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ABSTRACT 

This paper demonstrates how a 
neural network may be constructed, 
together with learning algorithms 
and modes of operation, that will 
provide retrieval- effectiveness 
similar to that of the probabi- 
listic indexing and retrieval 
model based on single terms as 
document components. 

1. Introduction 

Since the early 1980's the neural 
network (NN) or connectionist 
model as a method of information 
processing has experienced an 
explosive revival of interest by 
researchers of various disciplines 
[see for example Hinton & Anderson 
81, Feldman & Ballard 82, Hopfield 
82, Rumelhart & McClelland 86 and 
references thereof]. This approach 
stems from an effort to mimic the 
structures and operations of the 
brain, and it is hoped that some 
of the human-like behavior such as 
vision, language understanding, 
hearing, etc. that are difficult 
to solve by conventional artifi- 
cial intelligence (AI) methods may 
find plausible explanation with 
this new paradigm. Information 
retrieval (IR) deals with large 
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collections of textual material, 
and its aim is to satisfy user 
queries and needs (also expressed 
in natural language text) with 
documents that are relevant. This 
conceptual matching belongs to the 
category of difficult problems and 
it is therefore interesting to 
investigate whether this NN 
approach may be of use to IR. 
During the past twenty or so 
years, a large body of research 
effort has gone into IR, and a 
certain level of theoretical 
understanding and experimental 
performance has been achieved with 
traditional retrieval methods such 
as the vector and generalized 
vector models [Salton 68, Salton 
et.al. 83, Wong et.al. 861 and the 
recent latent semantic indexing 
work [Deerwester et-al. 883, 
Boolean and Fuzzy Set models 
[Radecki 79, Wailer & Kraft 79, 
Bookstein 813, and the probabilis- 
tic models [Bookstein & Swanson 
75, Yu & Salton 76, Robertson & 
Sparck Jones 76, van Rijsbergen 
79, Croft 83, Kwok 881. It there- 
fore appears reasonable to expect 
that an NN approach should at 
least provide such a level of 
performance as a base. This paper 
represents an attempt to employ 
the NN paradigm to reformulate the 
probabilistic model of IR with 
single term as document components 
[Kwok 85, 87, 881, since it has a 
sound theoretical foundation and 
has also been experimentally 
determined to be comparable or 
better in effectiveness than some 
of the best methods available. 
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From this basis we hope that 
further developments may lead to 
better results. Other people have 
applied the NN approach to IR 
[Mozer 83, Belew 86, Brachman & 
McGuinness 881 previously, but 
they have in general not taken 
account of what has been accomp- 
lished by information retrieval 
researchers in recent years. In 
[Salton & Buckley 881 similar 
effort has also been attempted. 

Marr 691. The above is a very 
brief summary of the structure and 
operations of the brain. What 
follows is a description of the 
usual hypothetical model of 
neurons, neural networks and their 
functions that cognitive 
psychologists, engineers and 
computer scientists use and that 
are of interest to us for 
applications in IR. 

2.1 Single Neuron 
2. Neural Networks 

Neuro-scientists have studied the 
brain for many years and have 
found that it is composed of a 
vast number (billions) of cells of 
different types called neurons 
[Llinas 751. Each neuron connects 
(fan-out) to, as well as is 
connected (fan-in) from, many 
other neuron cells via synaptic 
junctions. Typically these 
connections may be in the 
thousands. Some neurons are 
connected to our sensory organs 
and can be activated by external 
environmental stimuli. This 
activity in a cell, if it exceeds 
a certain threshold, can generate 
an output (i.e. the cell fires) 
affecting in parallel other 
neurons connected to it. These 
other neurons may also fire, and 
lead to a spreading of activation, 
representing a processing of the 
information. The state of 
activation of certain subsets of 
the neurons is then taken as the 
brain's response to the stimuli, 
and may lead to certain motor 
actions. This processing is 
parallel and distributed and the 
model is quite different from the 
sequential, instruction bY 
instruction processing of a 
computer. Another important 
aspect of the brain is that it can 
learn from experience, and this 
learning is assumed to be 
reflected as changes in the 
connection strengths between 
neurons, namely, the synaptic 
connections are plastic [Hebb 49, 

A single neuron j is regarded as 
a hypothetical processing unit as 
shown in Fig. 1. It receives 
input from (i = 1 . . n) other 
neurons via synaptic connections 
of strengths wji In addition, it 
may receive 'input from the 
environment represented as Ej, and 
it may also have a constant bias 
13j of its own. The resultant net 
Input for neuron j is then usually 
taken as a linear sum of all the 
possible inputs, thus: 

netj = xi wji* oi+ Ej+ Bj 

where oi is the output from neuron 
L affecting j. This netj input 
may lead to a new activity level 
on neuron j governed by an activi- 
ty function F: 

aj = F(aj,netj) (2) 

This new activity on j, if 
sufficiently intense, may in turn 

* 

Fig.1: Inputs, activity and 
outputs of neuron j. 
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trigger its firing and carry 
signal to those connected from j. 
The output of j may be governed by 
an output function f: 

Oj = f(aj) (3) 

Typical examples of the output 
functions f are the identity 
function or a (nonlinear) 
threshold. Examples of the 
activity function F are the 
sigmoid function or various linear 
functions in netj and aj, including 
the identity [Rumelhart & 
McClelland 86 (Ch.2)]. 

There can be many assumptions for 
neuron activities. For example, 
activation values can be 
continuous, continuous with upper 
and lower bounds, graded, or just 
binary (1 or 0). The activation 
levels may also be interpreted as 
a probability of the cell firing 
(oj = 1) or not (oj = 0), leading 
to a stochastic model. Connection 
strengths are real-valued, but may 
be positive (excitatory) or 
negative (inhibitory). 

2.2 A Network of Neurons 

A set of previously described 
neurons interconnected together 
form a neural network of arbitrary 
complexity. The usual 
architecture is to organize the 
neurons into one or more layers. 
Many dynamics of activation 
spreading can be considered. For 
example, activation spreading may 
be from an input layer towards the 
output layer (feed-forward) or 
vice versa (feed-backward), or in 
both ways (interactive models), 
or the net may be allowed to 
relax to an equilibrium state. 
Neuron activities may also be 
updated synchronously or 
asynchronously. 

How the connection strengths are 
assigned is the major concern of 
a neural network. Connections may 
be given initial values suitable 

for explaining a problem such as 
the model for the Necker Cube 
perception [Feldman & Ballard 
821, but the basic idea is that 
these connections are adaptive and 
that the network should be able to 
learn from experience or feedback 
to accomplish or explain a certain 
goal. An example is the back- 
propagation algorithm [Rumelhart, 
Hinton & Williams 861 which varies 
the connection strengths by 
seeking to minimise the mean 
square error between teaching 
signals and the outputs of a net. 
The specification of a learning 
algorithm for these.connections is 
therefore a crucial character- 
istic of a particular NN model. 

For our purposes we will use a 
simple 3-layer architecture, as 
shown in Fig. 2. Neurons in layer 
Q (later to be identified with a 
set of queries) may receive 
external input and are connected 
to the neurons in layer T, the 
hidden units (index term nodes). 
Layer T is then connected to layer 
D (document nodes), which may 
serve as output units. As an 
initial attempt we will keep the 
net simple and disallow 
connections within layers. The 
connections between layers are 
directed but of unequal weights. 
We will also consider activation 
to spread both forward and 
backwards separately. The opera- 
tion of the net, as well as its 
special learning algorithms, will 
be explained in Section 4 after we 
review the probabilistic indexing 
and retrieval model. 

3. Probabilistic indexing and 
Retrieval using Single Terms 
As Document Components 

Probabilistic retrieval aims at 
providing an optimal ranking of a 
document collection with respect 
to a query. This is based on a 
decision function, which for 
ranking purposes may be 
transformed via the Bayes' Theorem 
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into the following more useful 
form: P(diI+R)/P(diI-R), which is 
the ratio of the conditional 
probabilities that given relevance 
(+R) or non-relevance (-R) to a 
query that one finds documents of 
the description di. The theory as 
first proposed in [Robertson & 
Sparck Jones 76, van Rijsbergen 
791 makes two basic assumptions: 
(a) the index terms used for 
characterizing a document or query 
are independent, and (b) the 
document index term descriptions 
are binary. The query index term 
descriptions however are assigned 
weights, and they are the above 
ratio for.each term when they are 
regarded as independent. To 
estimate these probabilities one 
needs 
document:, 

sample of relevant 
for example those 

relevant ones obtained from a 
relevance feedback operation. 
(The sample of non-relevant 
documents are usually taken as the 
whole collection minus the 
relevant sample, and is a very 
good estimate because there are 
usually few relevant documents per 
query - 1 Once the samples are 
identified, occurrence statistics 
of each index term in the samples 
can be counted and the probabi- 
lities estimated. The resulting 
weight assigned to each term k of 
query a is then given by: 

g ak = gr,k + gSak 
= log Lrak/ (lBrak) 1 + 

log [ (l-Sak)/Sakl (4) 

where rak = P(term k presentl+R) 
and sak = P(term k presenti-R). 
They are the conditional probabi- 
lities that given relevance (+R) 
or non-relevance (-R) to query q, 
that term k will be found present 
in the documents. If document di 
has the vector (xi,,.. xik,.. ) to 
denote the presence (xik=l) or 
absence (xilc =0) of term k as its 
representation, then the optimal 
weight to be attached to di for 
ranking purposes is: 

(5) 

which sums over all terms common 
to di and q,. 

The probabilistic retrieval model 
is theoretically sound and also 
provides good retrieval results. 
However, it is not without its 
drawbacks. For example, it 
assumes that document index term 
descriptions are binary, and 
therefore does not make full use 
of the information available in 
the within-document term 
frequencies. It has a term 
weighting problem at the initial 
stage since one has to obtain a 
sample of relevant documents for 
each query first. It also ignores 
the reverse situation of 
probabilistic indexing [Maron & 
Kuhn 663, where one can use a 
document as a focus and ask which 
queries are relevant to it. These 
and some other considerations can 
be alleviated to a certain extent 
by the approach proposed in [Kwok 
85,87,88], where each document is 
viewed as constituted of many 
conceptual components, and where 
one works in a universe of 
document components instead of a 
collection of documents. The 
components are assumed to be 
independent and unambiguous in 
meaning. They may be phrases, for 
example, but for this investiga- 
tion we take them as single terms. 
The result of this extension is 
that all within-document term 
frequencies are made use of 
effectively. The theory can self- 
bootstrap because every document 
has a relevant component sample 
set to start with, namely, its own 
self. In addition, by considera- 
tion of the situation of either 
the query or, the document (or 
both) as the focus, probabilistic 
weighting of query terms and 
document terms can be accommod- 
ated, leading to asymmetric as 
well as symmetric weighting 
formulae of the type proposed in 
[Robertson et.al. 861. The 
resultant formulae may be 
summarized as follows. When one 
treats a query q, as the focus and 
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asks whether a document di is 
relevant or not, we have the 
weight assigned to each query term 
k as in (4), but with: 

r ak = qak/La I ‘ak = Fk/N, (6) 

where rak in our case of counting 
terms as components can be 
expressed as the k-th term 
frequency q,, divided by the length 
L, of the query. sak, which is the 
probability of occurrence of term 
k given non-relevance, can be 
estimated by the collection 
frequency F, of term k divided by 
the size of the component universe 
N which is a count of all the 
t&ms used. In this case of 
treating the query as the focus, 
the weight assigned to document di 
for ranking purposes then becomes: 

WQi = 2 k (dik/Lk) gak (7) 

summing over all terms k common to 
both di and qa. (The Q of WQ 
reminds us that this weight is 
obtained with the query as the 
focus.) On the other hand, when 
one treats a document di as the 
focus and asks whether the query 
q, is relevant or not, we have the 
weight assigned to each document 
term k as: 

with 

rik = di k/Li 
Sik = (Fk-dik) / (NW-L, I I 

where rik and sik have the same 
interpretation as for r& and Sakr 
but for the document d; instead. 
d. 
t&m 

and L- are respectively the 
frequency of k and the length 

of di respectively. The weight 
assigned to document di for ranking 
purposes then becomes: 

WDi = xk (qak/La) gik (9) 

again summing over all terms k 
common to both di and q,. Finally, 

we may also introduce the 
symmetric formula which is the sum 
of the two: 

wi = ek [ (qak/La) gik + 

(dik/Li ) gak 1 (10) 

This kind of initial weighting has 
also been called indexing based on 
a principle of document self- 
recovery [Kwok 86,881, because it 
provides an optimal weighting of 
the terms if we regard an item 
(document or query) as a 'query' 
and require that this 'query' 
should retrieve itself optimally 
in the universe of components. In 
the next sections, we will show 
how a neural network may be 
constructed with operations that 
can provide similar performance. 

4. A Neural Network Approach to 
Information Retrieval 

As discussed earlier, our current 
goal is to design a NN that will 
default to the IR retrieval 
results of Section 3. We will 
divide this section into four 
parts as follows: 1) the archi- 
tecture of the net; 2) initial 
connection strengths; 3) mode of 
operation for retrieval: and 4) 
learning algorithms and initial 
learning. We are interested in NN 
as a new method of general 
information processing and its 
application to IR, rather than 
claiming this to be the way how 
the brain does document retrieval. 

4.1 Architecture of the Net 

The 3-layer (Q, T, D) network 
discussed in Section 2.2 and shown 
in Fig. 2 is interpreted as 
queries connected to index terms 
to documents. These connections 
are bi-directional and asymme- 
tric. Queries and documents are 
regarded as neurons of the same 
category, and can play either as 
input or output units. Intra- 
layer connections are disallowed 



Feed-forward Feed-forward Feed-backwa Feed-backwa 

> > f f 

(set of terms) (set of terms) 

Fig.2: 3-Layer Net for IR (not all connections are shown) 

in this report. We will also 
assume that the activities on the 
neurons take on continuous values, 
and both the output and activation 
functions are taken as the 
identity function. 

4.2 Initial Connection Strengths 

The connection strengths between 
neurons may be initially assigned 
in the following manner. (In 
Section 4.4, we will propose how 
they may be acquired from 
scratch.) From a query neuron a 
(document neuron i) to an index 
term neuron k, the connection 
strength will be wka = q,,/L, (wki = 
dik/‘Li) l 

The interpretation is 
that these strengths represent the 
inference that given the presence 
of this query a (or document i), 
it will have a probability qak/La 
(dik/Li) of using the constituent 
term k, and is obtained from the 
manifestation of the query 
(document) text. From a term 
neuron k to a query neuron a (or 
document neuron i), the connection 
strength w,~ (wi,,) will be taken as 
composed of two parts: wrak + wsak, 
tWrik + Wsik) and these are to be 
identified with 
(4,S), 

grak + gSak of Eqns. 
Section 3. wsak as 

discussed before, is the estimate 
from a sample of non-relevant 
documents and can be quite 
accurately estimated by the 

rd 

following: wsak = wSik = log (l- 
Sk) /Sk, where sk = F,/N,. This 
represents the log-odds evidence 
that if term k is used, it will be 
dealing with the contents of query 
a or document i to this extent. 
It is a property of term k only, 
and gets modified as the term 
usage in the net changes. wrak and 
Wrik are assigned initial values 
log[p/(l-p)], with p being a small 
positive constant, the same for 
all terms. Together, wak (Wik) 
provides a discrimination based, 
inverse-document-frequency (IDF) 
type of weighting for the case of 
single terms as document 
components, and represents the 
best known information of the 
usefulness of term k without any 
further content-oriented 
information. How retrieval may be 
done is presented in the following 
sub-section. 

4.3 Modes of Operation for 
Retrieval 

Once the net has been initialized 
as in Section 4.2, we may view 
retrieval as the result of a feed- 
forward or feed-backward spreading 
of activation. For example, 
analogous to the query-weighted 
formula WQi of Eqn. (7) with query 
q, in attention as the focus, we 
wrll assume that each document di 
will have its activity clamped to 
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a value of 1 in turn. This 
activity then spreads to the term 
neurons and to q, via connections 
of non-zero strengths. Each 
document may then be evaluated for 
relevance to q, (or not) based on 
whether the activity received at 
qa exceeds a certain predetermined 
threshold value. For comparison 
with traditional evaluation 
methods, we will however use this 
activity for ranking the 
documents. In the reverse 
situation, we can clamp the 
activity of query q, to 1, spread 
its activity towards each document 
in attention (di), and use the 
activity received by di for ranking 
its relevancy to q,. This mode 
corresponds to the document- 
weighted formulation WD, of Eqn. 

(9) l 
If we add the corresponding 

activities of the above two cases, 
and use the sum for relevancy 
ranking, we recover the symmetric 
sum formulation of Eqn. (10). 

As an example of such a retrieval, 
we may consider a query neuron a 
being clamped to an activity of 1. 
Any term neuron k affected by the 
query will receive input netk = 
q,,/L, (i.e. 1 * wka), leading to an 
activity and output signal of the 
same value. During the next time 
step, a document neuron di in 
attention and having terms k in 
common with the query will receive 
as input: 

rk (qak/L,) Wik = zk (qak/La)* 
log [P/(1-P) * (N,-Fk)/F& 

This again will be reflected as an 
activity on di, and experiments 
have shown [Kwok xx] that they 
provide much better results than 
the traditional, document-mode IDF 
weighting first proposed by 
(Sparck Jones 72) and popular 
among experimental retrieval work. 

4.4 Learning Algorithms 

To improve on the NN, we assume 
that learning algorithms exist 

which can lead to changes in the 
connection strengths. consider 
the net to be initially blank. As 
each document neuron di is created 
and fed into the network one by 
one, associated new term neurons 
are also created and di would 
acquire new links between itself 
and the existing or new term 
neurons. Wki Will be Set t0 dik/Li 
as discussed in Section 3.3, and 
Wik = Wrik + Wsik= log [p/(1-p)]+log 
[(N,-Fk)/Fk]. N, is some large 
constant and F, may be estimated as 
a function of D, (i.e. Fk(Dk) ) I 
which is the current fan-in factor 
(or document frequency) of neuron 
k. Thus each time a new link is 
created at term k (because of a 
new document), all connections wSik 
emanating from k have to be 
adjusted as well. 

Once the above is established the 
net can further learn from each 
document itself, (even though 
there is no feedback information 
YetI I since we know that di must 
be self-relevant. Consider the 
document neuron i to be under 
attention, with activity clamped 
to 1. It sends signals to the 
connected term neurons, from which 
the activity further spreads. 
Since di is also the only known 
relevant item at this point (see 
Fig. 3), only the connections wki 
and wik (for all terms k of 
document i) will be modified 
according to the following rules: 

A: dwik = h(wik, a,) if neuron i 
is relevant: 

= 0 otherwise. 
(11) 

This may be seen as a type of 
Hebbian correlational learning 
[Hebb 491 and is of the same 
nature as those used in [Belew 
86-J. It is not truly Hebbian 
because we would use only the 
activity on neuron k and not that 
on i. In contrast to the delta 
rule [Widrow & Hoff 60, Sutton & 
Barto 81, Rumelhart & McClelland 
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di clamped to activity 1 & self- 
relevant, hence (w,,,, wi,,) are 
modified, but not wjk, or wYj. 

Fig.3: Self-Learning by Document 

861, we use relevance information 
not as a teaching signal to be 
reproduced, but as confirmation of 
which connections to modify. What 
we want to learn, according to the 
probabilistic model, is an 
estimate of the occurrence 
probability of term k in the 
current relevant set of di, and 
this happens to be residing as an 
activity ak on neuron k. Hence the 
connection strengths would be 
assumed to learn according to the 
following: 

Awi, = Arik/[rik*(l-rik)] (12) 
here rik is the probability before 
learning, viz: 

exp(wi,-wsi,)/[l+exp(wik-wSik) ] . 

We assume that learning takes 
place gradually over many 
iterations with a learning rate 
eta, and the rule for learning of 
the probability rik for the v+l 
iteration is: 

r. v+l 
lk = (1-eta)*rikv + eta*ak, 

0 c eta < 1 (13) 

riko = initial value of rik = p. 

As v approaches infinity, we see 

that the learnt probability rik" 
approaches ak' For each itera- 
tion step, the change in rik iS 

therefore: 

Arik = eta * (ak - rik) (14) 

This together with Eqns. (11,121 
defines the update function h. 
For the case of the documents 
learning its own relevance, we 
have used eta = 0.5 for all 
documents, and iterate some 20 
times. This is equivalent to 
setting the initial connection 
strengths Wik tO log [dik/(Li-dik) * 
(N,-Fk)/Fk], which is approximately 
that of the term weight obtained 
from the principle of document 
self-recovery (Eqn. 8) [Kwok 87, 
881. This learning process is 
also assumed to take place for the 
connections wak between the terms 
and query neurons. Thus queries 
and documents are regarded as 
items of the same category, we 
only use different symbols to 
denote them in the drawings for 
clarity. When one plays the part 
of external input, the other 
assumes the role of output and 
vice versa. However, queries are 
usually much more transient, and 
we have calculated the universe 
statistics without accounting for 
the usage frequencies from the 
queries. 

When the link wik was adjusted, 
simultaneously the other link w,; 
may also 
in Eqns. 

B: &wki 

In this 
document 

. . . 
be assumed to learn, as 
(13, 14), thus: 

= Arki 
= eta * (a, - rki) (15) 

case of learning from a 
itself however, nothing 

is changed because the initial 
values of wki are exactly those of 
ak, the activities on neuron k. 
This however will not be true when 
we consider the case of relevance 
feedback from several documents. 

If the net is now used for 
retrieval, it will perform with 
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similar effectiveness to those 
reported in [Kwok 881 using the 
principle of document self- 
recovery for initial indexing, and 
the asymmetric and symmetric 
formulae of Eqns. (7,9,10). 

5. Conclusion and Discussion 

We have shown how the probabi- 
listic retrieval formulation using 
single terms as document 
components may be implemented in 
a neural network, together with 
the necessary learning algorithms. 
Interpretations of the connection 
strengths are also given. It 
achieves optimal ranking based on 
the probability of relevance for a 
document with respect to a given 
query and assumming term 
independence. An advantage of 
this net is that it defaults to 
known results and is amenable to 
comparisons with previous 
investigations and evaluations by 
information retrieval researchers. 

This is of course only the first 
step. More interesting would be 
the situations when we switch on 
the interactions among the neurons 
within a layer. In that case, 
more sophisticated dynamics of 
activation such as those employed 
for associative memory or pattern 
completion under constraint 
satisfaction requirements 
(Hopfield 1982, 1984, Hinton, 
Sejnowsky & Ackley 1984, Smolensky 
& Riley 1984) may probably be more 
appropriate. 
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