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ABSTRACT
Recently, online social networks are becoming increasingly popular
platforms for social interactions. Understanding how information
propagates in such networks is important for personalization and
recommendation in social search.

In this paper, we propose a Hierarchical Community-level Infor-
mation Di�usion (HCID) model to capture the information di�usion
process in social networks. We introduce the notion of users’ topic
popularity as to enable our model to depict the information di�usion
process which is both topic-aware (which topic the information is
concerned with) and source-aware (where the information comes
from). Instead of assuming homogeneity of social communities,
we propose the notion of community hierarchy, where information
di�usion across inter-level communities is uni-directional from the
higher levels to the lower ones.

We design a Gibbs sampling algorithm to infer model parame-
ters and propose prediction methods for two information di�usion
prediction tasks, the retweet prediction and the cascade predic-
tion. Comparison experiments are conducted on two real datasets.
Results show that our model achieves substantial improvement
compared with the existing work.
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•Applied computing→Sociology; •Human-centered comput-
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mining;
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Figure 1: Hierarchical Community Level Di�usion.

1 INTRODUCTION
In the era of Web 2.0, online social networks (OSN), such as Twi�er,
Facebook and Weibo, are becoming increasingly popular platforms
for social interactions and communication. Social network users
form a large-scale complex network by establishing who-follows-
who relationships/friendships, and generate textual contents by
tweeting/posting. �ey also share semantic information through
their social network connections, e.g. retweeting/reposting, which
accounts for the majority of information di�usion in social net-
works. In this paper, we focus on modeling such information di�u-
sion processes to gain be�er insight on the information spreading
mechanisms along with users’ topical and social preferences, which
are useful in many IR tasks such as personalized social search.

Related studies can be roughly divided into two main categories:
one is information di�usion modeling [3, 17, 19, 23, 36, 37], the
other is semantic analysis combining textual content with network
structures [4, 7–9, 16, 22, 24]. Although much progress has been
made, the existing work still su�ers from several limitations:

• Most work in literature models information di�usion at
the individual level. However, the high volatility of user be-
haviors renders it di�cult to accurately uncover di�usion
pa�erns for individual level models [19]. Moreover, those
models, especially in�uence-based ones e.g. [23, 34, 37],
become computationally prohibitive to inference when
dealing with large scale networks usually with more than
millions of nodes and billions of links.
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Figure 2: Two-dimension interleaving space for information
di�usion phenomena. Most existing work only tackles one
dimension or one point in the space.

• Few models holistically depict the retweeting behaviors,
which explicitly indicate information di�usion from source
users to target users (i.e. retweeters). For example, Hu et.
al. [19] model the retweet network and posts separately,
ignoring semantic information on retweet links as well as
posts’ retweeting source, which fails to capture the whole
retweeting process and has weaker performance as showed
in Section 3.2. [35, 37] have studied retweeting behaviors
systematically; nonetheless, the discriminative methods
they use make it only applicable to speci�c tasks, such as
the retweet prediction, but not to the others.

To overcome those limitations, we propose a uni�ed information
di�usion approach, HCID (Hierarchical Community-level Informa-
tion Di�usion), to jointly model information di�usion processes in
two dimensions, network structure and information semantics (see
Figure 2). �e proposed approach models information di�usion at
the community level similarly to [19], yet our contribution extends
the notion of communities to be�er capture information di�usion
in those two dimensions respectively.1

First, the traditional concept of communities is typically only
concerned with social tie strengths to capture locally dense sub-
graph structures. However, social science studies reveal that social
communication exhibits hierarchy, in the sense that people from
higher level communities barely receive information from lower
level communities. For instance, in�uential users (celebrities, amus-
ing story publishers etc.) are more popular and hence have more
followers, but they seldom follow “ordinary people” and cautiously
retweet their posts due to high social status and concerns about
public opinions in twi�er-like microblogs. We plot the numbers of
users’ followers (i.e., in-degrees, which re�ect users’ social status
to a certain extent) in unilateral and reciprocal follow relationships
in Weibo2 in Figure 3. We can �nd that one tends to follow other
users with higher out-degrees (which is also studied as disassor-
tative degree mixing [29]), while reciprocal relationships are more
likely to establish between users with similar numbers of followers
(which is called assortativeness [25] in network science).

1�e father of mass communications, Wilbur Schramm, argues that it is no accident
that “community” and “communication” have the same word roots [28].
2Sina Weibo is a popular microblogging service in China.

Figure 3: Follow relationship hierarchy in Weibo. �e hori-
zontal axis and the vertical axis denote the numbers of fol-
lowers for users on the outward and inward sides of follow
relationships, respectively.

�us, we introduce the notion of community hierarchy, which
de�nes the direction of information �ows at the community level
and enables our model to capture information di�usion pa�erns of
higher complexity. Further, empirical study veri�es this intuition
and shows substantial model performance improvement on various
evaluation metrics.

Second, social communities are associated with similar topical
preferences in our model. Most approaches, concerning users’ topic
interests e.g. [16, 19, 22], assume that every user has a single topic
distribution, serving as both his/her topic interests and popularity.
However, a user’s interest in a topic (as a receiver) is not necessarily
the same as others’ interests towards him/her (as a sender) in that
topic. For example, a famous politician in Twi�er might take strong
interests in American football, thereby retweeting a large amount
of posts3 about NFL games and only a few pieces of politics related
posts. Most people usually are not interested in the NFL news he
shares but those political opinions that account for only a small
proportion of his total posts. �erefore, we propose the notion of
communities’ topic popularity to capture this kind of source-aware
information di�usion phenomenon upon di�erent topics.

Figure 1 summaries our proposed model. �e input is a relation-
ship network along with retweeting logs, each of which contains
the textual content, the source user and the target user (retweeter)
of a retweet. Our goal is to understand the mechanism of infor-
mation di�usion across communities by extracting hierarchical
communities with their interests and popularity in di�erent topics.

To conclude, the major contributions of this paper are:
• Our model extends the concept of social communities to

be�er model information di�usion processes. We take com-
munity hierarchy into consideration in addition to social
tie strengths. Further, we incorporate communities’ topic
popularity along with their topic interests into our model
to capture the topic-aware and source-aware information
di�usion phenomenon.

• We design a constrained Gibbs sampling algorithm to esti-
mate model parameters, which is computationally linear
w.r.t. the input network and retweeting logs. �ose inter-
pretable parameters can be exploited in several application
tasks.

3We use the words “post” and “tweet” interchangeably in this paper.
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Table 1: Notations used in this paper.

Symbols Descriptions
U, V, C, K number of users, vocabularies, communities, and

topics
Eu ,Du number of retweet logs of user u as a retweeter,

and links from user u
πu community membership, multinomial distribution

over communities of user u
θc topic interests, multinomial distribution over topics

of community c
θ ′c topic popularity, multinomial distribution over top-

ics of community c
ψk multinomial distribution over words speci�c to

topic k
ϕ multinomial distribution over topics of the total

posts
ηcc ′ topic-irrelevant social in�uence to community c

from community c ′

Ie indicator of the existence of link e
Id indicator of the existence of retweet d

se , s
′
e communities associated with follower and fol-

lowee of link e
cd , c

′
d communities associated with target user and

source user of retweet d
zd topic of retweet d

wdl the l-th word of retweet d
λ0, λ1 Beta priors on η

ρ,α ,α ′,γ , β Dirichlet priors on πu ,θc , θ ′c ,ψk , ϕ

• �rough experiments on real datasets, we demonstrate sub-
stantial predictive performance improvement achieved by
our model compared with the existing work, and interest-
ing insights concerning community hierarchy in microblog
social networks.

�e rest of this paper is organized as follows. Section 2 intro-
duces our proposed model and its major application in information
di�usion prediction, while Section 3 reports our experimental anal-
ysis. We review literature in Section 4 and conclude our work in
Section 5.

2 MODEL
2.1 Formulation
We use G = (U , E) to denote the relationship network, whereU
is the set of all users, E is the set of directed social links (e.g. who-
follows-who relationships and retweet networks). D is used to
represent the set of retweet logs. Each retweet log d = (u,v,wd) ∈
D denotes a post retweeted by the target user u from the source
user v with textual content wd.

De�nition 2.1. Community. A social network consists ofC com-
munities denoted as c ∈ [1, 2, ...,C], where community members
intensively interact with each other and share similar social pref-
erences. Each user u ∈ U may take part in multiple communities
in di�erent contexts, according to a multinomial distribution πu ,

⇢

⇡u

cdse c0ds0e

IdIe

✓0c0✓c

zd wdl

�  k

↵ ↵0 � �

⌘cc0

�0,�1

Eu

C2

Du

U

C K

Figure 4: �e Graphical Model Representation.

where each component πuc denotes user u’s tendency toward the
membership of community c .

De�nition 2.2. Topic. A topic k ∈ [1, 2, ...,K] is represented by a
multinomial distribution over the vocabulary, denoted asψk . Every
post d ∈ D is associated with a topic zd according to its textual
content wd.

De�nition 2.3. Topic Interest and Topic Popularity. Every
community c has two components: a multinomial distribution θc ,
where θck represents the topic interest of community c toward topic
k ; and a multinomial distribution θ ′c , where θ ′ck represents the topic
popularity of community c with regard to topic k .

De�nition 2.4. Community-level In�uence Strength. �ere
is a Bernoulli distribution ηcc ′ between any two communities c and
c ′, representing their topic-irrelevant in�uence strength.

De�nition 2.5. Community Hierarchy. We divide communi-
ties into L hierarchical levels, denoted as l ∈ [1, 2, ...,L], where
level 1 representing the lowest level and level L the highest. Each
community c is pre-assigned to a speci�c hierarchical level lc .

All the notations used in this paper are listed in Table 1.

2.2 Model Description
Users take part in di�erent communities in di�erent se�ings. �ere-
fore, we employ the mixed-membership approach [1]: each user u
is associated with a multinomial membership distribution vector
πu , where each component πuc = P (c |u) denotes the probability
that user u acts as a member of community c .

We also incorporate probabilistic semantic analysis into our
model. Each retweet log d = (u,v,wd) ∈ D contains a bag of
words wd. We assign a topic zd to each d . �e bag of words wd is
then drawn from the corresponding word distributionψzd . Unlike
[19, 38], the topics are drawn from a consistent topic distribution
ϕ instead of a personalized topic distribution (e.g., ϕc ), because we
focus on retweets instead of original posts in our model and, of
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course, users who retweet those posts cannot control their textual
contents, which are usually determined by combined e�ect of the
entire social network.

In our model, every time a user u establishes a social link e to
user v , user u chooses to act as a member of a speci�c community
se , and user v is regarded as a member of speci�c community s ′e .
�e probability of the existence of link e is determined by the
community-level in�uence strength ηse s ′e .

Likewise, each retweet log d is assigned to two communities cd
and c ′d , one for the target user (retweeter) u and one for the source
user v , denoting their community membership when taking this
retweeting action. In other words, inter-community interactions
serve as information di�usion channels in our model. In order to
capture the topic-aware and source-aware retweeting mechanism,
we assume that the retweeting decision depends on three factors:
the topic-irrelevant in�uence strength ηcd c ′d , the topic interest of
the target community θcd , and the topic popularity of the source
community θ ′c ′d

. �e �rst factor serves as the potential likelihood
for retweet actions to occur, while the la�er two determine whether
the potential likelihood is activated due to retweeters’ interests in
both the topic and the information source.

Here, we utilize both social links and retweet interactions to
model information di�usion, under the observation that retweet
interactions re�ect information di�usion more accurately, but are
sparser than social links. Informally, social links serve as “priors”
for retweet interactions and become trivial when retweet logs are
su�cient.

Due to the sparsity of social networks, we only model positive
links and existing retweet logs; se , s ′e and cd , c

′
d exist if and only if

e ∈ E and d ∈ D, respectively. As in [18, 19], we use a Beta(λ0, λ1)
prior on each ηcc ′ and negative samples are implicitly modeled
in the beta-binomial hyper-parameters λ0 = κ · ln(Nneд/C

2) and
λ1 = 0.1, where Nneд = U (U − 1) (1 + D/E) − E − D and κ is a
tunable weight. �us, linear model complexity w.r.t the number of
links and retweet logs can be achieved.

Finally, we address the notion of community hierarchy. Every
community c is pre-assigned to a hierarchical level lc . A social link
e can only be established when lse ≤ ls ′e , and a retweet action d
can only occur when lcd ≤ lc ′d

. �at is, we assume information
�ows downwards or horizontally, not upwards, because of social
status. Yet, such information di�usion processes of high complexity
as loops can still be captured thanks to multiple di�usion chan-
nels established between multiple community memberships. For
example, a user may receive a piece of information within a lower
level community (possibly from a higher one) and di�use this piece
of information as a member of a higher level community she also
belongs to. For the same reason, the possibility that “high level”
users may retweet some high-quality posts from “low level” ones
is not ruled out.

Note that, in our model, we use with the same conjugate Beta
priors on η to model in�uence strengths across both inter- and
intra- level communities for tractability and simplicity. �e pos-
terior in�uence strengths across two anti-hierarchy communities
are minimized in the model inference stage, as explained later in
Section 2.3. Also, since community detection is an unsupervised
procedure in our model, we can arbitrarily assign hierarchical levels

to communities according to a pre-set partition. For instance, if
we want to associate 20% of communities with the highest level,
we can simply assign level L to the �rst 20% communities (i.e. let
lc = 1, ∀c ∈ [1, ..., bC/5c]), thanks to symmetry.

Figure 4 shows the graphical representation of our proposed
model. �e generative process of all social links and retweet logs is
summarized in Algorithm 14.

Algorithm 1 Generative process.
(1) For each community c = 1, 2, ...,C,

(a) Draw topic interest distribution, θc ∼ Dir (α ).
(b) Draw popularity distribution, θ ′c ∼ Dir (α ′).
(c) For each community c ′ = 1, 2, ...,C,

(i) Draw the community-level in�uence strength,
ηcc ′ ∼ Beta(λ0, λ1).

(2) For each topic k = 1, 2, ...,K ,
(a) Draw the multinomial distribution over vocabularies,

ψk ∼ Dir (γ ).
(3) For each user u = 1, 2, ...,U ,

(a) Draw the community membership distribution,
πu ∼ Dir (ρ).

(b) For each link e = (u,v ) ∈ Eu ,
(i) Draw user u’s community, se ∼ Cat (πu ).

(ii) Draw user v’s community, s ′e ∼ Cat (πv ).
(iii) Draw the existence indicator, Ie ∼ Ber (ηse ,s ′e ).

(c) For each retweet log d = (u,v,wd) ∈ Du ,
(i) Draw user u’s community, cd ∼ Cat (πu ).

(ii) Draw user v’s community, c ′d ∼ Cat (πv ).
(iii) Draw topic indicator, zd ∼ Cat (ϕ)
(iv) Draw textual content, wd ∼ Mul (ψzd ).
(v) Draw the existence indicator,

Id ∼ Ber (ηcl ,c ′l
θcd zd θ

′
c ′d zd

).

2.3 Inference and Parameter Estimation
In this section, we show how to estimate the latent space parameters
(i.e. π , θ , θ ′, η, ϕ, ψ) from observed data (i.e. G (U , E),D). Like
that for many Bayesian models, exact inference for our proposed
model is di�cult due to the intractable partition functions. We
therefore exploit the collapsed Gibbs sampling method (a widely
used Markov chain Monte Carlo algorithm): �rst, iteratively sam-
ple latent variables (i.e. z, c , c ′, s , s ′) such that whose empirical
distribution converges to the posterior; then, use those samples
to estimate the model parameters of interest. �e Gibbs sampling
process at each iteration is described as follows.

• Sample community indicators se , s ′e for each link e =
(u,v ) ∈ E according to

P (se = c, s
′
e = c

′ |s−e, s′−e, ·)

∝




n (c )
u +ρ

n (·)
u +Cρ

·
n (c′)
v +ρ

n (·)
v +Cρ

·
nc,c′+λ1

nc,c′+λ0+λ1
lc ≤ lc ′

0 lc > lc ′

(1)

4Here, Cat and Mul stand for Categorical distribution and Multinomial distribution,
respectively.
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• Sample community indicators cd , c ′d and the latent topic
zd for each retweet d = (u,v,w ) ∈ D according to

P (cd = c, c
′
d = c

′ |c−d, c
′
−d, z−d, zd = k, ·)

∝




n
(c )
u + ρ

n
( ·)
u +Cρ

·
n
(c ′)
v + ρ

n
( ·)
v +Cρ

·
n
(k )
c + α

n
( ·)
c + Kα

·
n
′(k )
c ′ + α

′

n
′( ·)
c ′ + Kα

′
·

nc,c ′ + λ1
nc,c ′ + λ0 + λ1

lc ≤ lc ′

0 lc > lc ′

(2)

P (zd = k |c−d, c
′
−d, z−d,w, cd = c, c

′
d = c

′, ·)

∝
n
(k )
c + α

n
( ·)
c + Kα

·
n
′(k )
c ′ + α

′

n
′( ·)
c ′ + Kα

′
·
n(k ) + β

n( ·) + Kβ

·

∏V
v=1
∏n (v )

d −1
q=0 (n

(v )
k + q + γ )∏n (·)

d −1
q=0 (n

( ·)
k + q +Vγ )

(3)

In the equations above, n(c )u denotes the number of times when user
u acts as a member of community c in all links and retweets, n(k )c
denotes the number of posts of topic k retweeted by community c,
n
′(k )
c ′ is the number of posts of topic k retweeted from community

c’, nc,c ′ is the number of links from community c to community
c ′ and posts retweeted by community c from community c ′, n(v )k
represents the number of times word v is assigned to topic k and
n(k ) represents the number of posts assigned to topic k . n(v )d is pre-
calculated counts denoting the number of times word v occurs in
retweet d . We de�ne z−d as all the topic indicators for posts except
zd ; and the same with s−e, s′−e, c−d, and c′

−d. All the counts are
calculated with link e excluded in Eq. (1) and with post d excluded
in Eqs. (2-3).

A�er an appropriate number of iterations until convergence, the
estimates for the latent space parameters can be obtained with the
following formulas:

• Community membership π : πuc = n (c )
u +ρ

n (·)
u +Cρ

.

• Topic interests θ : θck =
n (k )
c +α

n (·)
c +Kα

.

• Topic popularity θ ′: θ ′c ′k =
n′(k )c′ +α

′

n′(·)c′ +Kα
′

.

• In�uence strength η: ηcc ′ =
nc,c′+λ1

nc,c′+λ0+λ1
.

• Topic distribution ϕ: ϕk =
n (k )+β
n (·)+Kβ

.

• Word distributionψ: ψkv =
n (v )
k +γ

n (·)
k +Vγ

.

Note again that, we �rst assign topic level indicators lc to each
community c according to pre-given ratios for di�erent hierarchical
levels, and then implement the hierarchical community discovery
in the inference stage under the assumption that no anti-hierarchy
links and retweet actions would be observed. In other words, the
posterior probability of community indicators c and c ′ is zero if
they violate the hierarchical rules with lc > lc ′ , as we can see in Eqs.
(1-2) so that ηcc ′ is minimized. �e mathematical derivation and

convergence study of our constrained Gibbs sampler are reported
in the Appendix.

Model Application. �e obtained model parameters can be
used in several application problems. Speci�cally, π represents
the hierarchical community structure discovered by HCID, which
can be applied to collaborative recommendation tasks. Also, ϕ can
be exploited in topic extraction, while η along with communities’
topic interest θ and topic popularity θ ′ provides input parameters
for in�uence propagation models (e.g., Topic-aware Independent
Cascade model [3]) to conduct topic-aware top-K in�uencer retrieval
at the community level. At last, the major application of our model
is information di�usion prediction, which will be covered in Section
2.4.

2.4 Prediction Method
2.4.1 Retweet Prediction. Retweet prediction is a common task

of di�usion analysis, whose aim is to predict whether a post d with
textual content wd from user v will be retweeted by another user
u in microblog se�ings. In other words, we are asked to estimate
the conditional probability that user u will retweet a post given its
content wd as well as source user v , namely P (u |wd,v )

5.
In our approach, we regard this probability as a mixture over

the topic-aware user-to-user in�uence probabilities P (u |k,v ) for
all the topics k ∈ [1, 2, ...,K],

P (u |wd,v ) =
∑
k

P (k |wd,v )P (u |k,v ), (4)

with mixture weights inferred through post d’s content and its
source user v’s topic interest,

P (k |wd,v ) ∝ P (k |v )P (wd |k,v ) =
∏
l

ψkwdl ·
∑
c
πvcθck . (5)

�e user-to-user in�uence can be converted into community-
level di�usion probabilities via community memberships,

P (u |k,v ) =
∑
c,c ′

πuc · πvc ′ · P (c |k, c
′), (6)

while the la�er can be decomposed to the product of topic-irrelevant
in�uence strengths η, target communities’ topic interest θ and
source communities’ topic popularity θ ′ as discussed in Section 2.2

P (c |k, c ′) = ηcc ′ · θck · θ
′
c ′k . (7)

As in [19], we also �nd that top few communities are su�cient
to represent users’ behavioral preferences. On average, the top
three community memberships of a user u add up to 85.2%, and the
top ten 95.1%. �is enables us to save a lot of computational costs
by only considering users’ top communities c and c ′ in Eqs. (5-6),
while top communities of each user can be obtained easily in the
o�ine pre-processing stage.

Compared to similar work, our prediction method not only con-
siders users’ topic interests, but also takes source users’ topic pop-
ularity into account, which well captures users’ topic expertise,
topic-aware authoritativeness and other likewise phenomena. Ad-
ditionally, in�uence strengths (i.e., η) not only indicates social tie
strengths, but also re�ect social hierarchy in information di�usion.

5Here, we slightly abuse the probability notation.
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2.4.2 Cascade Prediction. In the retweet prediction, we focus on
direct user-to-user retweet behaviors, which serve as local “hops”
in the whole information di�usion process. In other words, the
content wd of a post retweeted by user utarдet from user usource
may not be originated by usource ; it can also be a post retweeted
from usource but originated from uroot . In the la�er case, we
say that utarдet , usource and other users who have retweeted the
same content are contaminated users in the information cascade
of content wd published by uroot . As we can see, the information
cascading is global information di�usion phenomenon. In this task,
our goal is to predict whether a user u will be contaminated in a
given information cascade q = (uroot ,wd).

We �rst study the cascading problem at the community level. For
each topic k , we construct a graph of communitiesG (k ) = (C,A(k ) ),
where Ak is an adjacency matrix with each component a(k )c,c ′ =

P (c |k, c ′), topic-aware community-level di�usion probability given
in Eq. (7). �en, we de�ne the probability that community c will be
contaminated by a cascade originated from c ′ as

Pc (c |k, c
′) = max

(c1=c,c2, ...,cm=c ′)∈C∗

∏
i ∈[1,2, ...,m−1]

a
(k )
ci ,ci+1 , (8)

that is, the largest in�uence community c ′ can have on community c
through any possible path. �is can be implemented easily with the
Floyd-Warshall algorithm [10] by taking negative logarithm of edge
weights and �nding shortest paths for each pair of communities.
Note that, it is both theoretically unreasonable and computationally
prohibitive for traditional user-level models to utilize this approach
due to the huge di�erences among users’ in-degrees and the large
number of users.

At last, we use the same method as in the retweet prediction to
obtain the probability Pc (u |wd,v ) of user u being contaminated by
substituting P (c |k, c ′) in Eq. (6) with Pc (c |k, c

′).

2.5 Complexity Analysis
Since only positive links and retweet logs are modeled in HCID,
the time complexity of the Gibbs sampling inference is linear w.r.t
the size of input data and times of iterationsT , i.e.,O (T ( |E | + |D|))
given parameters C and K �xed. Further, in each iteration, the
sampling time for community indicators associated with each link
and each retweet isO (C2), while the sampling for topics isO ( |wd | ·

K ), where |wd | is the number of words in retweet d usually with
an upper limit of hundreds of words in microblogs.

�e complexity of information di�usion prediction consists of
two parts. �e o�ine pre-processing stage for retweet prediction
is O (UC ) for extracting top-k communities for each user, while the
cost for cascade prediction isO (C (U +C2)) for an additional run of
the Floyd-Warshall algorithm. A�er that, the online prediction for
each retweet action takes only O ( |w | · K ) in both of the two tasks.

3 EXPERIMENTS
In this section, we evaluate our proposed model using a real Weibo
dataset. �e experimental results show that our proposed model
achieves substantial predictive performance improvement. We also
conduct an analysis to uncover why it outperforms other baseline
methods.

In the following experiments, we only study two-layered com-
munity hierarchy for a simple and clear demonstration, although
community hierarchy with multiple levels can be implemented
with no extra cost. We use h to denote the ratios of higher level
communities. Further empirical study on community hierarchy is
reported at the end of this section.

3.1 Experimental Setup
3.1.1 Dataset. Weibo. We use a real-world dataset of Sina

Weibo from [37], containing both a relationship network G =
(U , E) and retweet logs D = {(u,v,wd )}.

In the data preprocessing step, stop words and the words oc-
curred only once in the corpus are excluded; inactive users associ-
ated with less than 20 links and retweet logs in total are removed.
All the retweet logs were made between June 1, 2012 and August
31, 2012. In the �nal dataset we obtain, there are about 68K users,
8.1M links and 2.7M retweet logs containing 110M words in total.

�e retweet logs D are split into training Dtraininд (80%) and
test Dtest (20%). Although only true positive samples are modeled
in our approach, we need negative samples to evaluate predictive
performance of our model. We therefore construct a half-sized neg-
ative test set Dtest randomly selected from D = {(uneд ,v,wd) <
D}, where uneд is a follower of v who never retweeted a post with
content wd from v .

Moreover, to test model performance in the cascade prediction
task, we generate a cascade set Qtest = {(uroot ,w,Uc ,Uc )}, where
Uc is the set of contaminated users who retweeted the original
post from uroot with content w while Uc is the set of randomly
sampled uncontaminated users. It contains about 2K original posts’
cascading records which never appear in Dtraininд , with average
19.6 contaminated users within each cascade.

DBLP. We further validate our model on an academic social net-
work from DBLP[32]. �e dataset is generated in a similar manner
to the Weibo dataset. Co-authorships and citations are regarded
respectively as “friendships” and “retweets”, where “tweets” are
titles along with abstracts of the cited research papers. In summary,
there are about 21K users, 2.3M links, and 5.9M “tweets” containing
412M words in total.

3.1.2 Baselines. We conduct comparison study with the follow-
ing baseline models. Model (1-2) are two state-of-art information
di�usion modeling methods used to demonstrate performance im-
provement achieved by our approach. Model (3-4) are variants
of our proposed model used to illustrate the contribution of two
notions proposed in this paper, i.e., community hierarchy and topic
popularity.

(1) COLD. Proposed in [19], COLD (COmmunity Level Di�u-
sion) is the state-of-art generative model for community
level information di�usion. In COLD, each user is also
represented by a community membership distribution, and
each community has a topic distribution that generates all
the posts published by itself. An interaction network de-
rived from retweeting logs without semantic information
is modeled by pairwise Bernoulli distributions.

(2) CDK. Proposed in [6], CDK (Content Di�usion Kernel) is
a network embedding method to represent users in a latent
vector space in such a way that information di�usion can
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Table 2: AUC values of retweet prediction on Weibo. C and
K are the number of communities and topics, respectively.
Results of our proposed model are given for several values
ofh, the ratio of the higher level communities. Results of the
baseline method No-Popularity are given for the best choice
of h.

Method K C=50 C=100 C=150

COLD 40 0.662 0.688 0.679
60 0.698 0.663 0.669

No-Popularity 40 0.750 0.788 0.754
60 0.746 0.770 0.776

No-Hierarchy 40 0.812 0.827 0.820
60 0.800 0.817 0.831

HCID (h = 10%) 40 0.824 0.830 0.821
60 0.813 0.828 0.821

HCID (h = 25%) 40 0.833 0.842 0.846
60 0.828 0.834 0.841

HCID (h = 50%) 40 0.829 0.842 0.844
60 0.827 0.840 0.843

be regarded as a heat di�usion process in that space. Infor-
mation di�usion between two users is thereby predicted
by their Euclidean distance.

(3) No-Popularity. In this variant, we only use one topic
distribution to represent each community’s topical pref-
erence, thus not capable of di�erentiating communities’
topic popularity from their topic interests.

(4) No-Hierarchy. In this variant, community hierarchy is
not considered, and therefore links and retweet interac-
tions can be established by any two communities.

3.2 Information Di�usion Prediction
We evaluate HCID’s predictive performance of information dif-
fusion in two sub-tasks, the retweet prediction and the cascade
prediction. �e two tasks respectively represent one “hop” and the
whole process of information di�usion.

3.2.1 Retweet Prediction Performance. �e problem formulation
of retweet prediction is given in Section 2.4. Since no pre-de�ned
threshold for the existence of a given post in both our proposed
model and baseline models, we regard the di�usion prediction as an
information retrieval problem aiming to rank Dtest before Dtest
in terms of the di�usion probability calculated in Eq. (4), and use
Area Under the ROC Curve (AUC) and Precision-Recall Curves as
metrics. Note that CDK is not applicable to this task so that we
only compare the other baseline methods.

Table 2 lists the results of all comparison approaches on the
Weibo dataset. We can see that all three baseline methods perform
worse than our proposed model HCID. Figure 5 visualizes their
performances using Precision-Recall curves. We observe that more
topics do not necessarily bring be�er performances. It is possibly
because users usually do not di�erentiate topics very meticulously
when making retweet decisions and the overestimated number of
topics may cause over��ing problems.

Figure 5: Retweet Prediction Performance onWeibo. h is set
to the optimal options for HCID.
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Figure 6: Performance Improvement Analysis on Weibo. If
not speci�ed, C, K and h are set to the optimal parameter
options, i.e., 100, 40, and 25%, respectively.

We conduct further analysis on the performance improvement
by HCID. As discussed in Section 2.2, a retweet decision depends on
two parts, the topic-irrelevant in�uence strength from the source
user to the target and the content of the post. Figure 6(le�) shows
the predictive performance results without and with the la�er part,
respectively. We can see that the semantic content helps for No-
Hierarchy and HCID to obtain be�er performance, while the oppo-
site for COLD and No-Popularity. �is is not surprising for COLD
and No-Popularity which use the same distributions to model users’
topic preferences both as information spreaders and as information
receivers. In fact, there is only an averaged Jaccard similarity of
0.486 between the two sets of top three topics that a community
is most interested in and has the most popularity in, respectively.
�is number is even smaller for lower level communities, which
is only 0.342, possibly because lower level communities generally
have diverse interests and unpredictable popularity in those top-
ics. Besides, without taking advantage of posts’ retweeting source
makes COLD exhibit even worse performance. Furthermore, we
can �nd that HCID achieves be�er performance than No-Hierarchy
mainly because the introduction of community hierarchy improves
the community structure extraction, hence the estimation of topic-
irrelevant in�uence strengths.

Figure 6(right) shows the impact of di�erent ratios of higher
communities h on the information di�usion prediction. For small h
(e.g., h = 10%), it is su�cient to use 100 communities to group users
who connect to each others closely and share similar behavior pref-
erences. On the other hand, as h increases, users can be e�ciently
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Figure 7: Cascade Prediction Performance on theWeibo(le�)
and DBLP(right) dataset. C denotes the latent space dimen-
sions for CDK, and h is set to the optimal options for HCID.

Figure 8: Comparison of the ratios of “Big V”s in active users
in di�erent sets of communities in Weibo.

divided into more �ner-grained communities with more precise
retweet pa�erns, thus achieving be�er predictive performance.

�erefore, we can conclude that the substantial performance
improvement by our proposed model HCID is achieved by incor-
porating the notions of topic popularity and community hierarchy,
along with the holistic retweet modeling approach taking posts’
retweeting source into account.

3.2.2 Cascade Prediction Performance. In addition to the capa-
bility of predicting a single “hop” (i.e., a retweet interaction between
two users) in the information di�usion process, our model HCID
is able to predict the whole message cascade. In order to evalu-
ate the prediction results, we treat the prediction for each cascade
q ∈ Qtest as a retrieval task whose goal is to rank contaminated
users Uc before the uncontaminated Uc in that cascade. We then
average the AUC values for all cascades.

It is worthwhile to mention that there are some users (about 5%)
in Weibo test set Qtest who never posted any message recorded
in the retweet logs Dtraininд . Neither COLD nor CDK can predict
retweet actions regarding those users because no community mem-
bership distribution or embedding vector exists for them. Nonethe-
less, our model HCID can take advantage of users’ friendship net-
work, and cold-start users associated with no retweet logs can still
be given a high-quality community membership distribution col-
laboratively. In our experiment, we �rst remove cold-start users for
a fair comparison. A�er that, we evaluate our model on the com-
plete test. As shown in Figure 7, HCID outperforms other baseline
methods consistently on both Weibo and DBLP datasets.

Table 3: Comparison of the statistics of higher and lower
level communities with h = 25% and C = 100.

Statistics Higher level Lower level
ratio of participation (tol.) 23.72% 76.28%

#user per community (avg.) 6372.4 6980.1
pagerank (avg.) 1.288 0.707

in-degree centrality (avg.) 0.0170 0.0078
betweenness centrality (avg.) 0.00020 0.00009

3.3 Community Hierarchy
Experiments above show that introducing the notion of community
hierarchy can bring substantial improvement with almost no addi-
tional cost. In this section, we will give an empirical comparison of
higher and lower communities for more insights.

Table 3 demonstrates some statistics of higher and lower commu-
nities in Weibo. Although social users seem to participate equally in
both of the higher and lower level communities, various metrics in-
dicate users who are actively involved in higher level communities
have higher centrality than the others. As mentioned in Section
1, those higher level communities are more likely to be venues
for in�uential users who seldom follow “ordinary people” in the
lower level and cautiously retweet their posts due to high social
status and concerns about public opinions. Figure 8 justi�es this
interpretation. �e ratio of “Big V”s6 among active users in higher
level communities is signi�cantly larger than that in lower level
communities.

Similar results can be also obtained in DBLP. It is worth mention-
ing that higher level community members (h is set to 25%) are up to
7 times more likely to serve as program commi�ee (PC) members
of top-tier conferences, which shows that the community hierarchy
can reveal seniority and general authoritativeness (compared to
topical authoritativeness) of researchers in citation networks. �e
conference data is obtained from [23], which covers six mainstream
research areas in computer science.

4 RELATEDWORK
Our work is closely related to information di�usion and probabilis-
tic semantic analysis, while existing work on community detection
inspires our idea as well.

Information Di�usion. Information di�usion is a vast re-
search domain, a�racting extensive research interests [15], includ-
ing in�uence maximization (e.g. [20, 21]) and in�uential node
detection (e.g. [23, 27]) with two types of information propagation
models, Independent Cascade Model [11] and Linear �reshold
Model [14]. Behind those approaches, there is a fundamental prob-
lem to model and estimate social in�uence between two nodes/users
(e.g. [12, 13, 33]), which is also more relevant to our work.

Gomez-Rodriguez et. al. proposes NETINF [12] to infer in�u-
ence strengths between news media sites and blogs from citation
cascades. Tang et. al. [31] leverages a factor graph model to in-
vestigate the relationship between conformity and in�uence with
retweet cascades and users’ a�ributes. Topical A�nity Propaga-
tion (TAP) [30] models topic-level social in�uence, but it regards

6In Weibo, veri�ed accounts with more than 0.5M followers are called “Big V”, a
well-recognized concept to represent in�uential users.
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topic extraction only as a pre-processing stage without considering
topics’ interdependence with network structures. Barbieri et. al.
[3] also incorporates topics into di�usion models and proposes
estimation methods for topic-aware in�uence strengths. However,
the topics are totally based on network structure without taking
advantage of semantic information. Finally, our work is most re-
lated to the Community Level Di�usion (COLD) model, which is a
novel approach to model information di�usion at the community
level proposed by Hu et. al. [19].

Probabilistic Semantic Analysis. Another line of existing
research is the probabilistic semantic analysis. Blei et. al. �rst
proposes a generative topic model LDA [5]. A�er that, Cha et. al.
[7] apply topic models to social network analysis. Zhao et. al. [39]
propose a content-based user in microblog se�ings.

Furthermore, various topic models are proposed combining se-
mantic content with linking structures both in document citation
networks (e.g. Topic-Link-LDA [22], RTM [8]) and in social net-
works (e.g. SRTM [16], FLDA [4]). In most of those models, textual
contents and links are assumed to be generated by the same topic
distribution (in some literature, it is also called mixed-membership
of communities). However, this assumption is not well ��ed with
social networks, especially microblogs, in two major reasons: �rst,
links are not necessarily relevant to users’ topic interests and they
also establish links due to social relationships or conformity; sec-
ond, users’ strong interests in a certain topic do not always indicate
that they have signi�cant popularity in that topic as well and such
complexity cannot be captured by a single consistent interest dis-
tribution for each user.

Community Detection. Our model captures social relation-
ships and users’ preferences at the community level and can be
applied to community detection as well. While extensive discrimi-
native approaches are proposed [26], our work is more relevant to
probabilistic generative community detection models. Airoldi et. al.
proposes the Mixed Membership Stochastic Block (MMSB) model
[1] where each user is associated with a membership distribution
over communities as HCID. Bonchi et. al. proposes the Cascade-
based Community Detection (CCN) model [2], which discovers
overlapping communities by leveraging information cascading be-
haviors. Han et. al. introduces users’ social roles into network
structure modeling and community detection in the Community
Role Model (CRM) [17], which inspires our idea of community
hierarchy to some degree.

5 CONCLUSION
In this paper, we propose a Hierarchical Community-level Infor-
mation Di�usion (HCID) model. �is model can not only help us
be�er understand information di�usion pa�erns by extracting com-
munities which well re�ect both the structural and the semantic
dimensions of information di�usion, but also have strong predictive
capability. We evaluate our model on two real datasets from, Weibo
and DBLP. Results show that our model outperforms other baseline
approaches, thanks to two innovative notions community hierarchy
and topic popularity that we propose in this paper.

�ere are several ways to extend our work in the future. One of
them is deeper investigation on more complex interaction mecha-
nisms across multiple hierarchical community levels. We also plan

to incorporate more types of social contagions, such as clicking
“like”, into our generative framework to be�er understand infor-
mation di�usion processes. Lastly, it might be an interesting and
challenging problem to study information di�usion across dynamic
communities with changing hierarchical structures.
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A SAMPLING HIERARCHICAL COMMUNITY
INDICATORS

In this paper, we design a constrained Gibbs sampling algorithm
under the assumption that no anti-hierarchy links and retweets
would be observed. We denote this assumption asA = ⋃e ∈E Ae ∪⋃
d ∈D Ad , where Ae and Ad represent the event lse ≤ ls ′e and

lcd ≤ lc ′d
respectively. Now we show the derivation of Eqs. (1-2).

First, using Bayes’ rule, we can get the joint distribution of all
latent variables under the assumption A

P (c, c ′, s, s ′, z |A, ·)

∝ P (A|c, c ′, s, s ′, z, ·) · P (c, c ′, s, s ′, z |, ·).
(9)

From the graphical model representation in Figure 4, we then obtain
P (c, c ′, s, s ′, z |·)

∝ P (c, c ′, s, s ′ |ρ) · P (z |β ) · P (w |z,γ ) · P (I, I ′ |λ, c, c ′, s, s ′).
(10)

�e conditional of se and s ′e can be calculated by dividing the joint
distribution of all latent variables by the joint of all variables except
se and s ′e ,

P (se = c, s
′
e = c

′ |s−e, s
′
−e, c, c

′, z,A, ·)

=
P (c, c ′, s, s ′, z |A, ·)

P (c, c ′, s−e, s ′−e, z |A, ·)

∝
P (A|c, c ′, s, s ′, z, ·)

P (A−e |c, c ′, s−e, s ′−e, z, ·)
·

P (c, c ′, s, s ′, z |·)

P (c, c ′, s−e, s ′−e, z |·)

∝ P (Ae |se = c, s
′
e = c

′) ·
P (c, c ′, s, s ′ |ρ)

P (c, c ′, s−e, s ′−e |ρ)

·
P (I, I ′ |λ, c, c ′, s, s ′)

P (I, I ′−e |λ, c, c
′, s−e, s ′−e )

.

(11)

�e �rst fraction of Eq. (11) is easy to obtain by the de�nition of
Ae ,

P (Ae |se , s
′
e ) =

{
1 lse ≤ ls ′e
0 lse > ls ′e .

(12)

Next, we show how to derive the second fraction
P (c, c ′, s, s ′ |ρ)

P (c, c ′, s−e, s ′−e |ρ)
=

∫
P (π |ρ)P (c, c ′, s, s ′ |π )dπ∫

P (π |ρ)P (c, c ′, s−e, s ′−e |π )dπ
, (13)

where the integrals can be calculated in the following way,∫
P (π |ρ)P (c, c ′, s, s ′ |π )dπ

=

∫ ∏
u∗

Γ(Cρ)∏
c Γ(ρ)

∏
c
π
ρ−1
u∗c ·

∏
u∗

∏
c
π
n (c )
u∗

u∗c dπ

=
∏
u∗

Γ(Cρ)∏
c Γ(ρ)

·

∏
c Γ(n

(c )
u∗ + ρ)

Γ(n
( ·)
u∗ +Cρ)

.

(14)

By plugging Eq. (14) into Eq. (13) and canceling out the same terms
with the trick Γ(x + 1) = xΓ(x ), we can obtain

P (c, c ′, s, s ′ |ρ)

P (c, c ′, s−e, s ′−e |ρ)
=

nceu,−e + ρ

n
( ·)
u,−e + ρ

·
n
c ′e
v,−e + ρ

n
( ·)
v,−e + ρ

, (15)

while the third fraction in Eq. (11) can be obtained in a similar
fashion,

P (I, I ′−e |λ, c, c
′, s−e, s

′
−e ) =

nc,c ′,−e + λ1
nc,c ′,−e + λ0 + λ1

. (16)

Plugging Eq. (12) and Eqs. (15-16) into Eq. (11), we can �nally
derive the sampling formula in Eq. (1), where the assumption A
and subscript −e are omi�ed for a clear demonstration. Similarly,
Eq. (2) can be derived.
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