains and we believe that 
the clickthrough features, if their values could be properly esti-
mated, should lead to a significant improvement.  We also eva-
luated our methods on Japanese queries because our Japanese 
clickthrough data is an order of magnitude smaller than English 
log data, but the human-labeled Japanese training data is almost 
an order of magnitude larger than the training data sets in the first
two domains. We expect that the different settings could help us 
know in what case our methods perform well.

For each domain, we used two different data sets. They con-
tain queries that are sampled from the query log files of a com-
mercial Web search engine of two non-overlapping periods of 
time.  We used the more recent one as test set, and split the older 
data set into two non-overlapping data sets: training and valida-
tion sets.  This setting provides a good simulation to the realistic 
Web search scenario, where the ranking models in use are usually 
trained on previously collected data. 

In the name query and the long query experiments, we used 44
clickthrough features and other 374 features.  These data are ex-
tracted from the same en-click data, which is generated from 1-
year query sessions as follows. Each query is associated to a set of 
documents (URLs) clicked for it, together with the click counts. 

For each query-document pair, we computed the counts ( , ),
( , , ), and ( , , _ ), as listed in Equation (1).

We only kept the pairs with C(d, q) 5 and we computed the 
clickthrough scores according to Equation (1). In the Japanese 
query experiments, we used 30 clickthrough features and other 
263 features. The clickthrough data set, jp-click in Table 3, is 
generated from 1-year Japanese query sessions using the same 
procedure as that of en-click. 

In all the human-labeled data sets, each sample is labeled on a 
5-level relevance scale, 0 to 4, with 4 as the most relevant.  The 
performance of all the ranking models in our experiments is 
measured by NDCG on the test sets. We report NDCG scores at 
positions 1, 3 and 10, and the averaged NDCG score (Ave-
NDCG), which is the arithmetic mean of the NDCG scores at 1 to 
10. We also performed significance test, i.e., t-test with a signi-
ficance level of 0.05.  In the results reported in Tables 4 to 6 in 
Section 4.2, the difference between any pair of different rankers is 
statistically significant.

4.2 Results
Table 4 shows the results of the name query experiments.  All the 
human-labeled data sets (in Table 1) consist of only person name 
queries. Row 1 in Table 4 is the result of the baseline ranker
which is a 2-layer LambdaRank model with 10 hidden nodes and 
a learning rate of 10-5, trained on name-train.  It uses 374 features, 
i.e. without clickthrough features.

Row 2 is a LambdaRank model trained using the same para-
meter setting, but with an additional set of 44 clickthrough fea-
tures extracted from the raw data. We incorporated these click-
through features as follows.  For each document in the three hu-
man-labeled data sets (i.e., name-train, name-valid and name-test), 
we built a clickthrough stream as shown in Figure 2.  Then for 
each query-document pair, we extracted the 44 features by match-
ing the query to the clickthrough stream of the document, and 
computed the values of these features, as described in Section 2.2. 
Finally, we appended these new clickthrough features to each 
query-document pair.  

Row 3 is the model trained on name-train where all the 44 
clickthrough features have been smoothed using the Good-Turing 
inspired discounting method, described in Section 3.2.

Rows 4 and 5 are the models trained on the expanded click-
through features through Random Walk.  Considering that the 
query clusters generated by Random Walk are noisy, we also con-
sider using only a subset of the expanded clickthrough features 
that are the most reliable as follows: We grouped these features
into two categories - query-dependent features and query-
independent features.  The feature values of the former have to be 

Coll. Description # qry. # doc/qry
en-click aggregated 1-year clickthrough 

data
35,374,18

4
3.4

name-train human-labeled training data 5,752 85
name-valid human-labeled validation data 476 154
name-test human-labeled test data 4,370 84
Table 1. Data sets in the name query domain experiments, where # 
qry is number of queries, and # doc/qry is number of documents 
per query.

Coll. Description # qry # doc/qry
en-click aggregated 1-year clickthrough 

data
35,374,18

4
3.4

long-train human-labeled training data 6,255 93
long-valid human-labeled validation data 532 159
long-test human-labeled test data 5,785 123
Table 2. Data sets in the long query domain experiments.

Coll. Description # qry. # doc/qry
jp-click aggregated 1-year clickthrough 

data
3,958,820 4.7

jp-train human-labeled training data 47,919 55
jp-valid human-labeled validation data 4,730 119
jp-test human-labeled test data 3,959 178
Table 3. Data sets in the Japanese query domain experiments.

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG
1 -Rank-374 0.4981 0.5130 0.5716 0.5363
2 -Rank-418 0.5021 0.5163 0.5723 0.5381
3 2 + GT 0.5151 0.5240 0.5776 0.5452
4 2 + RW-44 0.5151 0.5198 0.5737 0.5409
5 2 + RW-02 0.5187 0.5275 0.5787 0.5472
6 3 + RW-44 0.5219 0.5242 0.5752 0.5448
7 3 + RW-02 0.5398 0.5403 0.5879 0.5595
Table 4. Test results on name-test. -Rank-374 is a ranker trained 
using LambdaRank with 374 features; GT stands for the discount-
ing method inspired by the Good-Turing estimator; RW-44 is the 
query smoothing method based on Random Walk, using 44 click-
through features, while RW-02 uses 2  clickthrough  features.
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computed by matching query words to the words in a stream, such 
as WordsFound and CompleteMatches in Figure 3.  Since similar 
queries are generated automatically, the expanded stream may 
contain arbitrary queries that are irrelevant to the document.  
Therefore, the quality of the query-dependent features is very 
sensitive to the quality of the clustering algorithm, which unfortu-
nately is by no means satisfactory on noisy log data. The second 
category contains only two StreamLength features, as in Figure 3
(number of words and number of queries in the clickthrough
stream).  Their values can reflect the popularity of a document 

BrowseRank [23]. More impor-
tantly, since the StreamLength features do not take into account 
any specific word in a stream, but simply measure its length, they 
are much more robust to noise.  Row 4 is the model trained using 
all the 44 expanded clickthrough features, and Row 5 is the model 
trained using only the two StreamLength features.

Rows 6 and 7 are similar respectively to the models in Rows 4 
and 5, except that all the clickthrough features are further 
smoothed using the discounting method.

Our results show that (1) as observed by other researchers, in-
corporating clickthrough features improves the ranker significant-
ly (Row 2 vs. Row 1);  (2) as expected, smoothing can further 
boost the ranking performance by a large margin in the name do-
main experiments (Row 7 vs. Row 2);  (3) interestingly, the dis-
counting method, though simple, brings a substantial improve-
ment; and (4) the Random Walk method works well (Row 7 vs. 
Row 3) but not all the expanded query-dependent clickthrough 
features are reliable and they should be used with care1 (Row 7 vs. 
Row 6). Overall, both smoothing methods work very well in the 
name domain experiments, and the combination of the two 
smoothing methods lead to a 4.0% relative improvement (or a 2.1% 
of absolute improvement) in AveNDCG (Row 7 vs. Row 2),
which is very significant even 2.

Table 5 shows the results of the long query experiments.  All 
the models were built similarly to those in Table 4, except the 
parameters for the LambdaRank: here, we use a 2-layer Lambda-
Rank models with 15 hidden nodes and a learning rate of 10-5,
trained on long-train. The results are consistent with those in the 
name query experiments. The combined smoothing method still 
substantially outperforms the unsmoothed model by 1.3% in 
AveNDCG (Row 7 vs. Row 2).  There is, however, one noticeable 
difference from the results in Table 4: The contribution of the 
Random Walk method, which only uses the two StreamLength 
features, is smaller than that of the discounting method in the long 
query experiments: We see in Table 5 that the discounting method 
contributed to a 0.82% improvement in AveNDCG (comparing 
results in Row 3 vs. Row 2), which is almost twice as large as that 
of the Random Walk method, which is 0.46% (Row 5 vs. Row 2).

Table 6 shows the results of the Japanese query experiments.  
All the models are trained similarly to those in Table 4.  The base-
line ranker (Row 1) is a 2-layer LambdaRank models with 10 
hidden nodes and a learning rate of 10-5, trained on jp-train, with 
263 features. 30 clickthrough features are used. Comparing to the 

1 It is possible that a subset of the query-dependent features (after 
some transformation) is useful for ranking.  We have not fully 
exploited each individual query-dependent feature, with differ-
ent transformations.  We leave it to future work.

2 A user study conducted by Microsoft Live Search (p.c.) shows 
that users start to sense the improvement of ranking when the 
NDCG improvement is larger than 0.5%.

experimental settings of the other two search domains abovemen-
tioned, in the Japanese experiments, the human-labeled training 
data is much larger and clickthrough data is much smaller. This
difference leads to some changes in the results: the discounting 
method produces a smaller improvement than on two other data-
sets and the Random Walk method fails to bring any improvement. 
This result suggests the following possible interpretations: (1)
When the amount of human-judged document-query pairs is very 
large, the advantage of exploiting clickthrough data is reduced. (2) 
The smaller amount of clickthrough data leads to much noisier 
expansion by the Random Walk method. In this case, it is even 
better not to expand the data than to do it. Therefore, the impact of 
the Random Walk method is more subject to the amount of click-
through data than that of the discounting method.

To sum up, our experimental results on the three datasets sug-
gest: (1) Incorporating clickthrough features can improve the per-
formance of rankers substantially. (2) Smoothing clickthrough 
features can reduce the sparseness problem of these features, and 
lead to some further, significant improvements. (3) The discount-
ing method, inspired by the Good-Turing estimator, is simple and 
effective. It works very well across all the data sets we tested. (4) 
The Random Walk method also helps in some cases, but this de-
pends more on the amount of raw clickthrough data.

5. RELATED WORK
Although the sparseness problem of clickthrough data has been 
reported in many recent studies [1, 9, 26, 28], no effective solu-
tion has been tested on real web search data.  To the best of our 
knowledge, the Random Walk method reported in [9] is perhaps 
the closest work to ours. However, [9] only tested the method on
the application of image search, leaving it unclear whether it can 
be extended to general Web search. Clickthrough data plays a 
much more important role in ranking images than in ranking text 
documents in general Web search because the content text streams 
of images are usually much less informative. Radlinski et al. [26]
argued that missing click is due to the ranking bias of a search 
engine and proposed an active learning method to collect more 
click data by modifying the original ranking list. Given the large 
amount of missing clicks, the extent to which the method could 
alleviate the missing click problem is questionable.

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG
1 -Rank-374 0.4302 0.4341 0.4642 0.4456
2 -Rank-418 0.4486 0.4432 0.4697 0.4539
3 2 + GT 0.4520 0.4478 0.4728 0.4576
4 2 + RW-44 0.4507 0.4415 0.4675 0.4525
5 2 + RW-02 0.4538 0.4462 0.4710 0.4560
6 3 + RW-44 0.4473 0.4405 0.4667 0.4511
7 3 + RW-02 0.4563 0.4500 0.4748 0.4598
Table 5. Test results on long-test.

# Models NDCG@1 NDCG@3 NDCG@10 AveNDCG
1 -Rank-263 0.5555 0.5427 0.5418 0.5424
2 -Rank-293 0.5589 0.5503 0.5525 0.5515
3 2 + GT 0.5658 0.5542 0.5500 0.5528
4 2 + RW-30 0.5595 0.5456 0.5425 0.5448
5 2 + RW-02 0.5603 0.5482 0.5471 0.5482
6 3 + RW-30 0.5639 0.5518 0.5456 0.5490
7 3 + RW-02 0.5631 0.5537 0.5485 0.5517
Table 6. Test results on jp-test.
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The missing click problem can be viewed as a special case of 
the missing data problem that has been well-studied in the ma-
chine learning community (e.g., [4, 16, 22]). Various heuristics 
have been proposed. In general, missing feature values are re-
placed by integration over (e.g., the mean of) the corresponding 
features whose value is available, weighted (or discounted) by the 
appropriated distribution [2, 24]. Our discounting method is also 
a heuristic and shares some similarities with them.  One area of 
our future work is to explore the problem in a more principled 
way such as the work presented in [12] (though their method can-
not be applied to our case directly), where missing data in density 
estimation problems are dealt with by seeking a maximum like-
lihood solution using the expectation maximization algorithm.

Another area worth exploring in the future concerns the in-
complete click problem. Incomplete click makes the feature val-
ues unreliable for training. The Random Walk method tries to
improve the reliability of features via smoothing the feature val-
ues before training. An alternative strategy is to take into account 
the uncertainty of feature values during training. Dredze et al. [10]
introduced a class of online learning methods, called confidence-
weighted learning, where a measure of confidence (reliability) of
each feature is maintained during training so that each feature 
weight can be updated separately according to its confidence 
score.

6. Conclusions
Clickthrough data have proven useful for document ranking in 
Web search. However, their sparseness prevents the ranker from 
strongly rely on these data. In this paper, we have presented two 
smoothing techniques for expanding clickthrough features: Dis-
counting and Random Walk. We have demonstrated that they lead 
to significant improvements compared to the utilization of raw 
clickthrough data.  In particular, the discounting method is simple, 
robust, and effective. This work demonstrates both the importance 
and the benefits of dealing with the sparseness problem of click-
through data. In our future work we will refine the smoothing 
techniques to reach the full potential of clickthrough data.
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