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Two methods are given to improve weighting schemes by using relevance information of a set of 
queries. The first method is to estimate parameter values of two independence models in information 
retrieval --- the binary independence model and the non-binary independence model. The parameters 
estimated here are used to calculate optimal weights for terms in a different set of queries. Performance of 
this estimation is compared to the inverse document frequency method, the cosine measure, and the statistical 
similarity measure. The second method is to learn optimal weights of the non-binary independence model 
adaptively by a Ieaming formula. Experiments are performed on three different document collections CISI, 
MEDLARS, and CRN4NUL for both methods, and results are reported. Both methods show improvements 
compared to the existing weighting schemes. Experimental resuIts show that the second method gives 
slightly better performance than the lirst one, and has simpler implementation. 

1. Introduction 

In information retrieval systems, it is common to compute a similarity between a query and a docu- 
ment for retrieval of documents. Many methods of calculating similarities have been presented. Two weil- 
known methods are the inverse document frequency method [Spar] and the cosine measure [SaMc]. Both 
methods are simple and intuitive. The inverse document frequency mediod assigns a higher weight to a term 
which occurs in few documenls than a term in many documents. The similarity measure between a docu- 
ment and a query is simply Ihe sum of the weights of the query terms in the document. The cosine measure 
is the cosine of the angle between the query and the document when they are represented as vectors. In spite 
of their intuitive appeal, they cnn not ensure optimality in retrieval. 

The binary indcpendcnce model [YuSa]moSp] and Lhe non-binary independence modei(YuLc] are 
theoretical models which have been proposed co guarantee optimal retrieval. Optimality here means that a 
document with higher probability of relevance to a query is assigned a higher similarity than a document 
with lower probability of relevance. These two models are theoretical because they suppose a priori 
knowledge about some parameters used in cafculation of similarities. 

In this paper, the parameter values of these two independence models are cstimatcd from document 
and term frequencies of terms. The estimation method of the parameter values is discussed and the perfor- 
mances of the estimated independence models are compared to that OF the inverse document frequency 
method, the cosine measure, and the method which has been recently rcportid [WoYa] and called the stacisti- 
cal similarity measure. In section 2, outlines of two independence models are given. In section 3, we discuss 
the estimation method of the parameters, and introduce some constraints which should be satisfied by the 
esGmatcd parameter values and the weighting functions derived from the parameters. The estimated indepen- 
dence models are applied to three different document collections and the performances are shown in seclion 
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4. In section 5, motivations of a learning schernt: are described. In section 6, the Icarr~ing scheme is given 
and its properties arc discussed. In section 7, cxplzrimcntal results of the second method arc given, The con- 
clusions of the two methods are given in section 8. 

2. Two Independence Models 

2.1. 13inary Independence ModeI 

The binary independence modellRoSp][YuS,3] ensures the oplimality of retrieval described below. 

Let p(RIDi) be the probability that a docurtxnt Di is relevam to the query and f(Q,Di) be the similarity 
between a query Q and a document 13i, where “R” in p(X IDj, stands for “relevance”. Then the following 
condition is satisfied by the binary independence rlodel. 

f<C?Di) >ftQDj) ++ P(R IDi> >P(R lDj> 

‘The binary independence model makes the following two assumptions. 

(1) Dinary assumption : All document vectors are binary vectors. III other words, each element (‘lj is 0 or 
1. 0 means the absence of the term *ri in document Di and 1 means the presence of the term Ti in 
document Di . 

(2) Independence assumption : All terms are statistically independent within the relevant document set and 
within the irrelevant document set. 

Based on the above two assumptions, the weight assigned to term Tj is given by [RoSp] 

where Pj is the probability that a relevant document has the term Tj and Qj is the probirbility that an 
irrelevant document has the term 7-j. For a query Q having the following Icrms, 

!2 = vk,,~~kZ, - . . #‘r&I) 

and for a document Di = ( di,, di2, * . * , JN > the similarity between the two vectors is 

where &, is 0 or 1 because of the binary assumption. 

:In deriving the weighting function (2.1), we suppose a priori knowledge of pj and qj. These probabil- 
ity values are unknown in advance under ordinary circumstances. Our aim is to estimate pj and r~; from 
some other parameters which are easily obtainable. 

2.2. Non-llinury Indcpcndence Model 

IIn the non-binary independence model, the independence assumplion in the previous section is retained 
while the binary assumption is discarded. In other words, we take into account the term frequency of each 
term in each document. Then the optimal weight of a term ~j with frequency of occurrences <fij in a docu- 
ment L~i is calculated by the following formula[YuLe]. 

P-2) 

where p(lf=dijIR) is the probability that a relevant dwumcnt 11~ dij occurrences of the term ri, and 
p(tf=tfiiII) represents the probability that an irrelevant document has Ci,j occurrences of the term ‘f;. “R” and 
“I” sland for “relevance” and “irrelevance”, respectively. p(tf=O]R) and p(tf=Oil) arc the probabilities with 0 
occurrence of the term. For a query 

and a document 

the similarity between 

where Sk,, is one when &,ito, and zero whelid&,=:O. 
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Again the probabilities p(Lf=diiIR) and p(tf=+II) are usuaIly unknown in advance. In addition to the 
estimation of pj and ‘I/, the probabilities p(thdijIR) and p(tf=dijlI) are estimated from another available 
parameter in this paper. 

3. Parameter Estimation of Two Independence Models 

In order to estimate the probability values Of the two indepcndcnce models described in 2.2 qnd 2.3, 
we suppose lhat the probability values are correlated with document frequencies. Document frequency nj is 
the number of documents which have term Tj. It seems to be a reasonable assumption that the probability 
values of a term Tj increases with its document frqucncy nj. 

Since document frequency nj is a parameter which is easily obtainable, it becomes easy to predict the 
probability values in advance if a simple relationship between the probability vatues and document frequen- 
cies does exist. 

An attempt to estimate parameters for the binary independence model has been made before[CrHaJ. 
The estimation method given below is not only for the binary model but also for the non-binary model, and 
is more elaborate than the previous attempt. 

3.1, Puranwter Eslimation of Binary Independence nfdd 
IIypotlwsis I The probability values ,~i end qj in (2.1) are linearly correlated with the document fre- 

quency flj of term 1). In other words, there exist linear functions EP , and .EQ 1 such that 

17i = EP ,(n;), qj = EQ ICnj)- 

Basing on the hypothesis I, we try to find the functions EP, and EC 1 by the following steps. 

Preconditions : We have a collection of documents D and a set of queries Q. For each query of Q, the 
set of relevant documents is known beforehand. 

SICK I : [Pm-Uiun uf gu.c~-ks] Divide a set of queries Q into two se& of queries Gr and c22 by some 
criterion. The query set a L is used to estimate the probability values pj and qj from the document frequency 
“j-9 while ez is used to evaluate the performance of the estimated binary independence model. The following 
cnterion is used to partition G into &I and e2 when it is applicable. 

.criterionl: 
Divide Q in such a way that each term of each query in Q2 is contained in some query of (j ,. 

If criterion 1 can not be satisfied by the queries in the collections, then use the following second criterion. 

criterion2: 
According to the empirical rule(the 2/3, l/3 split)[Breij. c1 should contain 23 of all queries and e, 
should contain the remaining l/3 of queries. 

S&p 2 : [17afa Plul] Count “;(a document frequency),rj(the number of relevant documents having 
term Tj)* and Sj(dIe number of irrelevant documents having term Tj) for each term 9) of each query in Gl. 
Plot the points (nj,rjlR) and(nj,si/I) in each scattergram, where R Is the total number of relevant documents 
and I is the total number of irrelevant documents. For a document frequency which has more than one 
corresponding rj/R (or s;/I), calculate their arithmetic mean and plot it. Having done this, we obtain two 
scattergrams, one for EP, and the other for EQt. 

Srcp 3 : [Es~inzation of EP I and EQ ,] Suppose that EPI and Eel are linear functions of document 
frequencies, that is to say, 

Then calculate the regression coefficients u ,b ,c , and d by solving the following normal equations. 

for a and b, and 

No sj Nn ff0 NC3 

=-7- 
= C~o+dCnj = cCnj+dCnj’ 

j=l j=l j=l j=l 
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for c and d, whrre IV,-, is tlie number of data poi,nts in the scatterpms obtikd in stcpl 2. Standard error of 
estimate .$ and .T$ are-calculated by the formula, 

S~CII 4 : [Mucii/lcnrion of EP, and EQ ,] We obtain the estimations of EP L and EQ 1 in the previous 
step. These estimations may be crude and have to be refined by some rub, because under some situations 
enough drrta may nut be available (0 make accurate estimations. The constraints defined below are from rea- 
sonable assumptions about probabilities and weighting functions. 

(AO) EP 1 and EQ I should be non-negative increasing functions of document frequencies. 

(Al) At the total number of diuments N, EP 1 and EQ I must be one. 

(A2) A weighting funclion derived from EP 1 and EQ I should be a decreasing function of document fre- 
quencies. 

From the constraint AO, we get the first condition for the regression coefficients a ,b ,c , and d ax foliows. 

a 20, a!3 so, c 20, d-20 (3.1) 

From the constraint Al, the second condition satisfied by the regression coefficients is obtained. 

P,(N) = a+lJN = 1, EQl((N) = c+dN = 1. (3.2) 

The estimated weighting function of the binary independence model is 

Calculating the derivative of EIY(n), we get the sufficient conditions for the regression coefficients to satisfy 
the constraint A2 as follows. 

(3.3) 

We have to pay attention to the fact that the condition (3.3) is not a necessary but suflicicnt condition, there- 
fore we may disregard this condition as far as we make sure th;lt EN’(n) is a decreasing function in the 
range of concern (0m-S). 

:jtci> 5 : (Evr4luurion of I~IC c.&nnriunsj h’[easure the performance of the estimated binary indcpen- 
dcncc model in terms of recall and precision by using the query set 02. 

Recall and precision are defined by 

Recall = 
rkc nlonlrcr rlf relevnnr fiocrrn1m~s r&ricvcd 

ihc iota1 ni4mLwr of reievan4 docit~mms 

Precision = 
lltc nutnlwr of rclevmi hcr4tmnts rclricvcd 

rka nurnbcr of doc44mc:r4~s rclricved 

A weight of a term Tj in a query Q1 is calculated. by the estimated weighting function obtained in the step 3 
and step 4 as follows. 

where nj is a document frequency of a term Ti. In order to evaluate performance of the estimated binary 
independence model, the results of retrieval are compared to the inverse document frequency method, the 
cosine measure, and the staktical similarity measure. 

3.2. &u-ameter Estimation of Non-Iiinary Independence Model 

Ilypollwsis II The probability values p(lf =:c$ 1 R) and r(If=dij II) in (2.2) are correlated with docu- 
ment frequency ~4~ and term frequency dij. In other words, there exist some linear functions EP, and EQz 
such that 
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Then we try to estimate H’, and EQ, by the following steps. 

Preconditions and step 1 are the same as in 3.1. 

S~CIJ 2 : [ Plot of Daru] Count ni , ri, (the number of relevant documents which have term ri of term 
frequency t), and Sjt(the number of irrelevant documents which have terni Tj of term frequency t) for each 
term TJ of each query in the query set Ql. Plot the points (nj ,rj,/R), and (nj,S;,/l). For a document fre- 
quency and a term frequency which have more than one corresponding rj,/R ( or Sj,/f ), ,calculate their arith- 
metic mean and plot it. Having done this, we obtain a number of scattcrgrams, each of which shows the 
relation of ni LO rj,/R (or Sjg/I) of the term frequency t. 

Slcp 3 : [Esrimurions of H’t and IZQ2] Based on the scattergrams obtained in step 2, estimate EP2 and 
EQz by the linear regression. 

EP2(nj,t) = U,+ll,nj 

EQ2(n; .I ) = c, +d, nj 

where t is a term frequency ranging from 1 to F, and F is the maximum number of a term frequency. Each 
set of regression coefficients a,, B,. c,, and dt are calculated by the same kind of normal equations in step 3 
of 3.1. 

S~cp 4 : [hfodijcalions of H’z and IZ’& 2] I?Pz’s and E&~‘S obtained in step 3 may not be accurate 
because we do not have enough data to make accurate estimations under usual circumstances. Therefore we 
need the step to compensate the scarcity of data in order to make the estimations more accurate. As in the 
step 4 of 3.1, we set up some constraints which are supposed LO be satisfied by LZP,‘s and fQ*‘s: Using the 
constraints, we modify the regression coefficients a,, b,, c,, and d,. 

(BO) EP2’s and ,EQz’s are non-negative increasing functions of document frequencies. 

(Bl) Sum of 6Pz’s is equal to iYI, and sum of EQ1’s is equal to ~5Ql. That is 10 say, 

EP,(n) = fJ!Y2(n,*), Eel(n) = &?Ql(n,t). 
f=l i=l 

where F is the maximum number of term frequencies. 

(82) A term of low term frequency is usually more common than a term of high term frequency. In other 
words, 

EP 2(n ,1 )<E’P#l ,I -l), 02 2Md NW 2(n .I - 11, (I s-1). 

(B3) Weighting functions derived from I%‘~‘s and EQz’s should be decreasing functions of document fre- 
quencics. 

From the rule BQ Bl. and B2, the following conditions for the regression coefficients are derived, 

a, 20, ha c,;10, d,>O (3.4) 
P 

a = Co,, 6 = 56,. C= kc‘. F cl = Cd*. (3.5) 
t=1 #=I 1=I 14 

at-1 a, h-P&. cr-I%, 4-1% (3.6) 

From the rule B3, we obtain the following sufficient conditions for a monotonic decreasing property of 
weighting functions. 

(3.7) 

[(b-c-A)(n,d,+b,c,)-A,(6+d-6c-ud)]*<4(A,Bd+(b-d-A)D,d,)(A,(1-u-c)+(6-d-A)u,c,) 

where A =bc-ad and A, =b,c,-a,rl,, Again. since (3.7) is not a necessary condition but a sufficient one, we 
may discard (3.7) as far as we make sure that weighting functions are decreasing functions in the range of 
our concern. 

&C[J .!i : [~vcduulion of lke eslimurionr] As the sallle as the step 5 of 3.1, measure the performance of 
the estimated non-binary independence model in terms of recall and precision. A weight of a Icrm Tj occur- 
ring I ti~ries in a document is calculated by the following formula. 

w2(Tj,l) = SW, (nj) = log 
Ep 2(nj ,l) l-~P t(nj) 

EQZ(njf 1 
- log 

1-W l(nj) 

The performance is compared to that of the inverse document frequency method. the cosine measure, and the 
statistical similarity measure. 
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4. Esperin1en1s 

Three different 
independence models. 

document collections urc used to evaluate the performance of the two estimated 
The document collections are called CISI. hdEDLARS, a,nd CXN4NUL. respectively. 

4.1. Preliminaq Stalistics of Document Collections 

The following table gives some statistics of three document collcctians used in IIKZ experiments. 

Tilbte 4.1 Preliminary statistics 

~~~~~~ 

In the above table, the meanings of the symbols are as follows. 

: 
total number of documents 
total number of queries 

M total number of l.erms 
AMD average number of terms contained in a document 
MC? average number of terms contained in a query 

4.2. Results of Estinmtcd Rinary Independence Model 

The criterion 1 of the query partition can be applied to ClSl and CRN4NUL collections. For 
MEDLARS, the criterion 2 is applied. The results of the query partitions are shown in Table 4.2. The 
numbers of queries contained in each set of queries are shown in the table. 

The regression coefficients a, 6, c, and d for each collection are obtained by using the query set Q L 
as in the following table. The scattergrams and the linear regressions of CRN4NUL collection are shown in 
Fig. 4.1. 

Table 4.3 Regression cocfkicnts 

~~~1 

Since the coefficient c of every collection is negative and does not satisfy (3.1), c is modified to 0. Then, 
the second condition of (3.2) becomes dN = I. The first condition of (3.2) is not satisfied by the coefficients 
u and 0 of every collection as follows. 

E/J I(N) = a+DN = 0.04209+0.00089x1460 - 1.3415 (C/s/), 

EP ,(N) = a+bN = 0.05437-0.00021x1033 = -0.1626 (MELXARS), 

PI(N) = a+6N = 0.07 14%O.WO34x424 == -0.0727 1 (C&V 4NUL ). 

Denoting the modified coefficients by a’. b’, c’, and d’, we obtain the constraints for thcsc coefficients as 
follows. 

0’ = l--UN c’ = 0 (4.1) 

where PJ is the total number of documents. If WC: use (4.1) to choose the regression coefficients, then it 
become!; impossible to satisfy (3.3) which is derived from the rule A2, because R.H.S. of the second incqual- 
ity of (3.3) is 

W -c’)2 = ($2. 
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On the other hand, its L.H.S. becomes 

Since this condition is sufftcient, we cart USC (4.1) as far as we make sure that a weighting function &rived 
from (4.1) is a decreasing function as document frequency increases in the range of our concern. 

We still have ambiguity in deciding a’ and b’. If we rely on a rather than b, then b’ must be 
(I-cr)/N, in order to satisfy the first condition of (3.2). Here we bring in a empirical rule, that is to say, a 
ratio of J to d is equal to a ratio of (1-a)/N to b’. In other words, 

This means that if we interpret (I-a)lN es an experimental result for gradient of /J;, then ratio of gradients 
of 11; and ~1; before and after the modilication must be equal. Now usirlg the rule, we decide <r’ and b’ by 
the following formula. 

Even though (4.2) does not give any optimal choice of a’ and b’, and other choices of a’ and b’ may give 
better performance than (4.2), (4.2) seems to be a reasonable choice, 

The regression coefficients modifted by (4.1) and (4.2) are as follows. 

Table 4.4 ModiIied coefficients 
Collection as1 MEDLARS CRN4NUL 

a’ 0.03494 0.0796 0.0892 
6’ 0.00064 1 0.00083 1 0.002148 

, 

r?* 
0.0 0.0 0.0 

O.OOOG85 0.000968 0.00236 

The estimated weighting functions for three collections derived from Table 4.4 are shown in Fig.4.2. The 
performance of the estimated binary independence model using the regression coefftcients of Table 4.4 is 
measured in terms of recall and precision. The results are shown in Table 4.5 with the performances of the 
other three methods. In Tabie 4.5, all numbers appeared are average precisions over the queries contained in 
Q2. Average improvements of the estimated binary independence model compared to the other three 
methods are shown in Table 4.6. This table shows that the estimated binary independence model retrieves 
documents, for instance, 4.9 % better than the inverse document frequency method. and 26.5 %I better than 
the cosine measure in CISI collection. Note that the results are reported for query set Qz only, where 
parameter estimation is not performed. 

f 
Table 4.5(a) CISl 

a”cra~c 

eBlM 
0.3670 
0.2776 
0.2075 
0.1639 
0.1477 
0.1265 
0.1093 
0.0937 
0.0762 
0.047 1 

rcisions m 

IDFM 
0.3135 
0.2637 
0.1979 
0.1680 
0.1343 
0.1162 
0.1063 
0.0945 
0.0739 
0.0473 

15 queries 

COSINE 
0.2330 
0.1665 
0.1541 
0.1323 
0.1172 
0.1042 
0.0924 
0.0834 
0.0716 
0.0484 

- 
recal I 

0.1 
0.2 
0.3 
0.4 
0.5 
0.G 
0.7 
0.8 
0.9 
1.0 

SSM 
0.2379 
0.1906 
0.1628 
0.1391 
0.1216 
O.lOGo 
0.0953 
0.08 I1 
0.0672 
0.0478 

4.3. Resdts cd Estim:llcd Non-lIin:lry Independence Model 

The regression coefficients a,, b,, c,, and <I, estimated for each collection by using Ql are shown in 
‘Table 4.7. In this table, “tf’ means a term frequency and “pts” means the number of data puinL$ used to esti- 
mate the regression cocfticicnts for each term frequency. Scattergrams and linear regressions of CRN4NUL 
collection are shown in Fig. 4.3. 
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Table 4.5(b) MEDLARS --- 

-- -- 
recall -- 

0.1 
0.2 
0.3 
0.4 
0.5 
0.G 
0.7 
0.8 
0.9 
1.0 -.-- 

avcngc ccirians 0‘ 

eBiM 1DFM 

0.8261 0.824 1 
0.7898 0.8064 
0.6948 0.6747 
0.652 1 0.6476 
0.5330 OS%50 
‘0.4362 0.4329 
0.34 62 0.3157 
0.279G 0.2755 
0.1811 0.1781 
0.065 1 0.0842 

. 10 qrlcrics 

COSINE7 
0.8595 - 
0.7133 
0.5424 
0.5039 
0.4210 
0.3718 
0.3204 
0.2676 
0.1858 
0.1189 

1.6 Irt~l>rovements bv eB1 s M (o/o) 

CISI 1 MEDLARS 1 CRN4NUL 

.O 

5.7 

-- -- 
SSM -- 

0.8700 
0.7678 
0.6454 
0.5237 
a4554 
0.4226 
0.3413 
0.2756 
0.1911 
0.1038 

I---- Table 4.7(a) Regression coefficients of ClSI 
cslirnalcd by using 61 qucrics 

=I h Cl 4 p&s 

0.0485 I 0.00034 0.01382 0.00036 191 
-0.00022 0.00024 -0.00366 0.0001;4 188 
0.00535 0.OoO10 -0.00268 0.00007 181 
0.00342 0.00005 -0.002 17 0.00004 157 
0.01432 -0.0000 1 -0.0014 1 0.00003 126 
0.005 1 s o.oooo 1 -0.00119 0.00002 84 
0.004 13 o.ooo0r -0.00059 0.00001 70 
0.0 1004 -0.00001 -0.00022 0.00001 45 
0.00102 0.0000 1 0.00007 0.00001 35 
0.0200 1 -0.00005 0.00027 0.0 28 
0.00078 0.0000 1 0.00059 0.0 13 
0.03193 -0.0000s 0.00004 0.0 7 
0.01193 0.00003 -0.00019 0.0 9 

- - -  

- I _ .  

rci:: al I 
-- 

0. 1 

CL2 
Cl.3 
Cl.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o -- 

T;hle 4.:5(c) CRN4NUL. 
avcrwx rm:isions owcr 45 wcrics 1 --L--_ q d- 

COSlNE 
--- 

0.5865 
0.4352 
0.3675 
0.2867 
0.234 1 
0.2026 
0. I.658 
0.144 1 
0.1204 
0.1131 

-- -- 
SSM .- 

0.6449 
0.4903 
0.4014 
0.2978 
0.2432 
0.2200 
0.1826 
0.1510 
0.1289 
0.1199 .- 

Using the rules BO, 131, 132, and B3, we modify the regression coefficients of Table 4.7 and make a 
modified set of regression cocflicients as shown in Table 4.8. First of all, the regression coefficients 
estimated by less than 20% of maximum yts ,are discarded, because we cm not expect enough rehbility in 
such data. In order lo decide lhe coefficients uniquely, the following set of formula is used in addition to 
(3.4)-(3.7). 

C 
#I 

’ = O 

Nil, +c, 

d”r = --iT- 
b”, = 

Awr -n, 

N 
a”, = N, (4.3) 

The first condition OF (4.3) is derived from (3,4), (3..5), and (4.1). (3.4) and (3.5) he 

c’, 2 0 ) c’ = 26,. 
I=1 

On the other hand. c’ is 0 by (4.1). Therefore all c’~‘s must be 0. The second condition of (4.3) is based on 
Ihe fill:t that probabilily vnfueS r?(ff=d;j [I) lit N seem 10 be re-eliable becWSe 

,~~ct+N4 > = 0. 9801=1 (CW), 

,;(c, +Nrl, ) =’ I .0003=1 (MEDLARS ), 

,&,+Nd,) = 0.9894=X (CRN4NUL). 
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Table 4.7(c) Regression cocflicients of CRFJ4NUL 
cstimalcd by using 110 qucrics 

tf a, 4 c, 4 pts 

1 0.08776 0.00073 0.01131 0.00123 101 
2 0.08743 0.00030 -0.0030 L 0.00054 IO1 
3 0.07063 -0.00013 -0.00267 0.0002G 98 
4 0.05260 -0.00011 -0.00070 0.00013 87 
5 0.06180 -0.0003 1 0.00040 0.00007 77 
6 0.03777 -0.Ooo19 0.00107 0.00004 62 
7 0.03653 -0.000 12 0.00117 0.00003 46 
8 0.04788 -0.0002 1 0.00239 0.00001 36 
9 0,03432 -0.00010 0.00 120 0.00002 17 
10 0.02545 -0.00007 0.00200 0.00001 17 
11 0.10018 -0.00076 0.00146 0.00001 10 
13 
13 

0.02234 -0.000 16 0.00202 0.0 5 
0.0723 1 -0.00038 0.00121 0.00001 5 

14 0.0354 I -0.Ooos2 0.00154 0.00001 3 . ..I 

T 
1 
2 
3 
4 

i 
7 
8 
9 
10 
11 
12 
13 

Table 4.7(b) Regression coefficients of MEDLARS 
cslimalcd by using 20 qucrics 

Ql h =t 4 PS 
0.07478 0.00027 -0.0007 0.00059 93 
0.05337 0.00020 -0.00194 0.00020 92 
0.0495 1 -0.00006 -0.0005 1 0.00008 90 
0.04028 -0.00007 0.00002 0.00004 77 
0.04313 -0.00014 0.00030 0.00002 GO 
0.03243 -0.00008 0.00055 0.00001 GO 
0.04757 -0.00017 -0.00045 0.0@002 40 
0.03423 -0.00012 o.ooo3o 0.0ooo1 24 
0.02769 -0.00008 0.00072 0.0 21 
0.0094 1 0.00001 0.00105 0.0 13 
0.00508 0.00001 0.00096 0.0 15 
0.03935 -0.0002 1 0.000 1s 0.00001 13 
-0.060 18 0.00074 0.0033 1 -0.00003 3 

Taking C, +Nd, as the actual value of p (lf =c-$ ] I ) at N, we obtain the following equation. 

crrr +Nd”, = Nd”, = c,+Nd,. 

This leads to the second condition of (4.3). The third condition of (4.3) is based on the assumption that the 
probability values of p(lf =dii ]R) and p (tf=dij ]I) are the same at N. This means that a proportion of a 
probability value of each term frequency to the total(total is 1) at N is the same in p(tJ =dii ]I) and 
p (rf =dji ] R ). Again we rely on a, ‘s rather than b, ‘s, then t”, must satisfy 

a, -f NVf = c’; + A’d’, = AM”, . 

If one of the following things happened, then u”, or B”, or d”, are set half of a”,+ or U’,-l or cl”,+ 
respectively. This rule is obtained by observing the experimental results of d,, that is d, =: OSd,-,. 
. a”,<0 or 6”,<0 or 6’,<0 
. a”, >a”,-1 Of 6”1 x5”+, or CL”< A”,-, 
. a”, 43.1 a”, -, or brrl co. 16-l -I or S’, <o.ld-,-, 

In order co satisfy (3.5), the linal coefficients used to calculate weights are given by 

a’ 
a, ’ = -a” 

~t7-k ’ 

b’, & +b”, CP‘ = 0.0 6, = +-CT, (4.4) 

C-c Cd”k 
k=l k=l kc1 

So far, since we do not consider 133, we have to make sure that weighting functions derived from (4.3) and 
(4.4) are decreasing functions of document frequency. Again, although (4.3) and (4.4) do not guarantee any 
optimality of choices, it usually gives reasonable-performances. The weighting functions derived from Table 
4.8(c) are shown in Fig. 4.4. 
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-Talble 4.8(a) Modilied coefficients ‘;;i’-cTsI 

-8-r a’, b’, r c’ d’, 

--- 
T;rblc 4.X(h) Modified coefficients of MEDLARS =-- 
tf 

f 

yBy=B~- 
0 I bt ct dt 

-i- o.cm--- 0.000634 0.0 ----6.oooGo 1 
2 
3 

1 4 
5 
c 
7 

0.02000 1 o.ooi359 0.000374’ 
0.000139 
o.ooooG9 
0.000039 
o.oooo29 
O.OOOol9 
o.ooooto 
0.000005 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

O.QIQQOl O.QQQ147 
0.002206 O.ooooG9 
0.0014 10 o.oooo39 
0.ooo705 o.Oooo21 
0.000353 o.oooO17 
O.UOO176 0.000007 

O.C~186G5 
0.017315 
0.008754 
O.CW478 
0.002379 
0.00 t 183 
0.000595 
0.000074 

0.0 0.QQO20 
0.0 C1.00008 
0.0 0.00004 
0.0 Cl.oOOo2 
0.0 o..Qooo11 
0.0 O.OOOOO5 
0.0 o.oooo3 
0.0 o.oooo1 -- - 

0.000180 
0.000039 
0.000019 
0.oOoB10 
O.OOOOO5 
0 .ooooo2 

0.000cKl12 
0.0000006 - - _ . 

I 8 0.000088 0.000004 

Table 4.8(c) Modified coefficients of CRN4NUI.~ k tf I 
aI b’t c’t 6, = 

1 0.023502 -0.001457 0.0 0.00127- 

Table 4.9(a) CT--- 
avcmgc pfccisions ov I5 qucrics 

eNBlM I IDFM COSINE 
-~ -- 
recall SSM 

.0*2379 
0.1906 
0.1628 
0.1391 
0.1216 
0.1060 
0.0953 
0.08 11 
0.0672 
0.0478 

0.0 0.00054 
0.0 0.00026 
0.0 O.Oool3 
0.0 0.00007 
0.0 0.00004 
0.0 o.oooo3 
0.0 0.00002 

0.0234 14 0.000453 
0.018915 O.OOo12l 
0.009627 0.00&60 
0.005582 o.oooo3o 
0.003592 0.0000 t 5 
0.003102 0.000008 
0.001466 0.000004 - 

a.1 0.3784 0.3135 0.2330 
0.2 0.2923 0.2637 0.1665 
0.3 0.204 6 0.1979 0.1541 
0.4 0.1771 0.1680 0.1323 
0.5 0.1502 0.1343 0.1172 
0.G 0.1324 0.1 I62 0.1042 
0.7 0.1111 0.1063 0.0924 
0.8 0.0992 0.0945 0.0834 
0.9 0.0785 0.0739 0.07 16 
1.0 0.048 I 0.0473 0.0484 

I Table 4.9(b) MEDLARS 1 avcragc recisions 0’ la quck 

eNDIM IDFM COSINE 

0.8397 0.824 1 0.8595 
0.8175 0.8064 0.7 l-33 
0.7685 0.6747 OS424 

0.6443 0.6476 0.5039 
0.5557 0.5560 0.4210 

0.447 3 0.4329 0.37 18 
0.3940 0.3157 0.3204 
0.2887 0.2755 0.2676 
0.1494 0.1781 0.1858 
0.07@ 0.0842 0.1189 

mT;lble 4.10 I mprovements by eNBIM (%) 1 

-- -- 
recall -- 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

~- -- 
SSM -- 

0.8700 
0.7678 
0.6454 
0.5237 
0.4554 
0.4226 
0.3413 
0.2756 
0.1911 
0.1048 -- 

c - 

2LczrE 
rec.aIl 

0.1 

i:; 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 -- 

- 

I 

Table 4.9(c) CRN4NUL 
avcragc ccisions over 45 queries 

eNBlM IDFM COSINE 

0.6449 0.6464 O.SS&- 
0.5444 0.4998 0.4352 
0.4501 0.3865 0.3675 
0.3935 0.3290 0.2867 
0.3 104 0.28G3 0.234 I 
0.2586 0.25 15 0.2026 
0.2052 0.2015 0.1658 
0.1561 0.1577 O.l44l 
0.1262 0.1350 0.1204 
0.1155 0.1246 O.ll31 

SSM 

0.6449 
0.4903 
0.4014 
0.2978 
0.2432 
0.2200 
0.1826 
0.1510 
0.1289 
0.1199 

MEDLARS 1 CRN4NUL 

2.4 I 4.2 

11.0 19.4 

4.4 I 11.0 

The performance of the estimated non-binary independence model using the regression coefficients of 
Table 4.8 is shown in Table 4.9 with the performances of the other three methods. The numbers appearing in 
Table 4.9 are the average precisions over the queries contained in Qz. Improvements of the estimated non- 
binary independence model compared to the other three method are shown in Table 4.tO. This table shows 
that the estimated non-binary independence mode:1 retrieves documents, for instance, 8.3% better than the 
inverse document frequency method, and 30.8% better than the cosine measure in CISI collection. 
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5. Motivations of the Second Method 

The first method may be unable to make the most of relevance information. For instance, the method 
can not distinguish terms of the same document frequency an&or term frequency. Another disadvantage is 
that we have to bring in some empirical rules to determine the coefficients uniquely. In order to compensate 
these disadvantages, a formula is given to learn optimal weights of the non-binary independence model. The 
formula is applied to the same three document collections. Effects of a coeflicient used in the formula and 
the number of learning times on retrieval performances are measured in terms of average improvements com- 
pared to the inverse document frequency method. 

6. Learning Scheme 

6.1. Learning Formula 

A learning formula used in the experiments is as follows. 

Wk,,VjJf) = W&u-jJf) + 5 b&t*, tTj 9lf 1 - wk tTj Jf II (6.1) 
J 

where wk(Ti ,tf ) is a weight of j” 
optimal weight of j* 

term Tj with term frequency tf after learning k times, w+ (Tj,tf ) is 
term Tj with term frequency tf by the non-binary independence model, c is a learning 

cocflicient, and nj is document frequency of term Tj. Although wO,,, (T; ,tf ) is determined not only by Tj 
and rf but also by a query in a learning query set, we do not express it explicitly here for simplicity of 
expression. wk (‘fj Jf ) and Wo,wr (rj Jf ) will be abbreviated as wk and wOP, in the sequel. 

The reason why document frequency ni is incorporated in this formula is that weights of term Tj are 
learned mxnj times at every iteration of learning, where m is the number of occurrences of term Tj in the 
learning query set. This means that weights of high document frequency terms are learned many more times 
than weights of low document frequency term. Document frequency nj in the formula (6.1) prevents this ine- 
quality in learning. 

6.2. Properties of Learning Formula 

It can be easily derived from (6.1) that the formula expressing wt by we (initial weight) is as follows. 

wk = Il - (~-~)‘lk-p, - WO) + WO- 62) 

From (6.2), we recognize that if z is close to one, then (1 - A)’ 
“i “i 

rapidly approaches to zero as k 

increases, and this means w, rapidly approaches to wOPl with times of learning. 

If c 
“i 

is very small and k is also small, then the following approximation holds. 

And (6.2) becomes 

kc 
wk = wo + -(w,,, - wg). 

nj 

This means that k steps of learning using c is almost equivalent to one step of learning using kc, provided 

2 is very small and k is also small. 
“i 

This relation of learning coefficients and the number of learning steps will be observed in the results of 
the experiments in section 7. 

If wopr is unique, then wk never overshoo& or undershoots wO,,, as far as $ is less than one. How- 

ever, as pointed out in 6.1, the values of w+ may be different for different query, and this may cause wk to 
overshoot or undershoot some values of wd,,, . 

6.3 Learning Procedure 

The following is the learning procedure used in the experiments. 

lo Assign a weight by the inverse document frequency method to each query term contained in a learning 
query set as an initial weight. 

2” Using (6.1) and the learning query set, modify weights in documents. 
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3” Using another query set, evaluate performance of the weights modified in k’. Cornpare the Performance 
of the weights to the performance of the irrverse document frequency method. 

40 Go to 2O until the learning is executed sufficient times. 
The following example illustrates the learning pmcedu.re described abuve. 
Example Suppose that term Tr has the following distribution of term frequencies in total ten docu- 

ments. 

Term-Dot D, Dz LJ3 0, D5 O6 0, Ds n9 a IO 
Tl 0 1 2 0 0 1 0 1 2 0 

Then initial weights of documents are 

Term-Dot D, D2 D3 D4 Ds D6 0, Dll Dg DIO 
Tl 0 log2 log2 0 0 IO&2 0 log2 log2 0 

Suppose that DIA are non-relevant an&,-10 are relevant to the example query. Then 

w,,,(T,,l) = log; = -0.29. 

wopl (T, ,2) = log? = 0.4. 

w&(Tr,l) is learned three times, and wk (TI,2) is learned two times during one iteration of leaming(i.e. going 
through all documents having the term). Therefore during first time of learning with coefficient 0.2, the 
weights are changed after one iteration of learning as follows. 

w,(T~,I) = fog2 -I- - log 2) = 0.65. 

w2(Tl,1) = 0.65 -t - 0.65) = 0.61, 

w,(T 1.1) = 0.61 -t - 0.61) = 0.57. 

w*(Tr,2) = log2 -I- log 2) = 0.68, 

w2(TIr2) = 0.68 -F +10g;- - 0.68) = O.G7. 

The weights in the documents are changed as follows. 

Term-Dot D, D2 R3 D4 Ds D6 0, D8 Dg DlO 
7-1 0 0.57 0.67 0 0 0.57 0 0.57 0.67 0 

0 

7. Experimental Results of the Second Method 
The experiments are performed on three different document collections, CISI, MEDLARS, and 

CRN4NUL. The query sets for learning and evaluation are the same as those in the experiments of section 
4, that is to say, Q r and Q2, respectively. 

Five different learning coefficients ranging: from 0.002 to 0.1 are experimented. Learning curves of 
each learning coefficient are shown in Fig.7.1. The improvement in the figure is measured compared to the 

inverse document frequency method. The precision-recafl graph of the Iearning formula after 10 times of 
learning with coefficient 0.016 in CISI collection is shown in Fig.7.2 with the precision-recall of the inverse 
document frequency method. 

Table 7.1 shows recall-precision of the formuIa after each time of learning in CISI. From this table, we 
can observe that one step of learning with coefficient 0.016 is almost equal to two steps of learning with 
coefficient 0.008 as pointed out in section 6. 

Tabfe 7.2 shows average improvements of the scheme using coefficient 0.016 after 10 times of learn- 
ing- ‘fue improvements are measured compared to the inverse document frequency method. 

Table 7.2 Improvements by the scheme (%) 
pjf++fg 

-212- 



0.5 3.ll 4.9 ~3.2 6.2 6.8 6.1 8.1 II.1 9.5 9.7 
0.6 3.0 3.1 5.4 6.3 6.7 7.6 7.6 7.1 7.6 7.9 ___ 

0.7 2.6 4.2 4.6 5.4 5.8 5.4 J.3 5.6 5.4 5+7 

OJJ 4.1 3.6 3.2 19 1.6 1.7 I.0 0.8 0.9 I.3 - _ 

xi 4.2 5.3 5.4 5.7 5.7 7.1 7.1 7.2 6.9 7.0 

3.9 tll 1.2 0.1 I.3 1.6 26 3.0 2.7 2.9 
0.9 0.2 I.2 Z-5 2.8 3.5 3.8 4.7 5.2 6.3 6.1 0.9 I.2 28 3.8 5.2 6.0 5.7 6.2 6.2 6.5 6.3 
I.0 1.5 Id I.6 1.7 2.3 2.2 2.2 2.1 21 2.1 1.0 1.6 1.7 2.2 2.1 2.1 2.3 2.3 2.3 2.5 2J ! , 

**cragI 2.4 2.9 3.5 3.8 4.1 4.3 4.5 4.6 4.7 5.1 average 2.9 3.8 4.2 A.5 5.2 5.S 63 6.7 7.2 7.8 p 
. 

Table 7.3 summarizes the best results of improvements above the inverse document frequency method, 
for each collection we obtained in the experiments. We do not have a systematic method to determine the 
coefkients and the learning times shown in tie table. 

Table 7.3 Best results 
Collection, CISI MEDLARS CRN4NUL 
best result(%) 15.35 2.37 7.49 
coefficient 0.2 0*2 0.1 
learning times 4 3 1 

From Fig.7.1-2, we observe the following results. 

(I) Improvement in performance is observed in every collection when the learning coefkient is 
smal1(0.002-0.016). 

(2) The improvement of MEDLARS is small compared to those of GIST and CRN4NUL. 

(3) The performance. is rapidly deteriorated in CRN4NUL after the Jirst learning with the coefJicient 0.1. 

One reason of (2) is that the size of learning data of MEDLARS is small compared to the other collec- 
tions. In MJZDLARS, 20 queries are used for learning in contrast to 61 queries of CISI and 110 queries of 
CRN4NUL. Another reason is that a term in Qz does not always appear in Q J. As described in 4.2.. cri- 
terion] can not be satisfied by MEDLARS in the partition of the query set, and only 22 query terms out of 
88 total query terms contained in Q2 appear in Q r. 

The reason of (1) and (3) is that a weight of a query term of every term frequency is approaching to 
its optimal weight after each time of learning as far as a learning coefkicnt is small. On the other hand, 
when a learning coefJicient is large. a weight of some query terms may overshoot its optimai weight and is 
overestimated in a query as shown in tie following example. 

Example Suppose that term Tj has document frequency one, and three queries use term Tj in a leam- 
ing query set. Optimal weights for the queries and the initiaJ weight are as follows(Fig.?.3(a)). 

WOPl (‘1 = 2.0 

w&?-p1 (2) = 4.0 

w$ = 3.5 

wg= 1.0 

If tie learning coefkient c is set 0.2, then in the first time of Jcaming, wk is modified as follows. 

w 1 = 1.0+0.2(2.0-1.0) = 1.2 

w2 = 1.2+0.2(4&1.2) = 1.76 

W3 = 1.76+02(3.5-I-76) = 2.11 

ws aIready exceeds wopl. (‘I After the second time of Iearning w6 becomes 2.68 and w9 is 2.96 after the third 
time of leaming(Fig.7.3(b)).O 

The above example shows lhat a learning with large coefficient or many times of learning may cause 
overshootings of optimal weights for some queries. This means that an unimportant term in some queries 
may be overestimated and deteriorate performance. If we call the cocffcient a critical coefficient when using 
it shows good improvement after Jirst few leamings, but deteriorates performance after that, then Ihe critical 
coefficient for CJXN4NUL is around 0.1. The critical cocfJicients for ClSI and MEDLARS are not obvious 
like CRN4NUL, and they ‘may be about 2.5 for CISI and 0.6 for MEDLARS as shown in Fig.7.4. Because 
of the equivalence of the learning coefficient and times of learning as shown in 6.2., the concept of the criti- 
cal coefficient corresponds to (coefficient) x (learning times). This means that even though a small coefficient 
is used in learning. it may deteriorate performance after many times of learning. 
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8. Conclusions 
The parameter values used in the binary independence, model and the non-binary independence model 

are estimated by using linear regressions and some constraints and rules in t.he first method. The optimal 
weighting functions are derived from the estimations and their performances are measured and compared to 
the performance of the inverse document frequen#:y method, the cosine measure, and the statisticat :similarity 
measure. In the experiments using three different collections of documents, the estimated binary indepen- 
dence. model shows on the average ahout 1.9%. 16.9%, and LO.8% better performance than the: inverse docu- 
ment frequency method, the cosine measure, and the statistical simiIarity measure:, respectively. The 
estim,ated non-binary independence model shows on the average about S%, 20.3%. and 14.1% better perfor- 
mance than the inverse document frequency merhod, the cosine measure, and the statistical similarity meas- 
ure, respecrively. 

Even though the two estimated models presented here show better performances than the three other 
methods. the discrepancy of the performances between the estimated models and the theoretical models is 
immense (Table 8.1). and there seems to be much room to improve the estimation method. One reason of 
this discrepancy is lack of sufficient data Lo make estimations accurate. Another reason is that there is much 
ambiguity in deciding the regression coefficients uniquely. We use some empirical rules in addition to the. 
constraints on probability vatues and weighting functions to decide regression coefficients uniquely. We do 
not Lhink that we choose the best possible set of rules and constraints. There might be more reasonable set of 
rules and constraints. For instance, the rule that ,weights of high term frequency should be larger than those 
of low term frequency may be a more reasonable constraint than the constraint B2 of se&on 3.2.. or we 
shouId take into account a suitable model of term frequency distributions[BoSw]. Another possible reason is 
that we discard some data of high term frequencies in the experiments of the estimated non-binary model. 
Aggregating the data might be a more reasonable way to estimate the coefficiems than discarding them in 
step 4 of 3.2. 

r Table 8.1 CiSl 
pclfoml 

recall 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I .o 

am - 

I 

:cs or lhcorclic 

eBiM 
0.3670 
0.2776 
0.2075 
0.1639 
0.1477 
0.1265 
0.1093 
0.0937 
0.0762 
0.047 1 

and cslimalcd 

= BIM 
--x4845 

0.4208 
0.3228 
0.2809 
0.2472 
0.2234 
0.1646 
0.1207 
0.1007 
II.0515 - 

m odctr(avcra~c over 15 sucrics~ 
--A 

I 

eNBlM 
0.3784 
0.2923 
0.2046 
0.1771 
0.1502 
0.1324 
0.1111 
0.0992 
0.0785 
0.0481 

1 
N&M 

0.7718 
0.6798 
0.5394 
0.4684 
0.3905 
0.3417 
0.2856 
0.2057 
0.1664 
0.1034 

A scheme for learning optimal weights of the non-binary model is presented. The experimental results 
show that this scheme improves performance on the average 5.4% better than the inverse document fre- 
quency method. This result is slightly better than the estimated non-binary modeI. Learning with a small 
coefficient seems Lo be almost constanily improving performance with times of learnings. On the other hand, 
a leaning with a large coefficient is deteriorating performance with times of learnings. 

Validity of Lhe schemes presented here is based on the assumption that there exists some similarity 
between significances of terms in a learning query set and that of the queries in a query set for evaluation. In 
other words, we expect that a vatuable query term in a learning query set is also valuable in the other set, 
and non-valuabIe term in a Ieaming query set is also non-valuable in the other set. This seems to be true to 
some extent. However, the degree of significance of Lhe term in a query may not be the same as that in 
another query. That is why we obtain some improvement in the experiments, but it is not sufliciently 
signilicant. Another diMcuIty is that mechanical ways to determine the parameters used in the schemes are 
hard to Iind out, g in the detemlination of the regression coefficients in the first method and the appropriate 
leamjing coefficient in the second method. 

Future directions of research are as follows: 
(1) Seek a different formula which does not show deterioration as the number of IeafIIingS inCmSe5. 

(2) Seek a way Co differentiate Lhe usage of a term by one user from that of a differen! user. A methodol- 
ogy to differentiate the usage of a term in one context From the term in another context is sketched in 
CYUI. 

--214- 



(3) Eliminate dependencies of terms. An elimination of term dependencies is attempted in [WOZW], 
experimented in tWoYa1, and achieves some improvement. 

(4) Incorporate nOrmaliZatiOn by document size into the schemes reported here. We compared 0~ resulk 
mainly with the basic methods-- the inverse document frequency method and the cosine measure. 
Other methods might give better results than the basic methods. For instance, the method based on the 
inverse document frequency and improved by normalization[Crofl, or the method based on the cosine 
measure and improved by taking into account term frequencies[Salt2] gives better performance than 
the basic methods. The experiments shown in this paper are not intended to show that these learning 
schemes achieve the best performance among the known retrieval methods. Rather it shows a more 
fundamental fact. that is, learning does help to improve retrieval performance. We expect better per- 
formance if normalization by document size is incorporated into the learning methc+ 
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