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ABSTRACT
This paper addresses the problem of long-term language
change in information retrieval (IR) systems. IR research
has often ignored lexical drift. But in the emerging domain
of massive digitized book collections, the risk of vocabulary
mismatch due to language change is high. Collections such
as Google Books and the Hathi Trust contain text written
in the vernaculars of many centuries. With respect to IR,
changes in vocabulary and orthography make 14th-Century
English qualitatively different from 21st-Century English.
This challenges retrieval models that rely on keyword match-
ing. With this challenge in mind, we ask: given a query writ-
ten in contemporary English, how can we retrieve relevant
documents that were written in early English? We argue
that search in historically diverse corpora is similar to cross-
language retrieval (CLIR). By considering “modern” English
and“archaic”English as distinct languages, CLIR techniques
can improve what we call cross-temporal IR (CTIR). We fo-
cus on ways to combine evidence to improve CTIR effective-
ness, proposing and testing several ways to handle language
change during book search. We find that a principled combi-
nation of three sources of evidence during relevance feedback
yields strong CTIR performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.3.7 [Digital Libraries]: Systems
Issues

Keywords
Information retrieval, temporality, digital libraries, book search

1. INTRODUCTION
Today, digitized book collections are growing in size and

scope. This raises new challenges for information retrieval
(IR) research. Repositories such as Google Books1 and the
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Hathi Trust2 collect millions of scanned volumes with the
aim of improving readers’ access to the range of informa-
tion stored in academic libraries. To meet this goal, these
collections must support appropriate search interactions.

This paper tackles a specific problem in book search: long-
term language change. Though many books in, say, the
Hathi Trust are written in English, 20th-Century authors
used English very differently than authors did during the
14th- or even the 17th-Centuries. This presents a challenge
to retrieval models that rank documents based on the dis-
tribution of query words observed in documents. In Google
Books, a query term work may imply a user’s interest in
werk, woork, wyrke or even swyinkinge. All textual IR suf-
fers from the vocabulary mismatch problem, where searchers
and authors use different terms for similar ideas. But in his-
torically diverse collections, this mismatch is exacerbated by
centuries of linguistic evolution.

Our aim in this paper is to allow a query written in con-
temporary English to retrieve documents written in the ver-
nacular of older centuries. Thus a person interested in the
pedigree of the proverb many hands make light work will be
able to find a broad range of variants on this theme, from a
range of historical periods using a single query. This task is
similar to cross-language information retrieval (CLIR), and
so we will refer to it as cross-temporal retrieval (CTIR).

This paper’s main contribution is a novel approach to
CTIR. We present a model that imagines contemporary queries
as translations of archaic statements. Given a query in mod-
ern English QM we attempt to recover terms from the “true”
archaic version QA. The model yields a distribution over
terms that fits naturally into a structured query for the in-
ference network retrieval model. While we describe and test
several techniques, the paper’s main contribution (described
in Section 6.4.2) is a relevance feedback method that com-
bines information from a bilingual dictionary, orthographic
evidence and feedback probabilities in a principled way.

2. EXAMPLE USE CASE
Though book search has a strong research community –

especially in the INEX book track – many issues that impact
the effectiveness of IR in digitized book collections have yet
to be articulated clearly. In particular, realistic use cases and
their attendant demands on a system are non-obvious for
search over digitized book collections. Who would use these
collections, and for what purposes? What would realistic
queries look like? What constitutes relevance in peoples’
interactions with a scanned and OCR’d library?

2
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In this paper, we limit our attention to a fairly narrow
hypothetical use case. Our imagined user – probably a hu-
manities scholar, perhaps a general-interest reader – is in-
terested in a particular phrase or historically durable idea.
Examples of such interests include:

• A phrase from a literary work

• A proverb or saying

• A famous literary device such as a metaphor.

Thus our user might be interested in finding variants of the
opening lines of Chaucer’s Canterbury Tales. These lines
vary from manuscript to manuscript and edition to edition,
each with different spellings and vocabulary. They were also
adapted into increasingly modern English as critics and writ-
ers influenced by Chaucer echoed his text. To get a sense
of the range of these lines’ deployment in literature over the
years, a searcher would need to use a typical IR system very
carefully, relying on a great deal of expert knowledge.

In other cases, there is no canonical text to retrieve. The
proverb many hands make light work has changed over the
years; it has no “true” version. A communitie maketh the
werk lesse is clearly related to this proverb, though neither
rendition is in any sense more authoritative than the other.

We imagine that a user of our system is a person with an
interest in finding historical variants of a textual seed which
we call the searcher’s exemplar. We aim to retrieve items
that contain renditions of that exemplar – appropriations,
variants, in-line quotations, etc. This suggests that topical
relevance is not a suitable criterion for optimizing our sys-
tem. Searches like those described here seek variants of an
exemplar, not necessarily documents that are about that ex-
emplar. A critic’s quote of Chaucer’s opening lines would be
relevant to this searcher. But so would a 15th-Century play
by an author who borrows from The Canterbury Tales in the
course of his own work. We will operationalize this notion
of relevance when we describe our experimental evaluation.

Though this use case is narrow, we believe that it is re-
alistic. It speaks to the diachronic focus that has driven
much earlier work on information access in scanned book
repositories, [3, 27, 28].

3. PREVIOUS WORK
To the best of our knowledge, the cross-temporal IR prob-

lem has not been studied before. However, cognate problems
have seen a good deal of attention. Much of this earlier work
relates to this paper, both in terms of the problems we ap-
proach and the ways we propose solving them.

Historical linguists have lent sophistication and rigor to
the study of language change. Most notable in our context
is Edward Sapir’s theories on“language drift,”the process by
which a language changes over time to such an extent that
earlier texts become unintelligible to contemporary readers
[30]. However, although historical linguistics could surely
help with the problem of CTIR, its focus on the analysis of
linguistic genealogies is only indirectly useful here.

In domains closer to IR, work on document date identifi-
cation relates to our study. In [11], [17], and [5], variations
on language modeling have been brought to bear on the
problem of identifying when a given document was written.
As in these studies, our approaches to CTIR are based on
language models, resting on the assumption that resolving

differences among distant centuries’ vernaculars is tractable
via a high-level estimation of word probabilities.

From a conceptual and practical standpoint, CTIR is sim-
ilar to two active IR research areas: cross-language IR and
IR over noisy text (typically due to OCR errors).

If we consider archaic English and Modern English to
be two distinct languages, then the CTIR problem as we
have presented it is a cross-lingual retrieval problem. Cer-
tainly, CLIR methods as surveyed in [10] have a role to
play in CTIR. For instance, reliance on dictionary-based and
corpus-based translation tools enter into our analysis. Addi-
tionally, the approach to structuring queries that we adopt is
common in the CLIR literature (cf. [4]). Efforts to solve the
vocabulary mismatch problem have brought CLIR methods
into monolingual retrieval, as well. Work such as [2] and
[12] considers query-document matching as an English-to-
English translation process.

The CTIR problem also echoes challenges faced by re-
trieval over modern OCR’d text. Of course, much of the
research on IR for scanned documents is situated in the do-
main of cultural heritage [6], as is our work. But the similar-
ity is more substantive that this. Foundational work such as
[8] presents n-gram methods for supporting search over de-
graded texts. Additionally, variants of the n-gram methods
that followed this work (particularly in the TREC confu-
sion track) will form one of our experimental baselines in
Section 8. Of particular interest is [18], where Lam-Adesina
et al. note that many IR methods are quite robust against
OCR-introduced noise; but relevance feedback is more brit-
tle. Our feedback technique presented in Section 6.4.2 was
developed in part due to this observation.

Finally, the task of CTIR is not constrained to search over
digitized books. But these collections do make the problem
of language drift particularly keen. A good deal of work in
the INEX book track has treated OCR-related problems in
book search (cf. [13] for an overview). However, the focus of
INEX topics have left linguistic change as a relatively minor
problem in most previous studies of book search.

Perhaps the most important fact about the literature on
book search is that while digitized book data is plentiful,
what people will want to do with these data is still largely
unknown. We intend this paper to complement recent ef-
forts to expand the scope of interaction design for large book
repositories [14, 15, 16].

4. CROSS-TEMPORAL INFORMATION RE-
TRIEVAL FOR BOOK SEARCH

Whatever the nature of users’ information needs, repos-
itories of digitized books present a novel challenge for IR
systems: massive language drift. A corpus such as Google
Books or the Hathi Trust contains texts that are nominally
written in the same language (e.g. English), but whose vo-
cabularies are nonetheless dissimilar due to long-term lan-
guage change. The first line of the famous poem Sir Gawain
and the Green Knight [32] reads: Sithen the sege and the
assaut watz sesed at Troye, which translates into contempo-
rary English as Since the siege and the assault was ceased
at Troy. Seeing this equivalence is easy for scholars of Mid-
dle English, but it is difficult for many English speakers, let
alone for a computational system.

In this paper, our goal is to support a query issued in con-
temporary English, retrieving documents that are relevant
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but that are written in the vernacular of earlier centuries.
For convenience, we refer to the user’s language as modern
English, with all old forms of English called archaic. This is
a simplification in the sense that “modern” has technical im-
plications in certain disciplines of the humanities. Likewise,
our umbrella term“archaic” refers to many eras such as Mid-
dle English and early modern English. While operationally,
we have divided English into two classes – modern and ar-
chaic – the fluidity between these classes will be apparent
later in our discussion.

5. QUERY STRUCTURE AND RETRIEVAL
MODEL

Though not strictly necessary, in this paper we rely on the
inference network retrieval model implemented in the Indri
search engine [24, 31] . Given a query Q and a document
D, the inference network allows us to compute P (I|Q,D,Θ)
where I is the information need that generated Q and Θ con-
tains the parameters of the underlying joint distribution over
indexing features. The inference network approach is help-
ful here because it admits operations on structured queries.
The belief operators in the Indri query language have been
widely used for cross-language IR in a way that we adopt di-
rectly. Consider the user-supplied modern query QM , april
showers. For cross-temporal IR, we might rewrite this asQS ,
#combine(#wsyn(0.5 april 0.3 aprile 0.2 aprylle)

#wsyn(0.7 showers 0.2 shours 0.1 rain)) where the wsyn
operator treats word variants as weighted synonyms. Of
course, finding proper synonyms and weights is hard; it is
the task that comprises the contribution of this paper.

Given a modern query QM = {m1,m2, . . . ,mn}, we will
build a structured query QS that consists of n wsyn clauses
such that the ith clause contains k archaic translations of
the ith modern term. For retrieval we use the “Boolean and”
(band) belief operator to calculate

P (I|Q,D,Θ) =

nY
i=1

kX
j=1

P (aj |D)wij (1)

where we have k translations for each of our n observed
terms and wij is the weight of the jth translation for the ith

observed term. We use Indri’s default parameters such that
the probabilities are estimated using Dirichlet smoothing of
multinomial language models with a hyperparameter of µ =
2500. In other words Θ = {µP (t1|C), µP (t2|C), ..., µP (tV |C)}
where P (t|C) is the probability of term t in the collection
and V is the size of the vocabulary.

6. QUERY TRANSLATION
Given the retrieval model given by Eq. 1, a core challenge

of CTIR lies in finding archaic synonyms for each modern
query term and assigning weights to them. To accomplish
this, we pose the problem as a variation on cross-language
retrieval, where modern and archaic English are considered
to be two distinct languages. We assume that a modern
query QM is generated by an underlying information need
I. Our goal is to rephrase QM as a query QS that will
retrieve documents useful to I but expressed in a way that
will retrieve documents written in archaic English3.

3Of course, a search engine would retrieve both archaic and
modern documents relevant to I. However, retrieving mod-

We begin by assuming that an observed modern query
QM is a translation of an unknown archaic query QA. Our
goal is to recover QA from QM . To simplify this process we
further assume that an observed query word mi translates
to 0 or more archaic terms {ai1, ai2, . . . , aik}. In this paper
we estimate the probability of each archaic translation of a
modern term mi in isolation from all other observed terms
mj 6= mi, leaving non-independencies for future work.

For a modern term mi, we can rank the V terms in the
vocabulary {a1, a2, . . . , aV } in decreasing order of P (a|mi).
Those archaic terms whose P (a|mi) exceeds some threshold
τ are added as a synonym for mi in the final query, with
P (a|mi) as their weight in the wsyn clause.

For the modern query QM = {m1,m2, . . . ,mn} we choose
elements for the wsyn query clause associated with term mi

by taking the top k terms from P (a|mi). This gives the
clause: #wsyn(P (ai1|mi) ai1 P (ai2|mi) ai2 . . . P (aik|mi) aik).

Our final query has an analogous clause for each of the
n observed modern query terms. For simplicity we assume
that all observed terms (i.e. all wsyn clauses) are given equal
weight in the final query.

6.1 Translation in CTIR
All of the models we present are based on a simple prob-

abilistic form, which we present here. Let T be a body of
text such as a document, a corpus or a dictionary. We de-
fine P (a|m,T ), the probability that in a text T , the term a
acts as a translation of m. By the definition of conditional
probability, we have:

P (a|m,T ) =
P (a,m, T )

P (m,T )
. (2)

We can think of P (.|m,T ) as a multinomial characterized by
Θm, the probability thatm is a translation of {a1, a2, . . . , aV }
for a vocabulary of size V . To estimate Θm, the maximum
likelihood estimator is:

P̂ml(a|m,T ) =
|a,m, T |P|T |

i=1 |ti,m, T |
(3)

where |ai,m, T | is the number of times that term ai acts as
a translation of m in T .

The following sections will define several approaches to de-
termining if an occurrence of a in T is acting as a translation
of m. Thus, Eq. 2 is generic. To make it useful we need a
method of calculating the strength of the translational rela-
tionship between a and m. For any source of evidence E , we
will define an indicator function ϕE(a,m) that evaluates to
1 if criteria specific to E are met by a and m, or 0 otherwise,
allowing us to obtain the counts specified in Eq. 3. The
precise way to define ϕ will depend on the type of evidence
we are using.

6.2 Dictionary Evidence
Bilingual dictionaries are a mainstay of cross-language IR

[1, 20]. Researchers in the humanities have created similar
resources that are helpful for cross-temporal IR. Of course
many machine-readable dictionaries of Old and Middle En-
glish are available4. But these are often small, with commen-
tary that makes using them in automated settings difficult.

ern versions is a problem that is at least conceptually distinct
from our focus here.
4
http://archive.org/details/ElementaryMiddleEnglishGrammar,

http://www.gutenberg.org/ebooks/10625, e.g.
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However, one resource stands out in this field. The dig-
ital humanities MorphAdorner project5 contains a list of
〈archaic,modern〉 word pairs. After case-folding this “dic-
tionary” contains 202,285 pairs. The MorphAdorner lexicon
is helpful for CTIR due to its high quality. In personal corre-
spondences, project developers explained that compiling the
list took substantial work by subject experts. Because it was
built by human experts there are very few false positives in
the dictionary. Likewise, from its inception, the dictionary
was intended to support automated systems. Thus using it
requires no disambiguation or other data cleaning.

But like any bilingual dictionary, the MorphAdorner word
list presents problems for use during CTIR:

1. Translation weights. Word pairs in the list are sim-
ple tuples, lacking a measure of translation quality.
For instance, the modern term authority maps to 46
archaic variants in the list. Some of these terms ap-
pear often in archaic English, such as auctoritee and
authorite. But uthority is rare. During IR, it would
be helpful to let the strength of an archaic↔ modern
term association inform our query model.

2. Out of vocabulary terms. Even a list of 202,285
term pairs will suffer a sparse data problem due to the
long-tailed distribution of terms in text.

Despite these issues, the structure and high quality of the
MorphAdorner dictionary makes a simple translation indi-
cating function obvious. Given a dictionary D of archaic-
modern term pairs:

ϕD(a,m) =

(
1 if 〈a,m〉 ∈ D
0 otherwise.

(4)

Plugging Eq. 4 into Eq. 3 we have the estimator:

P̂ml
D (a|m,D) =

|a,m,D|
|m,D| (5)

where |m,D| is the number of tuples in the dictionary with
m as their modern entry, and |a,m,D| is the number of these
|m,D| tuples that have a as their archaic entry.

Eq. 5 allows us to specify a“dictionary”query QD. For an
n-term modern query QM , QD has ν ≤ n wsyn clauses. The
elements of each wsyn clause are simply the archaic terms

with non-zero P̂ml
D (a|m,D), with all archaic terms weighted

uniformly, in accordance with Eq. 5.

6.3 Orthographic Evidence
Cross-temporal IR invites us to supplement dictionary-

based evidence with a second source of information. Un-
like, say, English and French, where cognates are rare, word
spellings in 20th-Century English and Early Modern or even
Middle English are often similar. Most English readers are
familiar with the addition of a terminal e when translating
a modern term to an archaic version, as in april ↔ aprile.
It is likewise easy to recognize that aperil is a “cognate”
for april. These similarities are common, and thus provide
obvious leverage for translating modern terms into archaic
terms. We refer to this as orthographic, or spelling evidence.

Orthographic evidence is attractive because it relieves the
problem of out-of-dictionary terms. Spelling evidence might

5http://morphadorner.northwestern.edu/morphadorner/

also be useful in determining translation weights for struc-
tured queries. However, several problems impinge on using
orthographic evidence in cross-temporal IR.

• A few patterns such as adding a terminal e are com-
mon in modern-archaic word pairs. But most ortho-
graphic distortions are idiosyncratic, making it hard
use spelling systematically.

• The risk of false positives is high. Adding a terminal e
to a modern word is often safe. But it can easily lead to
errors; e.g. adding an e to man yields the (incorrect)
modern term mane.

• Combining dictionary and spelling information is non-
trivial. How to combine these sources of evidence in a
sensible way is a challenge.

Regardless of these difficulties, we hypothesize that if han-
dled properly, orthographic modern-archaic word similarity
should improve the quality of query translations. Our goal
in this regard is to induce a model that gives PS(a|m), the
spelling-related probability that archaic word a is a viable
translation of modern word m. Intuitively, PS(aprile|april)
should be large, as should PS(avril|april). But PS(peril|april)
should be small, with PS(man|april) still smaller.

The appeal of using orthography to identify translations
is that it frees us from our dictionary’s limitations. Instead
of D, we will now use the entire text of the corpus C as
T in Eq. 2. That is, we simply consider C to be a very
large document. Referring to Eq. 3 we have the spelling
probability:

P̂ml
S (a|m,C) =

|a,m,C|PV
i=1 |ti,m,C|

(6)

where the number of translation events between a and m is
determined by a function ϕS(a,m) which we define in the
following subsection.

6.3.1 Stochastic Edit Distance
To assess whether a andm are“close enough”to be archaic-

modern translations with respect to orthography, we need a
measure of string similarity. A good deal of prior work has
treated this problem. Much of this work focuses on variants
of the edit distance. Given given two strings a and m, a
set of permissible edit operations, and a cost function `, the
edit distance d(a,m) between a and m is the minimum cost
of transforming a into m via our allowed operations6.

If all costs equal 1, then this definition gives the well-
known Levenshtein distance. But the Levenshtein distance
has two drawbacks. First, it has no ready probabilistic in-
terpretation that would help us integrate it into CTIR. Also,
in CTIR, some operations intuitively merit different costs.

Several probabilistically motivated edit distances that ad-
dress these issues have been proposed in the literature. We
rely on results by Oncina and Sebban [26] and Ristad and
Yianilos [29]. In particular, we make use of the model de-
veloped by Oncina and Sebban which finds the maximum
likelihood estimator of the cost matrix via the EM algo-
rithm7. Since we use this algorithm without alteration, we
omit explicating it here, referring readers to [26, Appendix

6We use the common edit operations, insert, delete and re-
place.
7Our results rely on the open-source SEDIL software,
http://labh-curien.univ-st-etienne.fr/SEDiL/.
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A] for a full treatment. For our purposes, two details of
the algorithm are important. First, it operates without any
domain knowledge aside from the training tuples. Second,
based on a corpus of archaic-modern term tuples, we obtain
a translation model t(a|m) by normalizing the results of the
EM algorithm such that t(.|mi) sums to one for all mi.

We trained t(a|m) on the MorphAdorner dictionary. This
leads to the spelling indicator function:

ϕS(a,m) =

(
1 if t(a|m) > τS

0 0, otherwise.
(7)

for an empirically determined threshold τS which governs
how similar a term a must be to m to be considered a viable
translation for m.

6.4 Combining Evidence
The previous two subsections introduced sources of ev-

idence that might help cross-temporal IR. But combining
these sources would presumably improve effectiveness of CTIR,
much as evidence combination has aided CLIR [25]. This
section presents two methods of combining dictionary and
spelling evidence in the framework given by Eq. 2.

6.4.1 Naive Combination
It is tempting simply to assume that strong evidence on

both dimensions – dictionary and spelling – should increase
our confidence in a translation. We refer to this approach
as naive combination.

We can combine dictionary and spelling evidence by us-
ing the dictionary model PD(a|m,D) as the basis for a prior
to find the maximum a posteriori (MAP) estimate of the
spelling model. Because PS(a|m,C) is a multinomial, we
use the Dirichlet distribution (the multinomial’s conjugate
prior) with parameters {µSPD(a1|m,D), µSPD(a2|m,D), . . . ,
µSPD(aV |m,D)} as our prior, with a smoothing hyperpa-
rameter µS .

The maximum a posteriori estimate is thus:

P̂map
N (a|m,C) =

|a,m,C|+ µSPD(a|m,D)PV
i=1 |ti,m,C|+ µS

(8)

where PN (a|m,C) is the “naive” translation model.

6.4.2 Relevance Feedback
Eq. 8 alleviates the constraints of dictionary-based trans-

lation, but at the cost of a huge increase in the size of the
search space. Because Eq. 8 operates in a completely un-
supervised way over the entire vocabulary, it is likely that
a query populated with all terms with non-zero probability
according to Eq. 8 will contain many false positives.

Thus, we hypothesize that weak orthographic similarity
is a strong indicator that a is a bad translation of m. But
it is not the case that high orthographic similarity implies
a good translation. If this is true, while Eq. 8 allows us to
ignore many low-similarity terms, it will still suffer from a
high false positive rate.

To overcome this problem, a logical approach is to con-
strain the search space of translation discovery. Relevance
feedback accomplishes this. Given R, a set of k (pseudo-)
relevant documents obtained by the dictionary-based query
QD, we will limit consideration of translation to terms that
occur in R, aiming for two effects:

1. Term identification. The set of relevant documents
may contain translations of m that were not present
in the dictionary. We can add these to the final query.

2. Term weighting. The dictionary gives deterministic
evidence about the relationship between a and m. But
with respect to a particular information need, some
translations of m may be preferable to others. Feed-
back lets us update the weights of translations.

The central idea in our feedback approach is that we only
allow terms that appear in the pseudo-relevant documents
to alter our query model based on orthographic similarity to
observed modern query terms.

This approach uses intuition similar to He’s work on CLIR
[9]. However, our approach is unique in several senses. Aside
from the obvious difference in focus (CTIR vs. CLIR) and
the attendant differences in evidence, our approach differs
from He’s mathematically and algorithmically. He used feed-
back to improve a translation model learned from parallel
corpora, linearly interpolating model weights with dictio-
nary probabilities. We have no parallel corpus. This invites
a Bayesian approach, considering the dictionary model as a
prior over translations which we use to smooth the proba-
bilities estimated during feedback.

In the remainder of this section, we assume that based on
our initial, dictionary-built query, we have retrieved k = 20
pseudo-relevant documents. We concatenate these k docu-
ments into a large pseudo-document R.

Continuing with our earlier notation, we have the rele-
vance feedback probability of a given m:

P̂ml
R (a|m,R) =

|a,m,R|PV
i=1 |t,m,R|

. (9)

Again, we enumerate the translation events between a and
m in R via the indicator function:

ϕR(a,m) =

(
1 if t(a|m) < τR

0 otherwise
(10)

where t(a|m) is the orthographic probability (i.e. string sim-
ilarity) and τR is a threshold that governs how similar a term
a in the feedback documents must be to m to be considered
a viable translation for m.

As in the case of our naive combination model, in this case
we update our feedback probabilities by considering the dic-
tionary model as the basis for a Dirichlet prior:
{µRPD(a1|m,D), µRPD(a2|m,D), . . . , µRPD(aV |m,D)}, giv-
ing:

P̂map
R (a|m,R) =

|a,m,R|+ µRPD(a|m,D)PV
i=1 |ti,m,R|+ µR

. (11)

6.5 Summary of Models
We have presented four models for building CTIR queries.

Table 1 summarizes them and lists an abbreviated name for
each. A few points about these models are worth stressing:

• Orthographic evidence operates as a binary variable
via the indicator functions ϕ∗. That is, a term a is clas-
sified as a translation of m if t(a|m) exceeds a thresh-
old τ∗. The thresholds τS and τR differ because the
CFB model searches for translations over an elite set
of documents, while SPELL and CNAIVE search all
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Table 1: Summary of Baseline and Experimental Query Models. Baseline methods are shown with a gray
background, with more novel models shown against a white background.

Name Definition Parameters Description
DICT PD(a, |m,D) none Simple dictionary lookup of candidate translations. Uni-

form weights.
USER NA unigrams=0.85, #ow1=0.1

#uw8=0.05
Judges cut-and-paste a relevant passage to create a query.
Queries formed via sequential dependency model [23].

RM3 NA k = 20 documents, n = 20
terms, λ = 0.5 interpolation

Relevance model 3 of [19]. Feedback terms interpolated
with QD (Eq. 5).

SPELL P̂ml
S (a, |m,C) log τS =-2.1 Includes all terms from the vocabulary whose string prob-

ability t(a|m) < τS .

CNAIVE P̂map
N (a, |m,C) log τS = −4.2, µS = 20000.0 Naive evidence combination. Uses Bayesian updating to

improve the spelling model based on dictionary evidence.
Considers all terms in the collection. Weights terms by
dictionary evidence and collection frequency.

CFB P̂map
R (a, |m,R) log τR = −9.0, µR = 10.0,

k = 20 documents
Same as CNAIVE but the set of possible translations is
constrained to the vocabulary of k feedback documents.
Weights terms by dictionary evidence and frequency in
feedback documents.

documents. Thus CFB can tolerate a wider range of
spelling variation than SPELL and CNAIVE can.

• The Dirichlet hyperparameters µ∗ govern the extent
to which we trust dictionary evidence versus spelling
evidence observed in texts (either the whole collection
or feedback documents).

• CNAIVE and CFB are identical except for the docu-
ments they consider – the full corpus versus only feed-
back documents – and their parameterization.

7. EXPERIMENTAL DATA
To evaluate our approaches, we built a new test collection.

We did not use a pre-existing collection such as the INEX
book track’s corpora due two considerations:

1. We needed to ensure a high degree of historical diver-
sity in our collection.

2. The types of information needs (and queries) needed
for our use case were not present in existing collections.

This section details our test collection.

7.1 Documents
Documents came from two sources. Members of the Google

Books team (not affiliated with the authors) made the text
of 3,690 volumes available to us. These were a random sam-
ple of out-of-copyright texts by the authors listed on three
Wikipedia pages in October 20108. These samples had many
redundancies, with duplicate and near-duplicate pages be-
ing common; these were retained. Documents resulted from
OCR on scanned pages, leading to typographical noise.

Besides the Google Books data, we harvested 34,806 full-
text books from Project Gutenberg in October 2010. These
books were selected by requesting all titles labeled as being
in English, Middle English, or Old English.

8http://en.wikipedia.org/wiki/List_of_English_writers,
http://en.wikipedia.org/wiki/Classical_Latin,
http://en.wikipedia.org/wiki/Classical_Greek

For our experiments, we set the page (as opposed to the
book, chapter, etc.) as the unit of retrieval. For the Google
Books data, page-breaks were already present. The Guten-
berg data, however, were simply long text files. We split
these files into non-overlapping passages of no more than
300 words to form retrievable “documents.” The 300-word
window was intended to mimic the length of book pages,
though it was chosen without rigorous estimation.

All metadata was removed from documents, and texts
were indexed using Indri, with no stemming or stoplists
applied at index time. This yielded an index containing
25,845,101 documents and a vocabulary size of 6,657,631
terms. We did not perform any language identification to
learn which documents were indeed modern and which were
archaic; we preferred to let our models tackle this problem.

7.2 Topics
Topics were developed by two hired subject experts in

digital humanities – one masters and one doctoral student.
The students self-identified as users of Google books. As
they created queries, topic developers explored the collection
using a simple web interface to the index described above.

Each topic developer was given a page-long description of
the proposed CTIR use case. Based on this, they were asked
to imagine exemplars that they would like to learn about.
Developers were free to choose exemplars that are very com-
mon (such as famous Biblical passages) or rarer ones. The
main imperative was for them to identify exemplars that
would plausibly be of interest to digital humanists in the
context of CTIR.

For each exemplar, the developer was asked to write a
single version of it in modern English. These were used
as queries during experimentation. The developers were in-
structed to choose a modern phrasing that would be a plausi-
ble starting point for a searcher interested in the exemplar.
Finally, topic authors wrote a description of the exemplar
that their query referred to as a basis for relevance judging.

This process raises at least two objectionable points. First,
in some sense, our topic development was done backwards
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from a more realistic scenario. Generating modern rendi-
tions of a known archaism is artificial. Second, with no “cor-
rect” way to write an archaic exemplar as a modern query,
subjectivity entered the process of query creation. However,
we argue that the first point – artificial order of operations
in query-building – is tolerable; developers were asked to
consider the overarching problem, and their expertise in the
field put them in a good position to handle this ambiguity.
As for the latitude in query expression, this is little differ-
ent than any other topic development, where an abstract
information need must be couched in a particular phrasing.

Developers created a total of 53 topics. Two topics were
later found to have zero highly relevant documents and were
removed. Five topics were chosen with uniform probability
to be used for model training. The remaining 46 topics were
used for testing.

Queries ranged in length from 3 to 23 words, with a me-
dian of 6 and mean 7.65 terms. Figure 1 shows that the Mor-
phAdorner dictionary provides good coverage of the queries,
with only six queries having more than one out-of-dictionary
term. Based on this, we believe that the simple dictionary-
based query is likely to perform well for these data.
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Figure 1: Length of Test Queries and each Query’s
Number of Out-of-dictionary Terms.

7.3 Relevance Judgments
Unfortunately, the topic authors were not available to

serve as relevance assessors. So four Ph.D. students in Me-
dieval Studies were hired to perform relevance judgments.
These students were all self-identified experts in early En-
glish. Assessors were shown the same topic development
guidelines that query authors had read. In addition, as-
sessors were given instructions on how they were to judge
document relevance. They then completed an initial trial of
25 judgments, after which they raised any questions before
moving on to the bulk of their work.

Judging was done on a three-point scale: 0=not relevant,
1=somewhat relevant, 2=relevant. Assessors were also al-
lowed to say “I don’t know,” though this option was never
used. In Section 8, all effectiveness measures except NDCG
treat judgments of 1 and 2 as relevant. NDCG leaves the
three-point scale intact.

The criteria for relevance in the context of CTIR are not
obvious. Judges were instructed to consult query-document
pairs and ask does the document contain language that in-
tentionally echoes the query? By intentionally, we did not
mean that the author needed to know his source. Instead,

he needed to know that he was using language that has the
history referenced by the query.

Novelty and document quality were not taken into account
during the judging process.

Pooling was conducted by running methods DICT, RM3,
CNAIVE, and CFB described in Table 1 over the queries
(with parameters chosen empirically) . These results were
then pooled at a depth of 50 documents per query per model,
yielding a total of 8,791 judgments.

Because our assessors were paid domain experts, we only
assigned one assessor per judgment, yielding more judg-
ments than multiple assessments per pair would allow. Nev-
ertheless, we wanted some sense of inter-rater reliability.
Thus we sampled 50 query-document pairs: 5 queries taken
uniformly from our 53, with 10 documents sampled uni-
formly from those documents that were in at least three of
our pools. All assessors rated these query-document pairs.
On the three-point relevance scale, this gave a Fleiss kappa
agreement of 0.638. Conflating ratings of 1 and 2 to a single
relevant class, increased kappa to 0.752. Both of these statis-
tics gave p < 0.001, suggesting that our assessors largely
agreed on the criteria for assigning relevance judgments.

8. EMPIRICAL EVALUATION
Because CTIR is largely an unstudied problem, defining a

reasonable baseline for comparing approaches is non-trivial.
We define three baselines, shown in the gray rows of Table
1. The run DICT is the simple dictionary lookup described
in Eq. 5. The USER run is in some sense an oracle con-
dition; relevance assessors were asked to cut and paste a
single, highly relevant passage from a document to form the
query verbatim. This text was then represented using the
sequential dependency variant of the Markov Random Field
model [22]. The USER run is thus not strictly compara-
ble to the others we report because it is based on explicit
feedback. But it isn’t a pure oracle condition since USER
queries stem from a single relevant document and are not
expanded in any way. USER queries are high-quality but
narrow.

8.1 Omitted Results
Due to space constraints, we do not report results from

several models because they were unsuccessful; we list them
here for completeness. As additional baselines, we used the
character n-gram model described in [8]. We also imple-
mented several ad hoc models based on soundex query trans-
formation (cf. [33]). These methods did not approach the
effectiveness of the simple DICT run, so we did not pursue
them further. Of course, this is not a defect in the ap-
proaches themselves. Rather it simply means that they did
not transfer from their original domains to CTIR. Finally,
standard Rocchio and BM25 pseudo-feedback were less suc-
cessful than the reported relevance models.

8.2 Model Effectiveness
Table 2 summarizes the outcomes of our experimental as-

sessment. Results are based on retrievals of 100 documents
per query. In the table, statistically significant changes via
a permutation test are shown as follows. 4: improvement
over DICT has p < 0.05, N: improvement over DICT has
p < 0.01, ↑: improvement over USER has p < 0.05, ⇑: im-
provement over USER has p < 0.01, ↓: decline wrt USER
has p < 0.05, ⇓: decline wrt USER has p < 0.01.
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Table 2: Summary of Retrieval Effectiveness. Statis-
tics are mean average precision (MAP), num-
ber of relevant retrieved (Rel Ret), R-precision
(Rprec) and normalized discounted cumulative gain
(NDCG).

Model MAP Rel Ret Rprec NDCG

DICT 0.1702↓ 542 0.1932↓ 0.2932⇓

USER 0.27934 554 0.29444 0.4606N

RM3 0.1753⇓ 532⇓ 0.195⇓ 0.2787⇓

SPELL 0.1316⇓ 521 0.1543⇓ 0.2175⇓

CNAIVE 0.1688↓ 551↓ 0.1961 0.2869⇓

CFB 0.3025N↑ 870N↑ 0.3143N↑ 0.4528N

A few results are unsurprising: The dictionary-based queries
(DICT) do seem like a reasonable baseline. The condition
with known relevant text as queries (USER) performs very
strongly. And in the bottom three rows, adding increasing
amounts of structure to our dictionary-orthography combi-
nations improves effectiveness.

The most obvious point of interest in Table 2 is the strong
performance by our orthographically informed feedback method,
CFB. Except for the semi-oracle USER run’s NDCG, CFB
outperforms all methods on all effectiveness measures.

By comparing CFB to DICT and RM3 we can see another
interesting result. Pseudo-relevance feedback helps when it
is used to alter a query by combining feedback and ortho-
graphic evidence via CFB. In contrast, standard feedback
did not improve over the simple dictionary method. It is
important to note that our implementation of RM3 inter-
polated the feedback model with the dictionary model; i.e.
RM3 it did not give up the query structure of the other mod-
els. Also, the RM3 run used a custom stoplist with words
added to the standard Indri stoplist to improve performance.

Figure 2 helps us assess the relationship between the two
highest-performing runs – USER and CFB. In Figure 2 we
see that both methods give higher MAP than the DICT run
on most queries. However, CFB is “safer” than the USER
run insofar as CFB’s queries whose effectiveness decline with
respect to DICT do so less than comparable declines seen
for USER. This is not surprising, as the USER run puts all
of the query burden on the words obtained from a single
relevant document. Thus USER is very good at retrieving
some relevant documents. But it does this at the cost of
overfitting the supplied relevant text. Not surprisingly, if
we remove the documents from which the judges extracted
the query text for USER, its MAP declines to 0.2096.

Though CFB performed well, Table 2 shows that using
spelling evidence is risky. The purely orthographic SPELL
model was significantly inferior to the simple dictionary lookup.
And CNAIVE saw a small, though not significant decline as
well. This suggests that there is information in orthographic
information, but that using it well is difficult.
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Figure 2: Query-by-Query Difference in MAP between

DICT and CFB (Gray) & USER (Blue). Each bar cor-

responds to one test query. Bar height is MAP under an

experimental condition minus MAP of DICT.

8.3 Feedback for CTIR, Further Analysis
The CFB feedback method aims to improve a simple DICT

query in two ways: by discovering candidate translations
that were not in the dictionary and by learning weights for
query terms. The formalism given in Section 6.4.2 dictates
how these goals are combined in CFB. But a logical ques-
tion is: which aspect – term discovery or term weighting –
is most responsible for the improvements over DICT seen in
Table 2? To pursue this question, we created two variants of
CFB that isolate these effects (at the expensive of becoming
heuristic in motivation). CFB-W reweights terms from the
dictionary query as Eq. 11 dictates but does not add any
query terms. Conversely, CFB-T adds all feedback terms
to the model that constitute “translations” according to Eq.
10. But in CFB-T, all terms from the dictionary receive a
weight of 1.0, while added terms are weighted at 0.5.

Table 3: Retrieval Effectiveness Measures for vari-
ants of CFB Feedback Method. Statistically signif-
icant changes via a permutation test are shown as
follows. H: decline wrt CFB has p < 0.01.

Model MAP Rel Ret Rprec NDCG

CFB-W 0.1603H 523H 0.1817H 0.2932H

CFB-T 0.3106 907 0.3176 0.4631

Table 3 suggests that the crucial mechanism for CFB is
its ability to discover new terms. If we disable this behavior
(yielding CFB-W) performance declines significantly. But if
we ignore the induced term weights of CFB (yielding CFB-
T) we actually see an increase in effectiveness.
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9. DISCUSSION AND FUTURE WORK
Our experiments suggest that methods for handling lan-

guage change have a strong effect on the success of the types
of queries studied in this paper. Without a canonical base-
line, it is difficult to say if our methods are performing“well.”
However, the MorphAdorner dictionary is an unusually large
and clean knowledge base by CLIR standards. Thus we ar-
gue that the DICT model gives a reasonable baseline.

To improve on this performance, it is logical to enlist or-
thographic evidence, since it often provides a clear path from
a modern term to its historical variants. But our hypothesis
that orthographic evidence can only help CTIR in a limited
way was borne out experimentally. If a term a is ortho-
graphically similar to m, that does not imply that a is a
good substitute for m in a CTIR query. But it is also the
case that if we fail to see orthographic similarity between a
and m, it is unlikely that we have a match that we should
trust without further corroboration.

We anticipated a benefit from using feedback to moderate
string similarity’s influence during retrieval. The strength
of the CFB model bears out this hypothesis. By constrain-
ing the domain of possible orthographic matches to those
in high-quality documents, we avoid the high false posi-
tive problem that the purely string-based approach such as
SPELLING encountered.

Several limitations of this study are worth noting. We
omitted discussion of the sensitivity of the parameters µ∗
and τ∗ because sweeps on our training queries showed lit-
tle interesting change. But the poor performance of the
CNAIVE model suggests that closer attention to parame-
terization would be helpful. More importantly, using only
five training queries limited our ability to assess parameter-
ization robustly.

Another limitation hinges on temporal diversity. Between
“archaic” and “modern” English there is a spectrum of ver-
naculars. Effective CTIR should retrieve documents across
this spectrum. But without a clear metric for assessing such
diversity, we have not reported our success in finding docu-
ments from diverse periods.

Finally, a fourth type of evidence could be used for CTIR:
translation models learned from parallel corpora. We built
such a model using Biblical translations, but found that the
high number of out-of-vocabulary query terms made its use
infeasible. Perhaps an approach based on the less restrictive
notion of comparable corpora will allow us to incorporate
such evidence. In future work we plan to pursue this.

Two other avenues will inform our future work on CTIR.
First, Table 3 suggests that our feedback model performs
well but not optimally. Though probabilistically convenient,
Eq. 11 is not an optimal way to combine dictionary, spelling
and feedback information. In future work we will pursue how
to exploit the strengths of CFB more fully.

Our second avenue for future work lies in expanding the
domains in which we study cross-temporal IR. This paper
has focused on book search. But techniques for handling
language change have a role to play in other types of IR. In
particular, social media such as microblogs see rapid shifts
in discursive conventions [7]. While the temporal dynamics
of relevance (e.g. [21]) have seen a good deal of attention
recently, the problem of temporality as an invitation for vo-
cabulary mismatch deserves increased scrutiny.

10. CONCLUSION
The growing opportunity for digitized book repositories

to impact peoples’ use of information suggests that lan-
guage evolution will be an increasingly important challenge
for modern IR. Without prompting, all four of the Medieval
Studies Ph.D. candidates who performed our relevance judg-
ments said that they wished that a system capable of cross-
temporal search were available to them.

In light of this change, this paper proposed techniques
for handling vocabulary mismatch due to temporal shifts in
language. From a conceptual standpoint, our contribution
entails a generic way of considering the use of texts (dictio-
naries, corpora, relevant documents) to inform CTIR. More
pragmatically, the paper’s main contribution is a novel feed-
back technique that combines several types of evidence to
improve cross-temporal retrieval.
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