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Two methods are given to improve weighting schemes by using relevance information of a set of
queries. The first method is to estimate parameter values of two independence models in information
retrieval --- the binary independence model and the non-binary independence model. The parameters
estimated here are used to calculate optimal weights for terms in a different set of queries. Performance of
this estimation is compared to the inverse document frequency method, the cosine measure, and the statistical
similarity measure. The second method is to learn optimal weights of the non-binary independence model
adaptively by a learning formula. Experiments are performed on three different document collections CISI,
MEDLARS, and CRN4NUL for both methods, and results are reported. Both methods show improvements
compared to the existing weighting schemes. Experimental results show that the second method gives
slightly better performance than the first one, and has simpler implementation.

1. Introduction

In information retrieval systems, it is common to compute a similarity between a query and a docu-
ment for retrieval of documents, Many methods of calculating similarities have been prescnted. Two well-
known methods arc the inverse document frequency method [Spar] and the cosine measure [SaMc]. Both
methods are simple and intuitive. The inverse document frequency method assigns a higher weight to a term
which occurs in few documents than a term in many documents. The similarity measure between a docu-
ment and a query is simply lhe sum of the weights of the query terms in the document. The cosine measure
is the cosine of the angle between the query and the document when they are represented as vectors, In spite
of their intuitive appeal, they can not ensure optimality in retrieval.

The binary indecpendence model [YuSa)l[RoSp] and the non-binary independence model{Yule] are
theoretical models which have been proposed to guarantee optimal retrieval. Optimality here means that a
document with higher probability of relevance to a query is assigned a higher similarity than a document
with lower probability of relevance. These two models are theoretical because they suppose a priori
knowledge about some parameters used in calculation of similarities.

In this paper, the parameter values of these two independence models are estimated from document
and term frequencies of terms. The estimation method of the parameter values is discussed and the perfor-
mances of the estimated independence models are compared to that of the inverse document frequency
method, the cosine measure, and the method which has been recently reported {(WoYa] and called the statisti-
cal similarity measure. In section 2, outlines of two independence models are given. In section 3, we discuss
the estimation method of the parameters, and introduce some constraints which should be satisfied by the
estimated parameter values and the weighting functions derived from the parameters. The estimated indepen-
dence models are applied to three different document collections and the performances are shown in section
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4. In section 5, motivations of a learning schemc are descrided. In scction 6, the l'curning scheme is given
and its properties are discussed. In section 7, experimental results of the second method are given, The con-
clusions of the two methods are given in section &.

2. Two Independence Models

2.1. Binary Independence Model
The binary independence model|RoSpl{YuSa] ensures the optimality of retrieval described below.

Let p(R|D;) be the probability that a document DJ; is relevant to the query and 1(Q,D;) be the similarity
between a query Q and a document D;, where "R" in p(R | D;, stands for "relevance”. Then the foliowing
condition is satisfied by the binary independence riodel.

F(Q.D0;) > f(2.D)) «— p(R|D;) > p(R|Dy)

The binary independence model makes the following two assumptions.

(1) Binary assumption : All document vectors are binary vectors. In other words, each element d;; is 0 or
1. O means the absence of the term T; in document D; and 1 means the presence of the term T; in
document D;.

(2) Independence assumption : All terms are statistically independent within the relevant document set and
within the irrelevant document set.

Based on the above two assumptions, the weight assigned to term 7; is given by [RoSp]

J _ log J
I—Qj
where p; is the probability that a relevant document has the term 7; and g; is the probability that an
irrelevant document has the term T;. For a query QQ having the following terms,
Q=T Te2, " Tu)

and for a document D; = (d;y, d;3, * -+ , dpe ) the similarity between the two vectors is

2.1

wi(T,) = log 14
/

!
sim(@.Di) = Y din-wi(Ten)s

n=l
where dy, is 0 or 1 because of the binary assumption.
In deriving the weighting function (2.1), we suppose a priori knowledge of p; and ¢;. These probabil-

ity values are unknown in advance under ordinary circumstances. Our aim is to estimate p; and ¢; from
some other parameters which are easily obtainable.

2.2. Non-Binary Independence Model

In the non-binary independence model, the independence assumption in the previous section is retained
while the binary assumption is discarded. In other words, we take into account the term frequency of each
term in each document. Then the optimal weight of a term 7; with frequency of occurrences «;; in a docu-
ment IJ; is calculated by the following formula[YulLe].

PUL=dyIR) o pUf=0IR) 22)
pf=d; 1) puf=01r)

where p(tf=d;|R) is the probability that a relevant document has d; occurrences of the term 7T, and
p(tf=d;; 1) represents the probability that an irrelevant document has &,; occurrences of the term 7;. "R" and
"I" stand for "relevance” and "irrelevance", respectively. p(tf=0|R) and p(tf=0{l) are the probabilities with O
occurrence of the term. For a query

wa(1;,d;;) = log

Q = (Te1;Th2ee el wa)
and a document

D; = (d;,dia, * " diy)
the similarity between @ and D; is

!
sim(Q.,D;) = X840 W iTin din)

n=l

where 8, is one when dy, 20, and zero when d,,=0.
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Again the probabilities p(if=4;;[R) and p(tf=dj;|I) are usually unknown in advance. In addition to the
estimation of p; and g;, the probabilities p(tf=d;;{R) and p(tf=d;;|I) are estimated from another available
parameter in this paper.

3. Parameter Estimation of Two Independence Models

In order to estimate the probability values of the two independence models described in 2.2 and 2.3,
we suppose that the probability values are correlated with document frequencies. Document frequency n; is
the number of documents which have term T;. It seems to be 2 reasonable assumption that the probability
values of a term T increases with its document frequency #;.

Since document frequency n; is a parameter which is easily obtainable, it becomes easy to predict the
probability values in advance if a simple relationship between the probability values and document frequen-
cies does exist.

An attempt to estimate parameters for the binary independence model has been made before[CrHa].
The estimation method given below is not only for the binary model but also for the non-binary model, and
is more elaborate than the previous attempt.

3.1, Parameter Estimation of Binary Independence Model

Hypothesis I The probability values p; and g, in (2.1) are lincarly correlated with the document fre-
quency n; of term 7;. In other words, there exist linear functions £P | and £ such that

pj = EP (n}), q; = £Q(n;).

Basing on the hypothesis I, we try to {ind the functions EP; and EQ, by the following steps.

Preconditions: We have a collection of documents D and a set of queries Q. For each query of Q, the
set of relevant documents is known beforehand.

Step 1 [Partition of queries] Divide a set of queries Q into two sets of queries (O and Q, by some
criterion. The query set (2 is used to estimate the probability values p; and ¢q; from the document frequency
n;, while O, is used to evalsate the performance of the estimated binary independence model. The following
criterion is used to partition  into ¢, and @, when it is applicable.

.criterionl:
Divide Q in such a way that each term of each query in @ is contained in some query of (.

If criterion 1 can not be satisfied by the queries in the collections, then use the following second criterion.

criterion2:
According to the empirical rule(the 2/3, 1/3 split)[Brei], @; should contain 2/3 of all querics and @,
should contain the remaining 1/3 of queries.

Siep 2 : [Data Plot] Count n;(a document frequency),r; (the number of relevant documents having
term 7}, and s, (the number of irrelevant documents having term 77;) for each term 15 of each query in Q.
Plot the points (n;,r;/R) and{n;,s;/I) in each scattergram, where R is the total number of relevant documents
and 1 is the total number of irrelevant documents. For a document frequency which has more than one
corresponding r;/R (or 5;/I), calculate their arithmetic mean and plot it. Having done this, we obtain two
scattergrams, one for EP | and the other for EQ ;.

Step 3 : [Estimation of EP| and EQ ] Suppose that EP; and EQ, are linear functions of document
frequencies, that is to say,

EP(n;)=a + bn; ,
EQl(nj)=c +dﬂj .

Then calculate the regression coeflicients a,b,c, and & by solving the following normal equations.

Ng r; No Ng r; No No )

E-k— = aNg+bY n; Enj—R—- = aan+ban

Jj=1 j=l J=1 i=1 j=i
for a and b, and

No 5; Ng No s; Ng No )

T =cNotdXn;  Tnjp =cXnrdyn;

j= i=1 i=t i=t j=1
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for ¢ and d, where Ny is the number of data points in the scattergrams obtained in step 2. Standard crror of
estimate s,_.f, and s,?, are-catculated by the formaula,

»
H

53 = —-—--—-z[—'~(.n +bn )
J=l

sE = N.:—' E[—-'-—(.,mn Nk

Step 4 : [Modification of EP and EQ,] We obtain the estimations of EP; and EQ, in the previous
step. ‘These estimations may be crude and have to be refined by some rules, because under some situations
enough data may not be available to make accurale estimations. The constraints defined below are from rea-
sonable assumptions about probabilities and weighting functions.

(AQ) EP,; and EQ, should be non-negative increasing functions of document frequencies.

(A1) At the total number of documents ¥, EP; and EQ; must be one,

(A2) A weighling function derived from EP; and EQ; should be a decreasing function of document fre-

quencies.
From the constraint AQ, we get the first condition for the regression coefficients a,b,c, and d as follows.
a0, b>0, c=20, d>0 3.1

From the constraint Al, the second condition satisfied by the regression coefficients is obtaincd.

EP(N)=a+bN =1, EQ(N)=c+dN = 1. (3.2)

The estimated weighting funclion of the binary independence model is
a-+bn ¢ +dn
W = ] - .
(n) o8 1—a-bn log 1—c —dn

Calculating the derivative of EW (n), we get the sufficient conditions for the regression coefficients {0 satisfy
the constraint A2 as follows.

a(l a)

£ ('d_“ ) y>(a—cy? (3.3)

We have to pay attention to the fact that the condition (3.3) is not a necessary but sufflicient condition, there-
fore we may disregard this condition as far as we make sure that EW (n) is a decreasing function in the
range of concern (Q<n<N).

Step 5 & [Evaluation of the estimations] Neasure the performance of the estimated binary indepen-
dence model in terms of recall and precision by using the query set Q.

Recall and precision are defined by

d>b,  (b-d)

the nwnber of relevant documents retrieved
the total number of relevamt documenis
the number of relevant documents reirieved
the number of documents retrieved

Recall =

Precision =

A weight of a term T; in a query Q@ is calculated by the estimated weighting function obtained in the step 3
and step 4 as follows.

Epl(nj) og EQ:(",’)

1-EP ((n;) 1-£Q (n,)

where n; is a document frequency of a term T;. In order to evaluate performance of the estimated binary
indepcndence model, the results of retrieval are compared to the inverse document frequency method, the
cosine measure, and the statistical similarity measure.

wi(T;) = EW(n;) = log

3.2. Parameter Estimation of Non-Binary Independence Model

11ypothesis II The probability values p (¢f =:d;; [R) and p(tf = L 14) in (2.2) are correlated with docu-
ment frequency #; and term frequency d;;. In other words, therc exist some linear functions EF,; and EQ,

such that
p(f =dy |R) = EP(n;.d;),
pf=dill)y=LQyn;dy)
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Then we try to estimate £P, and £Q, by the following steps.
Preconditions and step 1 are the same as in 3.1,

Step 2 : [ Plot of Dataj Count n;, r;(the number of relevant documents which have term T; of term
frequency t), and s; (the number of irrelevant documents which have term T; of term frequency t) for each
term T; of each query in the query set (2,. Plot the points (n;,r;,/R), and (n;,s;,/1). For a document fre-
quency and a term frequency which have more than one corresponding r; /R ( or 5;/ ), calculate their arith-
metic mean and plot it. Having done this, we obtain a number of scattergrams, each of which shows the
relation of n; to r;i /R (or 54/} of the term frequency t.

Step 3 : [Estimations of EP 5 and EQ,] Based on the scautergrams obtained in step 2, estimate EP 5 and
EQ, by the linear regression.

LP y(n;,t) = a;+b;n;
EQz(ﬂj,() = C,+d,ﬂj
where t is a term frequency ranging from 1 to F, and F is the maximum number of a term frequency. Each

set of regression coefficients a,, b;, ¢,, and 4, are calculated by the same kind of normal equations in step 3
of 3.1.

Step 4 : [Modifications of EP, and EQ,] EP,’s and EQ,’s obtained in step 3 may not be accurate
because we do not have enough data to make accurate estimations under usual circumstances. Therefore we
need the step to compensate the scarcity of data in order to make the estimations more accurate. As in the
step 4 of 3.1, we set up some constraints which are supposed to be satisfied by EPf,'s and £Q,'s. Using the
constraints, we modify the regression coeflicients a,, b,, ¢,, and d,.

(B0O) EP,’s and EQ,’s are non-negative increasing functions of document frequencies.
{B1) Sum of EP4's is equal to EP4, and sum of EQ,’s is equal to EQZ . That is to say,
F F
EPy(n) = 3 EP y(n,1), EQ(n)= X EQa(n ).
=1 1=1
where F is the maximum number of term frequencies.
(B2) A term of low term frequency is usually more common than a term of high term {requency. In other
words,
EP 5(n 0)Y<EP (n t-1), EQo(n 0 )y<EQ (01 —1), (£ >1).
(B3) Weighting functions derived from EP,'s and E£Q,’s should be decreasing functions of document fre-
quencies,
From the rule BO, B1, and B2, the following conditions for the regression coefficients are derived,

a,20, 4,50, ¢,20, d,>0 3.4)
F F F F
a=%a,  b=3b c=Yc d=3d, 3.5)
=1 =1 =] =]
aq2a,, b >b,  ¢2c,,  di>d, 3.6)

From the rule B3, we obtain the following sufficient conditions for a monotonic decreasing property of
weighting functions.

b—d—bec—ad
(1+———bd
[(b—c~AYa,d+b,c,y-A,(b+d~bc—ad )]2<4(A, bd+(b-d~A)B,d YA, (1-a—c)+(b-d—A Ja,c,)

o, cp<ab,, 3.7

where _A=bc—ad and A, =b,c,~a,d,. Again, since (3.7) is not a necessary condition but a sufficient one, we
may discard (3.7) as far as we make sure that weighting functions are decreasing functions in the range of
our concern.

Step 5 : [Evaluation of the estimations] As the same as the step 5 of 3.1, measure the performance of
the estimated non-binary independence model in terms of recall and precision. A weight of a term T; occur-
ring ¢ times in a document is calculated by the following formula.

Epz(ﬂj_l) 1—EP|(ﬂJ)

EQa(n; 1) 1-EQ ((n;)

The performance is compared to that of the inverse document frequency method, the cosine measure, and the
statistical similarity measure.

Wz(Tj,f) = EW, ('IJ) = log
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4. Experiments

‘ Three different document collections are used to evaluate the performance of the two estimated
independence models. The document collections ure called CISI, MEDLARS, and CRN4ANUL, respectively.

4.1. Preliminary Staltistics of Document Collections
The following table gives some statistics of three document collecticns used in the experiments,

| Table 4.1 Preliminary statistics
Cotlection | CISI { MEDLARS | CRN4NUL
N 1460 1033 424
Q 76 30 155
M 7737 6928 2652
AMD 100 51 53
AMQ 28 10 8

In the above tuble, the meanings of the symbols are as follows.

N total number of documents

Q . total number of queries

M total number of terms

AMD  average number of terms contained in a document

AMQ  average number of terms contained in a query

4.2. Results of Estimated Binary Independence Model

The criterion 1 of the query partition can be applied to CISI and CRN4NUL collections. For
MEDLARS, the criterion 2 is applied. The results of the query partitions are shown in Table 4.2. The
numbers of queries contained in each set of queries are shown in the table.

Table 4.2 Query partitions
Collection | CISI | MEDLARS | CRN4NUL
2, 61 20 110
Q. 15 10 45

The regression coefficients a, b, ¢, and d for each collection are obtained by using the query set (7,
as in the following table. The scattergrams and the linear regressions of CRN4ANUL collection are shown in
Fig. 4.1.

Table 4.3 Regression cocfficients
Collection CISI MEDLARS | CRN4NUL
a 0.04209 0.05437 0.07145
b 0.00089 -0.00021 -0.00034
c -0.00054 -0.00140 -0.00113
d 0.60068 0.001 0.00240

Since the coefficient ¢ of every collection is negative and does not satisfy (3.1), ¢ is modilied to 0. Then,
the second condition of (3.2) becomes &N = 1. The first condition of (3.2) is not satisfied by the coefficients
a and b of every collection as follows.

EP (N) = a+bN = 0.04209+0.00089x1460 == 1.3415 (CIS!),
EP (N) = a+bN = 0.05437-0.00021x1033 = -0.1626 (MEDLARS),
EP((N) = a+bN = 0.07145-0.00034x424 == —0.07271 (CRN4NUL).
Denoting the modified coefficients by «’, b’, ¢’, and d’, we obtain the constraints for these coefficients as

follows.

1
&= (4.1)

where N is the total number of documents. If we use (4.1) o choose the regression coeflicients, then it
becomes impossible to satisfy (3.3) which is derived from the rule A2, because R.H.S. of the second inequal-

ity of (3.3) is

a =1-U'N ¢ =0

(@ —c' ) =a’
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On the other hand, its L.H.S. becomes

c(1-c’) a'(1-a’)
d’ 174

Since this condition is sufficient, we can use (4.1) as far as we make sure thut a weighting function derived

from (4.1) is a decreasing function as document frequency increases in the range of our concern.

—(b'—d" X )=-—a’?

We sltill have ambiguity in deciding a’ and 0", If we rely on a rather than b, then 5 must be
(1-a}/N, in order to satisfy the first condition of (3.2). Here we bring in a empirical rule, that is to say, a
ratio of d to &’ is equal to a ratio of (1-a )N to b’. In other words, ’

1—a
N
This means that if we interpret (1-a )NV as an experimental result for gradient of pj» then ratio of gradients

of p; and g¢; before and after the modification must be equal. Now using the rule, we decide « and b’ by
the following formula.

b =d  d.

1—a

b o=
Nd

a = 1-U'N

4.2)

Even though (4.2) does not give any optimal choice of & and b, and other choices of @” and b” may give
better performance than (4.2), (4.2) seems to be a reasonable choice.

The regression coeflicients modified by (4.1) and (4.2) are as follows,

Table 4.4 Modified coefficients
Collection CISI MEDLARS | CRN4NUL
a’ 0.03494 0.0796 0.0892
b 0.000661 0.000891 0.002148
¢ 0.0 0.0 0.0
d 0.000685 0.000968 0.00236

The estimated weighting functions for three coliections derived from Tuble 4.4 are shown in Fig.4.2. The
performance of the estimated binary independence model using the regression coefficients of Table 4.4 is
measured in terms of recall and precision. The results are shown in Table 4.5 with the performances of the
other three methods. In Table 4.5, all numbers appeared are average precisions over the queries contained in
0, Average improvements of the estimated binary independence model compared to the other three
methods are shown in Table 4.6. This table shows that the estimated binary independence model retrieves
documents, for instance, 4.9 % better than the inverse document frequency method, and 26.5 % better than
the cosine measure in CISI collection. Note that the results are reported for query set (> only, where
parameter estinmation is not performed.

Table 4.5(a) CISI
average precisions over 15 queries
recall eBIM IDFM COSINE SSM
0.1 0.3670 | 0.3135 0.2330 0.2379
0.2 02776 | 0.2637 0.1665 0.1906
0.3 0.2075 0.1979 0.1541 0.1628
0.4 0.1639 | 0.1680 0.1323 0.1391
0.5 0.1477 0.1343 0.1172 0.1216
0.6 0.1265 | 0.11G62 Q0.1042 0.1060
0.7 0.1093 | 0.1063 0.0924 0.0953
0.8 0.0937 | 0.0945 0.0834 0.0811
0.9 0.0762 | 0.0739 0.0716 0.0672
1.0 0.0471 0.0473 0.0484 0.0478 -

4.3. Results of Estimated Non-Binary Independence Model

The regression coeflicients a,, b, ¢;, and d, estimated for each collection by using @, are shown in
‘Table 4.7. In this table, "tF' means a term frequency and "pts" means the number of data points used to esti-
mute the regression coefficients for each term frequency. Scattergrams and linear regressions of CRN4NUL
collection are shown in Fig. 4.3.
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Table 4.5(b) MEDLARS Table 4.5(c) CRN4NUL
average precisions over 10 queries average precisions over 45 querics
recall | eBIM IDFM [ COSINE | SSM recall | eBIM IDEM | COSINE SSM
0.1 0.8261 0.8241 0.8595 0.8700 0.1 0.6174 | 0.6464 0.5865 0.6449
0.2 0.7898 | 0.8064 | 0.7133 0.7678 0.2 0.5054 | 0.4998 0.4352 | 0.4903
0.3 0.6948 | 6.6747 0.5424 0.6454 C.3 0.4034 | 0.3865 0.3675 0.4014
0.4 0.6521 | 0.6476 0.5039 0.5237 0.4 0.3548 | 0.3290 0.2867 0.2978
0.5 0.5340 | 0.5560 0.4210 0.4554 C.5 0.3007 | 0.2863 0.2341 0.2432
0.6 0.4362 | 0.4329 0.3718 0.4226 0.6 0.2520 | 02515 0.2026 0.2200
0.7 0.3462 | 0.3157 0.3204 0.3413 0.7 0.2026 | 0.2015 0.1658 0.1826
0.8 0.2796 | 0.2755 0.2676 0.2756 0.8 0.1607 | 0.1577 0.1441 0.1510
0.9 0.1811 0.1781 0.1858 0.1911 09 0.1377 0.1350 0.1204 0.1289
1.0 0.0651 0.0842 0.1189 0.1048 1.0 0.1261 0.1246 0.1131 0.1199
Table 4.6 Improvements by eBIM (%)
Collection | CISI | MEDLARS | CRN4NUL
IDFM 49 -1.1 2.0
COSINE | 26.5 7.4 16.7
SSM 22.8 1.1 8.6
Table 4.7(a) Regression coefficients of CISI
estimaled by using 61 qucrics
tf a, b, Cy d, pts
1 0.04851 0.00034 0.01382 0.00036 191
2 | -0.00022 0.00024 -0.00366 0.000i4 188
3 0.00535 0.00010  -0.00268 0.00007 181
4 0.00342  Q.00005  -0.00217 0.00604 157
5 0.01432  -0.00001 -0.00141 0Q.00003 126
G 0.00515 0.00001  -0.00119 0.00002 84
7 0.00413 0.00001  -0.00059  (.00001 70
8 0.01004  -0.00001 -0.00022 0.00001 45
9 0.00102  0.00001 0.00007  0.00001 35
10 | 0.02001  -0.00005  0.00027 0.0 28
11 | 0.00078 0.00001 0.00059 0.0 13
12 | 0.03193  -0.00008  0.00004 0.0 7
13 | 0.01193 0.00003  -0.00019 0.0 9

Using the rules BO, Bl, B2, and B3, we modily the regression cocfficients of Table 4.7 and make a
modified set of regression coefficients as shown in Table 4.8. First of all, the regression coefficients
estimated by less than 20% of maximum pts are discarded, because we can not expect enough reliability in

such data. In order to decide the coefficients uniquely, the following set of formula is used in addition to
(3.4)-(3.7).

" » N, +c, " Nd”,~a, .

¢ =0 d7, = N =TT a’, =aq 4.3)

The first condition of (4.3) is derived from (3.4}, (3.5), and (4.1). (3.4) and (3.5) are
F
¢Hhz0 , o =3c
r=1
On the other hand, ¢” is 0 by (4.1). Therefore all ¢’,’s must be 0. The second condition of (4.3) is based on

the fact that probability valucs p ((f =d;; [[) at ¥V seem (0 be reliable because

R
S (c,+Nd,) = 0.9801=1 (CISI),

=1

9
e +Nd,) = 1.0003=1 (MEDLARS),

1=t

8
D.(c,+Nd,) = 0.9894=1 (CRN4NUL).

=]
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Table 4.7{c) Regression coefficients of CRN4NUL
estimated by using 110 querics

a, b, c, d, pts
0.08776  0.00073 0.01131 0.00123 101
0.08743 0.00030 -0.00301 0.00054 101
0.07063 -0.00013  -0.00267 0.00026 98
0.05260 -0.0001! -0.00070 0.00013 87
0.06180 -0.00031 0.00040  0.00007 77
0.03777  -0.00019 0.00107 0.00004 62
0.03653 -0.00012  0.00117 0.00003 46
0.04788 -0.00021 0.00239 0.00001 36
0.03432  -0.00010 0.00120 0.00002 17
0.02545  -0.00007 0.00200 0.00001 17
0.10018  -0.00076 0.001406 0.00001 10
0.02234  -0.00016 0.00202 0.0 5
0.07231  -0.00038 0.00121 0.00001 5
0.03541 -0.00052 0.00154 0.00001 3 |

Table 4.7(b) Regression coeflicients of MEDLARS

cstimaled by using 20 queries

RS TRa~at-N- N - VR SYRR S I Fad

tf a, b, c, d, pts
1 0.07478 0.00027 -0.0007 0.00059 93
2 0.05337 0.00020 -0.00194 0.00020 92
3 0.04951 -0.00006  -0.00051 0.00008 90
4 0.04028 -0.00007 0.00002 0.00004 77
5 0.04313 -0.00014 0.00030 0.00002 60
6 0.03243 -0.00008 0.00055 0.00001 60
7 0.04757 -0.00017 -0.00045 0.00002 40
8 0.03423 -0.00012 0.00030 0.00001 24
9 0.02769 -0.00008 0.00072 0.0 21
10 0.00041 0.00001 0.00105 0.0 13
11 0.00508 0.00001 0.00096 0.0 is
12 0.03935 -0.00021 0.00015 0.00001 13
13 -0.06018 0.00074 0.00331 -0.00003 3

Taking c,+Nd, as the actual value of p (if =d;; {/) at N, we obtain the following equation.

¢’ +Nd”, = Nd”, = c,+Nd,
This leads to the second condition of (4.3). The third condition of (4.3) is based on the assumption.that the
probability values of p(if =d;; IR) and p (if =d;; |1) are the same at N. This means that a proportion of a

probability value of each term frequency to the total(total is 1) at N is the same in p(f=d;|{) and
p{tf =d; |R). Again we rely on g,’s rather than b,’s, then b”, must satisfy

a, + Vb, ="y + Nd", = Nd”,.
If one of the following things happened, then a”, or b”, or d”, are set half of a”,_; or ", ord”,_;,
respectively. This rule is obtained by observing the experimental results of d,, that is d, = 0.5d,_,.
. a’,<0 or “<0 or d”,<0
. a’,>a”,_y or b7>b"_; or d'>d"._,
. a’<0.1a”; or &,<0.16",; or d<0.1d"
In order to satisfy (3.5), the final coefficients used to calculate weights are given by

. ’ s dv ’
d‘| = pa aﬂl b’l = FI; b”l C'l =0.0 d" = F d’ ! (4'4)
o >, Ty
k=1 k=1 k=t

So far, since we do not consider B3, we have to make sure that weighting functions derived from (4.3) and
(4.4) are decreasing functions of document frequency. Again, although (4.3) and (4.4) do nqt guarantee any
optimality of choices, it usually gives reasonable-performances. The weighting functions derived from Table

4.8(c) are shown in Fig. 4.4.
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Table 4.8(a) Modified coefficients of CISI | Table 4.8(h) Modified coefficients of MEDLARS
1 a; b’ <’y d, tf o, b, c’, d,
1 0.020001 (0.000359 0.0 0.000374 1 0.026152 0.000634 0.0 0.00060
2 | 0.010001 0.000147 00 0.000139 2 | 0.018665 0.000180 0.0 0.00020
3 | 0.002206 0.000069 ©0.0  0.000069 3 | 0.017315 0.000039 0.0 0.00008
4 0.001410 0.000039 0.0 0.000039 4 0.008754 0.000019 0.0 0.00004
5 | 0.000705 0.000021 0.0 0.000029 5 | 0.004478 0.000010 0.0 0.00002
6 0.000353 0.000017 0.0 0.000019 6 0.002379 0.000005 0.0 0.000011
7 | 0.000176 ©.000007 0.0 0.000010 7 | 0001189 0000002 0.0  0.000005
| 8 [ 0.000088 0.000004 0.0 0.000005 8 | 0.000595 0.0000012 00 0.00003
o 1 0.000074  0.0000006 0.0 0.00001
Table 4.8(c) Modified coefficients of CRNANUL | —= - :
tf a" b’, C" d’, Table 4.9(11) c.llsSl
average precisions over 15 queries
; 3;8233‘1’2 -8;383;’23 3;8 3;883?1 recall | eNBIM | IDEM | COSINE | SSM
3 | 0.018915 0.000121 0.0  0.00026 0.1 03784 | 03135 | 02330 | 02379
4 | 0.009627 0.000060 0.0  0.00013 0.2 02923 | 0.2637 | 0.1665 0.1906
5 | 0.005582 0.000030 0.0  0.00007 0.3 0.2046 | 0.1979 | 0.1541 0.1628
6 | 0.003592 0.000015 0.0  0.00004 0.4 0.1771 | 0.1680 | 0.1323 | 0.1391
7 | 0.003102  0.000008 0.0  0.00003 0.5 0.1502 | 0.1343 | 0.1172 | 0.1216
8 | 0.001466  0.000004 0.0  0.00002 0.6 0.1324 | 0.1162 | 0.1042 | 0.1060
0.7 0.1111 | 0.1063 | 0.0924 0.0953 |
Table 4.9(b) MEDLARS 08 | 00992 | 0.0945 | 0.0834 | 0.0811
average precisions over 10 querics 0.9 0.0785 | 0.0739 | 00716 | 00672}
recall eNBIM IDFM COSINE SSM 1.0 0.0481 0.0473 0.0484 0.0478
0.1 0.8397 | 0.8241 0.8595 0.870C —
0.2 08175 | 0.8064 | 0.7133 0.7678
0.3 0.7685 | 0.6747 | 0.5424 | 0.6454
0.4 0.6443 | 0.6476 | 0.5039 | 0.5237
0.5 | 0.5557 | 0.5560 | 04210 | 0.4554 Table 4.9(c) CRN4NUL
0.6 0.4473 0.4329 0.3718 0.4226 average precisions over 45 queries
0.7 0.3940 | 0.3157 03204 | 0.3413 recall | eNBIM | IDEM | COSINE [ SSM
0.8 02887 | 0.2755 | 02676 | 0.2756 0.1 0.6449 | 0.6464 | 0.5865 0.6449 |
0.9 0.1494 | 0.1781 0.1858 | 0.1911 02 0.5444 | 0.4998 | 04352 | 0.4903
1.0 0.0764 | 00842 | 0.1180 | 0.1048 0.3 0.4501 | 0.3865 | 0.3675 0.4014
' 0.4 0.3935 | 0.3290 0.2867 0.2978
Table 4.10 Improvenients by eNBIM (%) 0.5 0.3104 | 0.2863 | 02341 | 0.2432
Collection { CISI | MEDLARS | CRN4NUL 8-_? 8-233;3 8-33:; 8-?222 g.fggg
ID].:M 8> 24 4.2 0.8 0.1561 | 0.1577 | 0.1441 | 01510 |
| _COSINE | 30.8 110 19.4 09 | 01262 | 0.1350 | 0.1204 | 0.1289
SSM 27.0 4.4 11.0 1.0 0.1155 | 0.1246 { 0.1131 | 0.1199

The performance of the estimated non-binary independence model using the regression coefficients of
Table 4.8 is shown in Table 4.9 with the performances of the other three methods. The numbers appearing in
Table 4.9 are the average precisions over the queries contained in Q.. Improvements of the estimated non-
binary independence model compared to the other three method are shown in Table 4.10. This table shows
that the estimated non-binary independence model retrieves documents, for instance, 8.3% better than the
inverse document frequency method, and 30.8% better than the cosine measure in CISI collection.
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5. Motivations of the Second Method

The {irst method may be unable to make the most of relevance information. For instance, the method
can not distinguish terms of the same document frequency and/or term frequency. Another disadvantage is
that we have to bring in some empirical rules to determine the coefficients uniquely. In order to compensate
these disadvantages, a formula is given to learn optimal weights of the non-binary independence model. The
formula is applied to the same three document collections. Effects of a coefficient used in the formula and
the number of learning times on retrieval performances are measured in terms of average improvements com-
pared to the inverse document frequency method.

6. Learning Scheme

6.1. Learning Formula
A learning formula used in the experiments is as follows.
¢
wk+l(ijlf) = wk(Tjitf) + ';;T"[WOP, (TI"f) - Wk(T',tf )] (6.1)
j
where w, (T;,tf ) is a weight of j* term T; with term frequency ¢f after learning k times, w,,, (Tj.1f ) is
optimal weight of j* term T; with term frequency tf by the non-binary independence model, ¢ is a learning
cocfficient, and n; is document frequency of term T;. Although w,, (T;,/f ) is determined not only by T;
and #f but also by a query in a leaming query set, we do not express it explicitly here for simplicity of
expression. wy (T;,(f ) and w,, (T;,0f ) will be abbreviated as w; and w,,, in the sequel.

The reason why document frequency n; is incorporated in this formula is that weights of term T; are
learned mxn; times at every iteration of leamning, where m is the number of occurrences of term T; in the
learning query set. This means that weights of high document frequency terms are leamed many more times
than weights of low document frequency term. Document frequency n; in the formula (6.1) prevents this ine-
quality in learning,

6.2. Properties of Learning Formula
It can be easily derived from (6.1) that the formula expressing wy by wg (initial weight) is as follows.

wi = [1 = (1===) lwop = Wo) + wo. 6.2)
J

. e C . c .
From (6.2), we recognize that if - is close to one, then (1 — -n—)" rapidly approaches to zero as k
J J
increases, and this means w, rapidly approaches to w,, with times of learning.

If -nc— is very small and k is also small, then the following approximation holds.
7
c ke
G-=—l=1-—
nj aj
And (6.2) becomes
kc
W = wo + —(W,,, — W),
nj

This means that & steps of learning using ¢ is almost equivalent to one step of learning using kc, provided

-;:C_ is very small and k£ is also small.
J
This relation of learning coefficients and the number of learning steps will be observed in the results of

the experiments in section 7.
. . S c .
If w,,, is unique, then w, never overshoots or undershoots w,,, as far as — s less than one. How-

7
ever, as pointed out in 6.1, the valucs of w,,, may be different for different query, and this may cause w; to
overshoot or undershoot some values of w,,,.

6.3 Learning Procedure
The following is the learning procedure used in the experiments.

1°  Assign a weight by the inverse document frequency method to each query term contained in a learning
query set as an initial weight.

2°  Using (6.1) and the learning query set, modify weights in documents.
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3°  Using another query set, evaluate performance of the weights modified in 2°. Compare the performance
of the weights to the performance of the inverse document frequency method.

4°  Go to 2° until the learning is executed sufficient times.
The following example illustrates the learning procedure described above.

Example Suppose that term T, has the following distribution of term frequencies in total ten docu-
ments.

Term-Doc D, D, D:; Dy D5 D D7 Dy Dy D")
T, 0 1 2 ) 0 1 0 1 2 0
Then initial weights of documents are
Term-Doc D, Dz Ds Dy Ds Dg Dy Dg Dg Do
T, 0 lop2 log2 0 0 log2 0 log2 log2 0

Suppose that D are non-relevant andD 4,9 are relevant to the example query. Then

Wopt (Thl) = 508% = —0.29,

Wope (T1,2) = log—g- = 0.4.

wy (T'y,1) is learned three times, and w; (74,2) is leammed two times during one iteration of learning(i.e. going
through all documents having the term). Therefore during first time of learning with coefficient 0.2, the
weights are changed after one iteration of learning as follows.

w (T 1) = log 2 + -03—2(103% — log2) = 0.65,
wT1,1) = 0.65 -+ %—2—(103—3- —~ 0.65) = 0.61,

4
w3 (7,1} = Q.61 + Eég(lag-j- - 0.61) = 0.57.
And

wi(T12) = log2 + %([ag-%- — log?2) = 0.68,

w(T1,2) = 0.68 + -Qgg-(log—;- - 0.68) = 0.67.

The weights in the documents are changed as follows.

Term-Doc D; Dz DJ D4 D_s D6 D7 Ds Dg DIO
T, 0 0.57 0.67 0 0 0.57 0 0.57 0.67 0

a

7. Experimental Results of the Second Method

The experiments are performed on three different document collections, CISI, MEDLARS, and
CRN4NUL. The query sets for learning and evaluation are the same as those in the experiments of section
4, that is to say, @ and @, respectively.

Five different learning coefficients ranging from 0.002 w0 0.1 are experimented. Learning curves of
each learning coefficient are shown in Fig.7.1. The improvement in the ligure is measured compared to the

inverse document frequency method. The precision-recall graph of the learning formula after 10 times of
leaming with coefficient 0.016 in CISI collection is shown in Fig.7.2 with the precision-recall of the inverse
document frequency method.

Table 7.1 shows recall-precision of the formula after each time of learning in CISI. From this table, we
can observe that one step of learning with coefficient 0.016 is almost equal to two steps of leaming with
coefficient 0.008 as pointed out in section 6.

o Tal?le 7.2 shows average improvements of the scheme using coefficient 0.016 after 10 times of learn-
ing. The improvements are measured compared to the inverse document frequency method.

Table 7.2 Improvements by the scheme (%)
CISI MEDLARS CRN4NUL
7.8 1.0 7.3
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Table 7.1(a) Precision-Recall of ClSi{c «0.003) Table 7.1{b) Precision-Recall of CIS)(c =0.016)
precition imp w IDFM (%) precinion imp § 4 o IDFM (%)
recali-step | 1 2 3 4 s 1617 8 1 9 10 | Precallstiep | 1 3 11 4 s 6 T ] 9 10
0.1 1319 3v |34 [37]|43[30]16] 16} 31 (X} 19 | 37 | 43 | 1.4 ] 3.1 47 54 65 | 89 | 101
02 3818712169 |72]78|35|96] 99| 103 0.2 57 | 72]|74 (931105 93 |17 ] 1Ll |} 116 ] 124
03 33026 |22 121201721 ]20]| 15} 23 0.3 24 12t |17f20] 23 { 28 | 42 | 53 | 59 | 70
04 03| 051060102720 ]22(22} 29 04 0600|1823 ) 29} 34 |30} 32 ] 38 | 44
0.5 38| 49 | 52 |62 |68 |68 |81 ]|8s]|9s5] 97 0s 45 | 61 |68 [ 89 ] 97 [ 103 | 104 | 114} 122 | 137
0.6 3JO| 38 | 54 |63 |67 | 7676 ;78|76 79 0.6 38 |63 |74 |25 | 70 [ 78 | 98 | 3] 107 | 1LY
07 28| 42 | 46 | 54 |58 |54 (53|58 s54] 57 0.7 42 [s3|sa|s57] s7 | 1 7.1 172 | 69 | 10
08 41| 36 | 32]] 29|16 |17]10]08 |09 13- 08 39 (28} 12|08 13 16 1 26 { 30| 27 | 29
09 o2l vz ({25t 28 as|isiar]s2]e63] sl 09 12 |28 |38 135260 )| s7 {621]62|65]| 63
1.0 15|16 36 t7 232212220 ]21] 21 1.0 16 {17 22020 ) 21 23 | 23 | 23 | 25 | 25
avcrage | 24 | 29 | 3.5 | 38 [ 41 [4a3 |45 46 | 47| 53 average 29 {38 |42 45| 32 | 55 | 63 | 67 | 7.2 | 78

Table 7.3 summarizes the best results of improvements above the inverse document frequency method,
for each collection we obtained in the experiments. We do not have a systematic method to determine the
coefiicients and the learning times shown in the table.

Table 7.3 Best results
Collection CISI MEDLARS | CRN4NUL
best result{%) 15.35 2.37 7.49
coefficient 0.2 0.2 0.1
learning times 4 3 1

From Fig.7.1-2, we observe the following resuits,

(1) Improvement in performance is observed in every collection when the learning coefficient is
small(0.002-0.016).

{2) The improvement of MEDLARS is small compared to those of CIST and CRN4NUL.
{3) The performance is rapidly deteriorated in CRN4NUL after the first learning with the coefficient 0.1.

One reason of (2) is that the size of learning data of MEDLARS is small compared to the other collec-
tions. In MEDLARS, 20 queries are used for learning in contrast to 61 queries of CISI and 110 queries of
CRNANUL. Another reason is that a term in Q, does not always appear in Q4. As described in 4.2, cri-
terionl can not be satisfied by MEDLARS in the partition of the query set, and only 22 query terms out of
88 1otal query terms contained in Q5 appear in Q.

The reason of (1) and (3) is that a weight of a query term of every term frequency is approaching to
its optimal weight after each time of learning as far as a learning coefficient is small. On the other hand,
when a learning coefficient is large, a weight of some query terms may overshoot its optimal weight and is
overestimated in a query as shown in the following example.

Example Suppose that term T; has document frequency one, and three queries use term T; in a learn-
ing query set. Optimal weights for the queries and the initial weight are as follows(Fig.7.3(a)).

w,g,) =2.0
w,,(pz,) =40
w,,?) =3.5
wo= 1.0

If the learning coefficient ¢ is set 0.2, then in the first time of learning, w, is modified as follows.
wy = 1.0+0.2(2.0-1.0) = 1.2
wy = 1.240.2(4.0-1.2) = 1.76
wy = 1.76+0.2(3.5-1.76) = 2.11

w3 already exceeds w,g,). After the sccond time of learning wg becomes 2.68 and wy is 2.96 after the third
time of learning(Fig.7.3(b}).0

The above example shows that a Icarning with large coeflicient or many times of learning may cause
overshootings of optimal weights for some queries. This means that an unimportant term in some queries
may be overestimated and deteriorate performance. If we call the coefficient a critical coefficient when using
it shows good improvement after first few leamings, but deteriorates performance after that, then the critical
coeflicient for CRN4ANUL is around 0.1. The critical coeflicients for CISI and MEDLARS are not obvious
like CRNANUL, and they -may be about 2.5 for CISI and 0.6 for MEDLARS as shown in Fig.7.4. Because
of the equivalence of the learning coefficient and times of learning as shown in 6.2,, the concept of the criti-
cal coefficient corresponds to (coefficient) x (learning times). This means that even though a small coefiicient
is used in learning, it may deteriorate performance after many times of learning.

—213—



8. Conclusions

The parameter values used in the binary independence model and the non-binary independence model
are estimated by using linear regressions and some constraints and rules in the first method, The optimal
weighting functions are derived from the estimations and their performances are measured and compared to
the performance of the inverse document frequency method, the cosine measure, and the statistical similarity
measure. In the experiments using three different collections of documenis, the estimated binary indepen-
dence model shows on the average about 1.9%, 16.9%, and 10.8% better performance than the inverse docu-
ment frequency method, the cosine measure, and the statistical similarity measure, respectively. The
estimated non-binary independence modcl shows on the average about 5%, 20.3%, and 14.1% beticr perfor-
mance than the inverse document frequency method, the cosine measure, and the statistical similarity meas-
ure, respectively.

Even though the two estimated models presented here show better performances than the three other
methods, the discrepancy of the performances between the estimated models and the theoretical models is
immense (Table 8.1), and there seems to be mwuch room to improve the estimation method. One reason of
this discrepancy is lack of sufficient data to make estimations accurate. Another reason is that there is much
ambiguity in deciding the regression coeflicients uniquely. We use some empirical rules in addition to the_
constraints on probability values and weighting functions to decide regression coeflicients uniquely. We do
not think that we choose the best possible set of rules and constraints. There might be more reasonable set of
rules and constraints, For instance, the rule that weights of high term frequency should be larger than those
of low term frequency may be a more reasonable constraint than the constraint B2 of section 3.2., or we
should take into account a suitable model of term frequency distributions[BoSw]. Another possible reason is
that we discard some data of high term frequencies in the experiments of the estimated non-binary model.
Aggregating the data might be a more reasonable way to estimate the coefficients than discarding them in
step 4 of 3.2.

Table 8.1 CISI

performances of theorctical and estimated medels(average over 15 queries)

recall eBiM BIM eNBIM NBIM
0.1 0.3670 .4845 0.3784 0.7718
02 0.2776 0.4208 0.2923 0.6798
0.3 0.2075 3.3228 0.2046 0.5394
04 0.1639 1.2809 0.1771 0.4684
0.5 0.1477 0.2472 0.1502 0.3905
0.6 0.1265 02234 0.1324 0.3417
0.7 0.1093 0.1646 01111 0.2856
0.8 0.0937 0.1207 0.0992 0.2057
0.9 0.0762 0.1007 0.0785 0.1664
1.0 0.0471 0.0515 0.0481 0.1034

A scheme for learning optimal weights of the non-binary model is presented. The experimental results
show that this scheme improves performance on the average 5.4% beiter than the inverse document fre-
quency method. This result is slightly better thaa the estimated non-binary model. Learning with a small
coefficient seems 10 be almost constantly improving performance with times of learnings. On the other hand,
a learning with a large coefficient is deteriorating performance with times of learnings.

Validity of the schemes presented here is based on the assumption that there exists some similarity
between significances of terms in a learning query set and that of the queries in a query set for evaluation. In
other words, we expect that a valuable query term in a learning query set is also valuable in the other set,
and rion-valuable term in a learning query set is also non-valuable in the other set. This seems to be true to
some extent. However, the degree of significance of the term in a query may not be the same as that in
another query. That is why we obtain some improvement in the experiments, but it is not sufficiendy
significant. Another difficulty is that mechanical ways to determine the parameters used in the schemes are
hard to find out, as in the determination of the regression coefficients in the first method and the appropriate
learning coeflicient in the second method.

Future directions of research are as follows:
(1) Seek a different formula which does not show deterioration as the number of learnings increases.

(2) Seek a way to differentiate the usage of a term by one user from that of a different user. A methodql-
ogy to differentiate the usage of a term in one context from the term in another context is sketched in

[Yu]l.
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3) Elimipate dependencies of terms. An elimination of term dependencies is attempted in [WoZW],
experimented in [WoYal, and achieves some improvement.

“) Incprporat‘e normaliz:ftion by document.size into the schemes reported here. We compared our results
mainly with the _basnc_methods-- the inverse document frequency method and the cosine measure.
cher methods might give better r.esults than the basic methods. For instance, the method based on the
inverse docun?em frequency ar_ld :n_1proved by normalization[Crof], or the method based on the cosine
measure and improved by ta{cmg into account term frequencies[Salt2] gives better performance than
the basic me'lhods. The experiments shown in this paper are not intended to show that these learning
schemes achieve the b.est perfc_)rmance among the known retrieval methods. Rather it shows a more
fundament.al fact, t!mt is, leamning does help to improve retrieval performance. We expect better per-
formance if normalization by document size is incorporated into the learning methods.
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