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Abstract 

Based on the binary independence indexing model, we apply three new concepts for proba- 
bilistic document indexing from relevance feedback data: 

1. Abstraction from specific terms and documents, which overcomes the restriction of limited 
relevance information for parameter estimation. 

2. Flexibility of the representation, which allows the integration of new text analysis and 
knowledge-based methods in our approach as well as the consideration of more complex 
document structures or different types of terms (e.g. single words and noun phrases). 

3. Probabilistic learning or classification methods for the estimation of the indexing weights 
making better use of the available relevance information. 

We give experimental results for five test collections which show improvements over other in- 
dexing methods. 

1 Introduction 

Document indexing is the task of assigning terms to documents for retrieval purposes. In an early 
paper on probabilistic retrieval [Maron & Kuhns SO], an indexing model was developed based on the 

assumption that a document should be assigned those terms that are used by queries to which the 
document is relevant. With this model, the notion of weighted indexing (instead of binary indexing), 
that is the weighting of the index terms w.r.t. the document, was given a theoretical justification 
in terms of probabilities. In [Fuhr 89a], this approach is generalized to all models of probabilistic 
indexing by introducing the concept of “correctness” as the event to which the probabilities relate. 

The Maron and Kuhns model assumes that the probabilistic indexing weights for a document can 
be estimated on the basis of reIevance information from a number of queries w.r.t. the specific doc- 
ument. However, in real applications there is hardly ever enough relevance information for a specific 
document available in order to estimate the required probabilities. For this reason, retrospective 
experiments based on this model (or related ones) might show* its feasibility [Kwok 891 [Gordon 881, 
but are of little value with regard to real applications. The model described in [Kwok 861 over- 
comes this problem by regarding document components as units to which the index term weights 
relate to; however, experimental evaluations showed that this model is inferior to non-probabilistic 
indexing approaches [Kwok & Kuan 881. A different model for using probabilistic indexing weights 
in retrieval is described in [Robertson et al. 811 as the “2-Poisson-Independence” model, but also 
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had little success (mainly because of parameter estimation problems). In contrast to these results, 
the approaches developed in [Croft 811 [Croft 831 [Wang k Yao 891 h s ow improvements over binary 
indexing; however, these models lack an explicit notion of an event to which the probabilistic weights 
relate. 

In this paper, we present a radically different approach to;probabilistic indexing. We introduce 
the concept of “relevance description” as an abstraction from specific term-document relationships. 
As different term-document pairs may have the same relevance description, we overcome the prob- 
lems of parameter estimation mentioned above by estimating probabilities for relevance descriptions 
instead of specific term-document pairs. Furthermore, this concept is flexible w.r.t. the representa- 
tion of documents. For the computation of the indexing weights, we use probabilistic classification 
procedures instead of simple estimation schemes. 

In the following, we first give a brief introduction to the binary independence indexing model, 
which forms the theoretical justification for our probabilistic indexing weights. Then we describe 
the basic concepts and procedures of our indexing approach. Section 4 outlines the test setting and 
the parameters investigated in our experiments, followed by the presentation of the experimental 
results in section 5. 

2 The binary independence indexing model 

The binary independence indexing model described in the foIlowing is based on the indexing model 
from [Maron & Kuhns 603 (see also [E’uhr 89a]). 

Let Q= {31,g29&1.. .} denote the set’of queries, where a query xl, is regarded as being unique, 
that is, two requests submitted to an IR system at different times are always treated as different 
queries. The same approach is taken in the derivation of the “unified model” [Robertson et al. 821, 
where a single query Q~ is termed an “individual use”. With 12 = (&,&, &, . . .) denoting the set 
of documents in a collection, the event space of the BII model is Q x 0. As in any probabilistic 
model the probabilities relate to representations of documents andqueries instead to the objects 
itself (see [Fuhr 89b]), let Q = (ql,qz, qs, . . .) and D = {di, dz, da,. . .} denote the corresponding 
sets of representations of queries and documents. (In the unified model, the set of queries having 
the same query representation qk is called the “cless of similar uses”). In the case of the BII model, 
query representations are sets of terms. As a consequence, the BII model will yield the same ranking 
for two different queries which use the same set of terms. With T = (tr , . . . , t, ] as the set of index 
terms in our collection, the query representation of qk of a qnery qk is a subset qr C T. Below, we - 
will also use a binary vector Ic’L = (zkl,. . . , zk:,) instead of qz, where Zki = 1, if ti f Q:, and zki = 0 
otherwise. The document representation is not further specified in the BII model, and below we 
will show that this is a major advantage of this model. In the following, we will assume that there 
exists a set flm c T of terms which are to be given weights w .r.t. the document. For brevity, we 
will call dTm “the set of terms occurring in the document” in the following, although the model also 
can be applied in situations where the elements of dm are derived from the document text with the 
help of a dictionary or knowledge base (see e.g. [Fuhr 89a]), Let us further asSume that we have 
a binary relevance scale 31 = {R, ??} denoting relevant/non-relevant query-document relationships. 
Then each element (gk , c&) of the event space has associated with it the sets qz, dTm and a relevance 
judgement 1’km = r(b) &) E 8?. 

The BII model now seeks for an estimate of the probability P(RIqk, d,,,) = P(RIsk, dm) that a 
document with the representation d m will be judged relevant w-r-t. a query with the representation 
Qk = qr . Applying Bayes’ theorem, we first get 
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Here P(RJd,) is the probability that document d, will be judged relevant to an arbitrary 
request. P(z’klIR, d,,,) is the probability that d, will be relevant to a query with representation Zk, 
and P(Z, Idm) is the probability that such a query will be submitted to the system. 

Itegarding the restricted event space consisting of all documents with the same representation 
d, and all queries in the collection, first two independence assumptions are made: 

l The distribution of terms in all queries is independent: 

l The distribution of terms in all queries to which a document with representation d, is relevant 
is independent: 

n 

With these assumptions, (1) can be transformed into 

(2) 

Now we make an additional simplifying assumption that is also used in [Maron & Kuhns 601: 

l The relevance of a document with representation d, with respect to a query qk depends only 
on the terms from q;, and not on other terms. 

This assumption means that the last product in formula (2) has the value 1 and thus it can be 
omitted. We can transform the elements of the first product by using the relationship 

P(Zk. = lIR,dm) = P(Rlzki = 1,dm) = P(Rlti,d,) 
p(=k, = lldm) P(Rldm) WWrn) 

Here P(RJti, dm) is the probabilistic index term weight of ti w.r.t. d,, the probability that 
document d, will be judged relevant to an arbitrary query, given that it contains ti . From out model, 
it follows that cm should contain at least those terms from T for which P(Rlti, dm) # P(Rl&). 
Assuming that P(R[ti,d,) = P(Rld,) f or all ti 4 flm, we get the final BII formula 

In this form it is nearly impossible to apply the BII model, because there hardly will be enough 
relevance information available to estimate the probabilities P(Rlti, d,.,.,) for specific term-document 
pairs. All attempts in this direction are doomed to fail ([Maron 831 [Kwok 891). 



3 New indexing concepts 

The basic ideas for our new approach stem from the Darmstadt IIndexing Approach (DIA) [Fuhr 89a] 
[Biebricher et al. 881. Th is approach has been developed for wtomatic indexing with a prescribed 
indexing vocabulary. We will show how the concepts developed within the DIA can be applied to 
all kinds of probabilistic indexing. 

In the DIA, the indexing task is subdivided in a description step and a decision step. First, 
attribute values of the term ti, the document d, and their relationship are collected in the relevance 
descripiion z(l;, dm). 0 ur approach makes no additional assumptions about the choice of the at- 
tributes and the structure of 2. So the concrete definition of relevance descriptions can be adapted 
to the specific application context. Examples for possible elements of z are 

a dictionary information about ti, e.g. its inverse document frequency, 

l parameters describing d mr e.g. its length or the number of different terms in it, 

l information about the fomz of occurrence Of Li in d, (see [E’uhr 89a]), e.g. the parts of the 
document in which ti occurs (title vs. abstract), the within-document-frequency of ti in d,, or 
in the case of ii being a noun phrase, the word distance in d, between the first and the last 
component of ii. 

In the decision step, a probabilistic index term weight based on this data is assigned. This 
means that we estimate instead of P(Rlti’, d,) the probability P(Rtz(ti, d,)). In the former case, 
we would have to regard a single document d, with respect to all queries which contain ti in order to 
estimate P(RJt;, d,). N ow we regard the set of all query-document pairs in which the same relevance 
description x occurs. Here the probability P(Rl+(ti, dm)) is the probability that a document will 
be judged relevant to an arbitrary query, given that one of the document’s index terms which also 
occurs in the query has the relevance description x. 

There are two advantages from the introduction of the concept of relevance description: 

l By abstracting from specific document-term pairs, we do not need relevance information about 
the specific document d, or the specific term ti for the estimation of P(Rlz(ti, dm)). According 
to the definition of the relevance description, document-term pairs with different documents or 
terms can be mapped onto the same relevance description. For this reason we can use relevance 
information from other documents or even from queries Qk with ti $ qT for the estimation of 
P(RIx(ti,dm)), t 00. This is a major improvement over ‘other probabilistic IR models, which 
yield either document- or query-specific estimates. These models can only use the relevance 
information that is available for the specific docliment (query), and no information about other 
documents (queries) is considered by these models. In o)lr approach, the amount of relevance 
data that is available for the estimation of a specific indexing weight is not restricted by the 
number of queries for the specific document (or documenlts for the specific query) for which we 
have relevance information. In a system running an application, the amount of relevance data 
from which the indexing weights are computed will always increase and therefore improve the 
probability estimates. 

l Relevance descriptions can be defined for different forms of representation. Most other proba- 
bilistic.IR models are based on a specific form of representation of documents or queries, and 
for every new form of representation, a different model has to be developed. The independence 
of our approach from a specific form of representation offers the following possibilities: 

- The representations can be adapted to the amount of relevance information that is cur- 
rently available: The more data we have, the more detailed we can choose our represen- 
tations. 



- We can consider new forms of representations that are based on techniques from artificial 
intelligence or computational linguistics. Now the restricted view of regarding a document 
as a set of terms with multiple occurrences can be abandoned (some concepts for a more 
detailed document representation are described in [Fuhr 89a]). On the other hand, our 
approach provides a solid theoretical background and an easy-t-apply method for the 
effective integration of these new types of representation in IR. 

- We can develop relevance descriptions for different types of terms or documents. Several 
authors have investigated the benefit of using noun phrases in addition to single words as 
index terms [Salton et al. 751, [Croft 861, [S meaton SS], [Fagan 871, [Fagan 891. However, 
none of them could devise a theoretical basis for the computation of document-oriented 
probabilistic index term weights for this new type of terms. The probabilistic foundation 
of our approach gives us a kind of objective weighting scheme for all types of terms. In 
a similar way, one could differentiate between several types of documents that are stored 
in the game database. This possibility of handling heterogeneous document collections 
becomes important in new application areas of IR systems, e.g. in the office environment. 

In the decision step, estimates of the probabilistic index term weights P(Rlti, &.,.,I are computed. 
These estimates are derived from a learning example L c QxDx 32 of query-document pairs for which 
we have relevance judgements, so L = {(Q,, &I rkm)}. By forming relevance descriptions for the 
terms common to query and document for every query-document pair in L, we get a muIti-set of rele- 
vance descriptions with relevance judgements L” = [(z(ti, d,), rbm)lti E q:fidT, A(&,&, r-b,,,) E L]. 
This set with multiple occurrences of elements forms the basis for the estimation of the probabilistic 
index term weights. However, there is a minor problem with the definition of the event space in 
the probability estimation process: According to the definition of the BII model, a single event is 
a query-document pair, so all query-document pairs should be equiprobable. We will denote this 
event space by Esrr in the following. On the other hand, the definition of Lz suggests a different 
event space E, in which the triples (query, document, term) are equiprobable events. As different 
query-document pairs will have different numbers of relevance descriptions, it is obvious that the 
equiprobability assumption on L implies non-equiprobability on Lx. So there is an error in using E, 
instead of EBII. However, the choice of E, eases the process of probability estimation (see below), 
therefore we will regard both definitions in the following and investigate whether this difference has 
any influence on the experimental results. 

Following the concepts of other probabilistic IR models, we would estimate the probability 
P(RIz(ti, &I)) as the relative frequency from those elements of Lr that have the same relevance 
description (in the case of E,). (Attributes with continous values would have to be discretized for 
this purpose, see e.g. [Wang & Chiu 871). A s a simple example, assume that the relevance description 
consists of two elements defined as 

1, if ti occurs in the title of d, 
0, otherwise . 

22 = number of occurrences of ti in d,. 

Furthermore, assume that we have relevance information about two query-document pairs as 
shown in table 1. From this table, we can estimate P(R](O, 1)) = i by using Ez and P(RI(O, 1)) = f 
based on EBJ~ 

Now, the second important concept of the DIA comes into play: It is the task of an indexing 
function e(z(ti, dm)) to estimate the probabilities P(R]z(ti, dm)). A s indexing functions, different 
probabilistic classification (or learning) algorithms can be applied. The general advantage of these 
probabilistic algorithms over simple estimatcon from relative frequencies is that they yield better 
estimates, because they use additional (plausible) assumptions about the indexing function. 
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query document rkm term 
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t4 VW 

Table 1: Example for simple estimation of indexing weights 

Within the application of the DIA for indexing with a controlled vocabulary, we have investigated 
several probabilistic classification algorithms as indexing functions. (Most of these algorithms are 
restricted to a vector form I of the relevance description): 

l The so-called Boolean approach developed by Lustig [Beinke-Geiser et al. 861 exploits prior 
knowledge about the relationship between single elements of the relevance description z and 
the corresponding probability P(R(s) for the development of a discrete indexing function. 

l The probabilistic learning algorithm ID3 developed by Quinlan [Quinlan 861 seeks for signifi- 
cant components of Z that form a probabilistic classification tree [FaifJt 901. 

m By assuming only pair-wise dependencies among the components of S, one can apply the tree 
dependence model [Chow & Liu 68] [Rijsbergen 771 as indexing function [Tietze 891. 

l Using logistic regression [F’reeman 87’1 the indexing function yields e(Z) = mj, where a’ 

is a coefficient vector that is estimated based on the maximum likelihood method [Pfeifer 901. 

l In this paper, we will use least square polynomials (LSP) [Knorz 831 [F’uhr 89a] as indexing 
functions. This method is described in more detail in the following. 

For the LSP approach, we first have to choose the class of polynomials from which the indexing 
function is to be selected. Based on the relevance description in vector form 2, a polynomial structure 

has to be defined (where N denotes the number of dimensions of 5). Then our indexing function 
yields e(Z) = fl . G(Z), where a’ is the coefficient vector to be @imated. 

Let y(gk I &&> = ykm denote a class variable for each element of L with 

Ykm = 
1 ifrr-,,,=R 
0 else 

Then the coefficient vector a’ is estimated such that it minimizes the squared error 

E((y - fl . G(Z))“)- 

Here E( .) denotes the expectation based on a uniform distribution within E, or EBII, respectively. 
a’ can-be computed by solving the linear equation system [Fuhr 89a] 

E(v’-i?)Gi= E(v’.y). (4) 
As an approximation for the expectations, the corresponding arithmetic means from the learning 
sample are taken. The moment& matrix A4 which contains both sides of the equation system (4) is 
computed according to the underlying event space: 
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l In the case of EB~I, we have 

where G&, = v”((Z(t; , dm))- 

l For the event space E,, the matrix M, is computed as 

, 
M, = - 

A (tim 

The momenta1 matrix M can then’be solved to yield the coefficient vector a’. 
For most of the experiments described here, we used a relevance description of four elements and a 

polynomial structure u’(Z) of length five (i.e. an additional constant for a linear function). So we had 
to compute five coefficients al,. . . , uzg- Each of these parameters is estimated for a collection rather 
than a particular query term (as in conventional probabilistic retrieval), and is therefore based on 
much more evidence. In our experiments, the smallest learning sample L has about 400 elements. In 
comparison, in conventional probabilistic retrieval, a typical feedback query might be 20 terms long, 
and thus you must estimate 40 probabilistic parameters, each one based on perhaps 15 elements. 
On the other hand, our approach considers interdependencies between all the parameters, and other 
experiments [Knorz 831 [Fuhr 881 h ave shown that we need about 50-100 elements per parameter in 
order to achieve reliable estimates. 

4 Test setting 

Some experiments with a preliminary version of our approach in combination with controlled vocab- 
ulary indexing have been described in [F’uhr 88, pp. 146-1501. In this paper, we apply our approach 
to the task of free term indexing and compare it with the standard SMART indexing procedures as 
described in [Salton & Buckley 881. We use the same Pepresentation of queries and documents as 
the SMART approach here. For this reason, our evaluation should be regarded as a starting point 
for further experiments in which improved representations of documents (e.g. with noun phrases as 
index terms) are considered. 

For our experiments, we used the five experimental collections shown in table 2. In order to 
perform predictive experiments, the set of queries of each collection was split into halves. Because 
of the limited number of queries in our collections, a random sampling technique might have split 
the queries into two very different samples; therefore we used the number of relevant documents for 
a query as a criterion to get two disjoint, but similar query sets for each collection. Table 2 shows 
for both sets the number of queries and the average number of terms as well as the average number 
of relevant documents per query. F’rom these two query sets, we used one for the estimation of the 
probabilistic indexing function, which is called learning sample in the following. With the second 
set, called test sample below, only predictive retrieval runs were performed, that is, no relevance 
information from this set has been used for the estimation of the indexing function. In additional 
retrospective experiments the learning sample was used for retrieval runs, too. 

Besides the choice of the query set, we also had to decide which documents should be considered 
in the learning set L. In our experimentsr we investigated two possibilities: 

l Full relevance information: All documents retrieved for the queries from the learning sample 
are considered. A document dm is retrieved with respect to a query Qk if cm f’~ qz # 0. 
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#documents 3204 1460 -iz%y 12684 11429 
#learning queries 26 38 113 39 47 
#test queries 26 38 II2 38 46 
avg. length learning 11.1 25.7 9.1 15.8 7.2 
avg. length test 10.5 19.9 9.2 15.8 7.1 
avg. r&i. learning 14.8 39.8 8.3 33.2 22.8 
avg. rels. test 15.8 42.1 8.1 32.8 22.0 

[ collection i CACM 1 CISI 1 CRAN 1 INSPEC 1 NPL 

Table 2: Collections used for experiments 

l Top 15 documents: Only the top 15 documents for each query (by applying the retrieval 
function eilid1 with tJ x idf indexing weights, see below) are included in L. 

The first variant follows from the BII model which is based on the event space IQ1 x 101; the additional 
assumptions restrict this event space to a set of all query-document pairs w?;ich have at least one 
term in common. The second case is more realistic for applications, because mostly a user will only 
judge the top ranking documents. 

For the development of the LSP indexing functions, we first had to define a relevance description 
Z. Here we consider only information that is also used in the standard SMART indexing procedures 
[Salton & Buckley 881, which are based on the following parameters: 

if?n;: within-document frequency (wdf) of ii in d,. 
ma2 ifm : maximum wdf tfmi of all terms t; E dTm. 

Tli : number of documents in which ti occurs. 

IDI: number of documents in the collection. 

I43 number of different terms in 6,. 

With these parameters, we defined the components of the relevance description: 

Xl = t.frni 

x2 = l/max tfm 

x3 = w~i/lm 

X4 = log 143 

Based on this relevance description, three different indexing functions er;, eg and etliq were 
developed by defining the poiynomial structures 

t7L = (bl,Z2,=3rZ4) 

c? = (L~1,~2,~3,~4,~ ~,~1~2,~1~3,~1~4,~ 3, x2x3,x254,x~,53x4,3~) 

Gf idf = (l,x1z223,21x2,23,x4) 

So we have the indexing functions 
eL = a0 + al tfrni + az/maa:V, + a3 log(ni/lLll> + a4 log ld$$I, 

eg = . a0 -I al tfmi +az/maxtfm + a3 log(W/lDI)+a4 log(&I 

+as(ifd )’ + a6 tfmi /mar ffm + a7 tfrni . log(%/[Q() 

+a8 tfrni . Wlfl, I) + a9/(max tfmJ2 
+alO/max~fm . lOg(ni/lDJ) + all/m= tfm . log(ldT, I> 

+a12(h3(~i/101))2 + a13 bdni/lD]) 1s Ifl, I + e4(log IdT,l)2, 
etfia = a0 I- al tfrni log(%/lDI)/ 77203: tfm + a2 ffmi/maX tfm + a3 lOg(ni/lDl) + a4 logldT, 1. 
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eL is a linear function of Z, while eg is a so-called “complete quadratic polynomial” of 2. elIi@ 
was defined in order to get a function similar to the best SMART indexing function called tf x idf 
[Salton & Buckley 881. 

The retrieval results for the LSP indexing functions are compared with those of the tf x idf 
indexing function described in the following (for further details, see [Salton & Buckley 883). In con- 
trast to our indexing method, the SMART approach does not consider any relevance information for 
the computation of the indexing weights. With the parameters as defined above, first a preliminary 
indexing weight CX~~ for each term in a document is computed: 

a,i = (o.5+o.5m~;~ 
m 

) dog& 
- 

These weights are further normalized by the factor 

So the final indexing weight for a term ti in a document d,,, according to the df x idf formula 
yields 

ami 
umi =-. 

Wm 

In the retrieval process, the indexing weights u,; are used by the retrieval function e(~k, d,) 
which computes a relevance value for each query-document pair. Then the documents are ranked by 
decreasing relevance values. In our experiments, we only considered the scalar product as retrieval 
function with 

Here ch; denotes the weight of the term ti with respect to the query qt. As mentioned in 
[Wong & Yao 891, this retrieval function can be given a utility theoretic interpretation in the case 
of probabilistic indexing weights umi: The weight cki can be regarded as the utility of the term ti, 
and the retrieval function gives the expected utility of the document with respect to the query. 

For the computation of the query term weights c~i, three different possibilities were considered 
in our experiments. In the following, we denote these weighting schemes as subscript of the retrieval 
function: 

l &in: Binary query term weights are used with cbi = 1 for all ti E q:. 

l elj: The query terms weight cl;i is set equal to the number of occurrences tfci of ti in the query 
formulation qk. 

l ei~id~: The query term weights are computed in the same way as the tf x idf document term 
weight, except that the within-query frequencies tfk; (and maxtfk) are regarded instead of the 
within-document frequencies. 

For evaluation, the standard SMART evaluation routines were taken, and then the average 
precision value at the recall points 0.25, 0.50 and 0.75 is considered as global retrieval measure. 
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5 Experimental results 

With the test parameters described before, we performed a number of retrieval runs according 
to a factorial test plan; that is, we tested (almost) all possible parameter combinations. In the 
following, we will present the experimental results grouped by lthe different parameters, in order to 
show the influence of each parameter on the final retrieval quajity. Unless mentioned otherwise, all 
probabilistic indexing functions are based on the event space E=. 

Learning vs. test sample 

Before presenting results of predictive retrieval runs for probabilistic indexing, we want to discuss 
the sampling problem: Our approach requires a representative sample of the collection as learning 
sample. With the limited number of queries available in our aollections, we had to split the query 
sets into similar halves instead. Now we want to investigate how similar these two samples really 
are. It is obvious that this is still an open research problem in IR: having experimental results for 
a collection A, for which other collections is A representative (so that one can conclude that the 
experimental results hold for this set of collections)? 

r 
collection learn. test reIative 

sample sample d jfference 
CACM 0.3046 0.2963 - 2.1% 
CISI ci. 1358 0.2099 -k 54.6% 
CRAN 0.3634 0.3816 + 5.0% 
INSPEC 0.2214 0.2489 + 12.4% 
NPL 0.1505 0.2138 -5 42.1% 

Table 3: Average precision values for learning and test samples (etfie, tf x idf) 

As a very simple measure of the similarity of two collections, we use the results of the retrieval 
function &j;dj in combination with tf x idf indexing weights here. Table 3 shows the average 
precision values for the learning and the test samples of each collection, and the relative difference 
between the two results. It can be seen that we have the be& sampling for the CACM collection, 
and for the CRAN and INSPEC collection, the two query sets also seem to be quite similar. In 
the case of the CISI collection, the difference is much larger (see also the average query lengths in 
table 2); in the following, we will see that this may account for some strange results that we got 
for the CISI collection. We have the biggest difference for the NPL collection; however, as claimed 
in [Salton & Buckley 881, the combination of ettiu and tf x idf is not appropriate for the NPL 
collection, since terms occur at most once in the queries of this collection, and are possibly from a 
controlled vocabulary. Therefore, our measure of similarity may be invalid for the NPL collection. 
This assumption is also supported by the results presented in the following. 

Documents in the learning set 

Using either the top 15 ranked documents or all documents retrieved as elements of L, we show 
the retrieval results for the different indexing functions in tables 4 and 5. It can be seen that the 
differences in the retrieval resuIts caused by the choice of L are the smallest for the indexing function 
Ed; this may be due to the fact that the estimation of the coefficient vector a’ is less crucial for Ed 
than for eg and etjia, since Ed is the only linear function. With the exception of the CISI collection, 
most of the results for the indexing functions based on the top 15 documents are worse than those 



based on full relevance information. On the other hand, the loss in retrieval quality by restricting 
to the top 15 documents is not too large to make our approach infeasible for practical applications. 
Following this point of view, we will discuss only results of indexing functions based on the top 15 
ranked documents in the following. 

Table 4: Retrieval results using either the top 15 ranked documents or full relevance information * 
(learning sample, ebin, E,) 

eL 
collection full 1 top 

eQ 
full 1 top 

etjigf 
full 1 top 

CACM 0.3078 0.3003 0.3669 0.3540 0.3352 0.3234 
- 2.4% - 3.5% - 3.5% 

CISI 0.1378 0.1677 0.1542 0.1918 0.1406 0.1711 
+ 21.7% + 24.4% + 21.7% 

CRAN 0.4157 0.4252 0.4062 0.3924 0.3895 0.3749 
+2.3% - 3.4% - 3.7% 

INSPEC 0.2316 0.2286 0.2449 0.2108 0.2031 0.1884 
- 1.3% - 13.9% - 7.2% 

NPL 0.2391 0.2777 0.2068 0.1745 0.2709 0.1934 
-t 16.1% - 15.6% - 28.6% 

Table 5: Retrieval results using either the top 15 ranked documents or full relevance information 
(test sample, @bin, &) ‘I 

Event space 

Tables 6 and 7 show the difference in the retrieval quality by using either the event space E, or EBII. 
For eL, the differences are negligible, while the other indexing functions are again more sensitive to 
small changes in the learning samples. In general, one can say that the choice of the event space is 
not crucial for the development of probabilistic indexing functions. 
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eL ccl eyi& 

collection Et 1 EBII Es 1 EBI,I Et 1 Esrr 
CACM 0.3024 0.3117 0.3187 0.3001 0.3167 O&3097 

+ 3.1% - 5.8% - 2.2% 
CISI 0.1159 0.1142 0.1231 0.1192 0.1180 0.1166 

- 1.5% - 3.2% - 1.2% 
CRAN 0.3786 0.3764 0.3386 0.3279 0.3372 0.3251 

- 0.6% - 3.2% - 3.6% 
INSPEC 0.2033 0.2063 0.1847 0.1797 0.2105 0.2021 

+ 1.5% - 2.7% - 4.00/o 
NPL 0.1705 0.1655 0.1285 0.1205 0.1237 0.1184 

- 2.9% - 6.2% - 4.3% 

Table 6: Retrieval results using either E, or Es11 (learning sample, top, ebin) 

eL eQ eUW 
collection J% 1 EBII & 1 Eerr E, 1 EEII 

CACM 0.3003 0.2980 0.3540 0.3068 0.3234 0.3252 
-0.8% - 13.3% + 0.6% 

CISI ’ 0.1677 0.1606 0.1918 0.1824 0.1711 0.1599 
- 4.2% - 4.9% - 6.5% 

CRAN 0.4252 0.4196 0.3924 0.3710 0.3749 0.3514 
- 1.3% - 5.5% - 6.3% 

INSPEC 0.2286 0.2318 0.2108 0.2049 0.1884 0.1764 
+ 1.4% - 2.8% - 6.4% 

NFL 0.2777 0.2743 0.1745 0.1644 0.1934 0.1843 
- 1.2% - 5.8% - 4.7% 

Table 7: Retrieval results using either E, or EBJI (test sample, top, @bin) 

Indexing functions 

In tables 8 and 9, we compare the retrieval results of the probabilistic indexing functions with those 
of the tf x idf formula. At first glance, these results seem to be inconsistent: With the learning 
samples, there is a different indexing function for each collection which yields the best retrieval 
results. We would expect that eg always performs better than eL here: Since eg contains all the 
parameters of eL plus all quadratic combinations of elements of 5, it can be adapted closer to the 
learning sample. As this assumption does not hold for three of the five collections, the deviations 
between the theoretical model and our experiments, namely the choice of the retrieval function, 
should be considered in further experiments. Furthermore, we should investigate the influence of 
the independence assumptions of our model on these results. 

Looking ‘at the test samples, we get more uniform results: For three of the five collections 
et yields the best retrieval results or all indexing functions considered. The CISI and the CACM 
collections behave differently, and for both collections the similarity between learning and test sample 
may be the reason: With the CISI collection, the results for the probabilistic indexing functions in 
comparison to the tf x idf formula are better for the test sample than for the learning sample. In the 
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collection f tf x idf 1 I 0 widl 
CACM 1 0.2604 1 0.,“:24 1 O.&B7 1 0.3167 

+ 16.1% + 22.4% -t 21.6% 
CISI 0.1188 0.1159 0.1231 0.1180 

- 2.4% + 3.6% - 0.7% 
CRAN 0.3567 0.3786 0.3386 0.3372 

+ 6.1% - 5.1% -.5.5% 
INSPEC 0.1706 0.2033 0.1847 0.2105 

NPL 
+ 19.2% + 8.3% + 23.4% 

0.1580 0.1705 0.1285 0.1237 
+ 7.9% - 18.7% - 21.7% 

Table 8: Probabilistic indexing functions vs. tf x idf formula (learning sample, top, &, .&in) 

Table 9: Probabilistic indexing functions vs. tf x idf formula (test sample, top, &, @bin) 

case of the CACM collection, the better performance of eg (in comparison to eL) can be explained 
by the small difference between learning and test sample. Here we get good estimates for the larger 
number of parameters of eg . With the other collections, the (relatively) small learning samples yield 
only good estimates for the indexing function with the lowest number of parameters and a linear 
structure, namely Ed. In the case of etji4/, we have the same number of parameters as for eL, but 
the elements of the polynomial structure Gtiiq are strongly dependent on each other, which makes 
this function rather sensitive to differences between learning and test sample. So, with the size of 
the collections available, only Ed seems to be appropriate. 

Comparing the results of the probabilistic indexing functions with those of the tf x ia’f function, 
one can see that the probabilistic functions outperform the SMART function in most cases. 

Retrieval functions 

If one is interested in good retrieval results, the comparison of indexing functions by using a simple 
retrieval function like pbin may not be appropriate. Table 10 shows the results for the indexing 
function er, in combination with the three retrieval functions @bin, etf and @via. It can be seen 
that ey yields the best results among the retrieval functions (only for the CACM collection evil is 
slightly better). As et/ performs better than @bin, the information about the within-query frequency 
of the search terms seems to be useful in consideration with probabilistic document indexing. This 



result confirms the utility-theoretic justification of linear retrieval functions. On the other hand, 
there is no improvement by using eqia instead of pu for the probabilistic indexing weights: This 
is plausible, since the information about the inverse document frequency of the terms has been 
considered already in the document indexing process. 

tf x idf 1 eL 

f’l 
O%il63 

@bin I 

0.3003 O&l0 
+ 1.3% + 8.3% 

0.2099 0.1677 0.2169 
- 20.1% + 3.3% 

0.3816 0.4252 0.4280 
+ 11.4% + 12.2% 

0.2489 0.2286 0.2583 
- 8.2% + 3.8% 

0.2138 0.2777 0.2777 
+ 29.9% + 29.9% 

U’I 
of3;86 

+ 10.9% 
0.2089 
- 0.5% 
0.3929 
+ 3.0% 
0.2491 
+ 0.1% 
0.2354 

+ 10.1% 

Table 10: Comparison of different retrieval functions (test sample, top, E,) 

The retrieval results for the probabilistic indexing functions are compared with those of the tf x idf 
indexing weights and the etjidf retrieval function. In [Salton & Buckley 881, this combination proves 
to be - more or less - the best SMART indexing and retrieval method. The comparison of this method 
with Ed in combination with err shows that the probabilistic indexing function yields better retrieval 
results for all collections. This finding is not surprising: The SMART approach offers a general 
indexing function which is applicable to a broad range of collections, whereas our approach can be 
adapted to each specific collection. On the other hand, the development of probabilistic indexing 
function requires learning data which has to be collected from the running retrieval system, but the 
SMART indexing functions can be applied without having any relevance information at all. For this 
reason, with regard to applications, the two approaches are complementing each other: When a new 
collection is set up, first the SMART approach should be applied and relevance information should 
be collected. After a while, when there is enough learning data available, the probabilistic approach 
can be applied. As more and more relevance information is collected, the probabilistic indexing can 
be further improved by choosing more detailed relevance descriptions and more complex indexing 
functions (polynomial structures). 

6 Conclusions 

In this paper, we have devised a new probabilistic indexing approach which is feasible for real 
applications. The major concepts of our approach are the following: 

l Definition of a probabilistic indexing model in terms of the BII model: In contrast to non- 
probabilistic indexing models (like e.g. [Salton & Buckley 881) or earlier probabilistic models 
[Croft- 8 11, th e indexing weights of the BII model have a clear notion as probabilities in a 
well-defined event space. For retrospective experiments, the estimation of these probabilistic 
indexing weights is trivial. 

l Abstraction from specific term-document pairs by definition of relevance descriptions: Unlike 
many other probabilistic IR models, the probabilistic parameters do not relate to a specific 
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document or query. This feature overcomes the restriction of limited relevance information 
that is inherent to other models, e.g. by regarding only relevance judgements with respect to 
the current request. Our approach can be regarded as a long-term learning method (similar 
approaches have been investigated in vu & Mizuno 881 and [F’uhr 89c]) which complements the 
short-term learning method of relevance weighting of search terms. For the latter problem, the 
retrieval-with-probabilistic-indexing (RPI) model [Fuhr 89a] has been developed. This model 
allows to distinguish between two queries Q,, gz with gr = qz by regarding query-specific 
relevance feedback information (similar to model 3 in [Robertson et al. 821). Consequently, 
the query representation of the RPI model is a pair q~ = ($, Q:), where qi denotes a set of 
documents with relevance judgements w.r.t. qk. 

l Flexibility of the form of representation of term-document relationships in relevance descrip- 
tions: While other probabilistic models relate to specific forms of representation (which is also 
a reason for the large number of models published), our approach can be easily adapted to 
new forms of representation. This is very important for new text analysis and knowledge-based 
methods, which have not been considered by probabilistic models yet. Now we have devised 
an easy-to-apply model for the integration of these methods in IR systems. 

l Probabilistic learning (or classification) methods as indexing functions instead of simple pa- 
rameter estimation method: This way, we can make better use of the available learning data, 
and we can choose the complexity of the indexing function according to the size of the learning 
sample. 

The experimental results indicate that our approach can be applied in running IR systems and 
that it is superior to other indexing methods. Currently, the size of the available test collections 
puts some difficulties on the testing of the probabilistic indexing approach, as the results for the 
nonlinear indexing functions show. In contrast to other probabilistic models, this problem can be 
negIected in real applications, as the learning sample size is a function of the total number of queries 
with relevance judgements available. Furthermore, we have shown that the restriction of the learning 
sample to the top ranking documents is not a serious impediment for the applicability of our method. 

With the concepts described in this paper, we have given a framework for the development of 
probabilistic indexing functions. Besides the investigation of different probabilistic learning and 
classification methods for the development of indexing ,functions, the consideration of improved 
document representations wili be a prospective field of research. 
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