
Semantic Search via XML Fragments:
A High-Precision Approach to IR

Jennifer Chu-Carroll1, John Prager1, Krzysztof Czuba2, David Ferrucci1, and Pablo Duboue1

1IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA
2Google Inc., 1440 Broadway, 21st Floor, New York, NY 10018, USA

{jencc,jprager,ferrucci,duboue}@us.ibm.com; kczuba@google.com

ABSTRACT
In some IR applications, it is desirable to adopt a high preci-
sion search strategy to return a small set of documents that
are highly focused and relevant to the user’s information
need. With these applications in mind, we investigate se-
mantic search using the XML Fragments query language on
text corpora automatically pre-processed to encode seman-
tic information useful for retrieval. We identify three XML
Fragment operations that can be applied to a query to con-
ceptualize, restrict, or relate terms in the query. We demon-
strate how these operations can be used to address four dif-
ferent query-time semantic needs: to specify target informa-
tion type, to disambiguate keywords, to specify search term
context, or to relate select terms in the query. We demon-
strate the effectiveness of our semantic search technology
through a series of experiments using the two applications
in which we embed this technology and show that it yields
significant improvement in precision in the search results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Languages, Experimentation

Keywords
Semantic Search, XML Retrieval, Question Answering

1. INTRODUCTION
In some IR applications, in particular those in which search

results are directly presented for user consumption, it may
be highly desirable to employ a search strategy that strongly
favors precision at the possible cost of a loss in recall. Take,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’06, August 6–11, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-369-7/06/0008 ...$5.00.

for example, an intelligence analyst trying to find out whether
there is nuclear technology transfer between North Korea
and Syria. It may be preferable for a system to present to
the analyst (at least initially) a small set of documents to
confirm incidents of such technology transfers, than to re-
turn a much larger and noisier document set from which a
list of all transfers of this nature can be compiled.

With this class of applications in mind, we investigate,
on unstructured text documents, the use of semantic search
techniques, which have primarily been adopted in search
on the Semantic Web or in collections of highly structured
XML documents (cf. [7, 4]). Rather than rely on document
authors to encode semantic information as metadata, we
employ automatic named entity and relation recognizers to
pre-process text corpora and identify the semantic informa-
tion we intend to leverage to improve search performance.

In our applications, there are some frequently-occurring
query-time semantic needs, such as specifying target infor-
mation type, disambiguating keywords, specifying search term
context, and relating select query terms. To construct high-
precision semantic queries to address these needs, we adopt
the XML Fragments query language [3] because of its expres-
siveness and the availability of a search engine that supports
the query language. In a nutshell, XML Fragments allow
XML tags to surround query terms as a way to constrain the
semantics of those terms. We identify three XML Fragment
operations that can be applied to a query to conceptualize,
restrict, or relate terms in the query, and we demonstrate
how they can be utilized to address our query-time seman-
tic needs. Since these operations constrain the underlying
query, it is expected to yield more focused and more precise
search results. Obviously, the impact of these operations on
the precision and recall of retrieval results is directly affected
by the accuracy of the named entity and relation recognizers
used to analyze the corpus. In the case of perfect annota-
tion, there should be a significant increase in precision with
no loss in recall. We show that even in the face of imperfect
annotations, our experiments yield significant improvement
in precision in the search results.

The rest of the paper is organized as follows. Section 2
gives a brief overview of XML Fragments, while Section 3 de-
scribes how we pre-process our corpora to encode semantic
information. In Section 4 we discuss the three XML Frag-
ment operations and their four use cases. Section 5 presents
experimental setup and results. Finally, we discuss related
work and conclude.

445

<Book>
<Title>My Life</Title>
<Author>

<FirstName>Bill</FirstName>
<LastName>Clinton</LastName>

</Author>
<Publisher>Knopf</Publisher>
<PubDate>2004</PubDate>

</Book>
<Book>

<Title>
The Survivor: Bill Clinton in the White House

</Title>
<Author>

<FirstName>John</FirstName>
<LastName>Harris</LastName>

</Author>
<Publisher>Random House</Publisher>
<PubDate>2005</PubDate>

</Book>

Figure 1: Two Sample Book Documents

2. XML FRAGMENTS OVERVIEW
XML Fragments were initially developed to enable view-

ing and editing of parts of an XML document [6]. [3, 2]
introduced the idea of using XML Fragments as a document-
centric means to specifying queries for searching XML docu-
ments and showed it to be sufficiently expressive to address
most information needs in multiple domains. In this section
we give a brief overview of the subset of the XML Fragments
query capabilities relevant to the discussion in this paper.

Consider a canonical example on the retrieval of book in-
formation encoded as XML documents in Figure 1. The
XML Fragment query [[<Book> Bill Clinton </Book>]],
which allows Bill and Clinton to appear anywhere inside a
Book tag, retrieves both documents, while [[<Book><Author>
Bill Clinton </Author></Book>]] retrieves only the first
document. In the above and subsequent examples, we de-
note the boundaries of XML Fragment queries with double
square brackets ([[. . .]]) for better readability.

In addition to XML tags, XML Fragments support classi-
cal operators such as “+”, “–”, and phrase. The phrase oper-
ator applies to content within XML tags, such as [[<Title>
“White House” </Title>]], while “+” and “–” apply also to
XML Fragments themselves. For example, [[<Book><Title>
Bill +Clinton </Title> </Book>]] requires that all books
retrieved have titles containing Clinton, while [[<Book>
+<PubDate> </PubDate> </Book>]] retrieves only those
books with publication dates in their records. Additionally,
the language supports numeric comparison operators repre-
sented as XML tags. For instance, [[<Book> <PubDate>
<.GE.> 1999 </.GE.> </PubDate> </Book>]] retrieves
books published in or after 1999. For further details on the
XML Fragment query language, see [3].

3. CORPUS ANALYSIS FOR XML RETRIEVAL
Much of the effort in the document-centric view of XML

search has focused on developing query languages and search
methodologies for the retrieval of XML documents, an ex-
ample of which was discussed in the previous section. While
this search paradigm has been shown to be effective in re-

President Clinton was born William Jefferson Blythe
IV on August 19, 1946, in Hope, Arkansas, three
months after his father died in a traffic accident.
When he was four years old, his mother wed Roger
Clinton, of Hot Springs, Arkansas. In high school,
he took the family name.

Clinton was graduated from Georgetown University
and in 1968 won a Rhodes Scholarship to Oxford
University. He received a law degree from Yale Uni-
versity in 1973, and entered politics in Arkansas.

Figure 2: Sample Excerpt From Clinton’s Biography

<BirthPlaceOf> <BirthDateOf> <Alias>
<Person> President Clinton </Person> was
born <Person> William Jefferson Blythe IV
</Person></Alias> on <Date> August 19,
1946 </Date> </BirthDateOf>, in <City>
Hope, Arkansas </City> </BirthPlaceOf>,
three months after his father died in a traf-
fic accident. When he was four years old,
<SpouseOf> <Person> his mother </Person>
wed <Person> Roger Clinton </Person>
</SpouseOf>, of <City> Hot Springs, Arkansas
</City>. In high school, he took the family name.

<AlmaMater> <Person> Clinton </Person>
was graduated from <College> Georgetown Uni-
versity </College> </AlmaMater> and in
<Date> 1968 </Date> won a Rhodes Scholar-
ship to <College> Oxford University </College>.
<AlmaMater> <Person ref=”Clinton”> He
</Person> received a law degree from <College>
Yale University </College> </AlmaMater> in
<Date> 1973 </Date>, and entered politics in
<UsState> Arkansas </UsState>.

Figure 3: Sample Annotations of Text in Figure 2

trieving existing XML documents where the semantics of
text segments are clearly encoded, the majority of electronic
documents available today are significantly less structured
than the examples shown in Figure 1. We believe that XML
search can be more broadly applicable if existing unanno-
tated documents can be automatically processed to include
useful semantic information which can subsequently be used
to improve search results. In particular, we are interested
in annotating semantic information, such as named enti-
ties and relations, that can be reasonably reliably extracted
from text, and in exploring alternative ways in which this
semantic information may be exploited by XML search to
improve retrieval performance. For example, Figure 3 shows
how the unstructured text in Figure 2 may be annotated
with named entities, such as Person, Date, and College, and
relations, such as BirthDateOf and AlmaMater, of general
interest (some annotations are omitted for space reasons).

There are ample techniques and systems in the area of in-
formation extraction for creating named entity and relation
annotations analogous to those shown in Figure 3 (cf. [1,
19]). In this paper, we will focus on the alternative ways
in which we exploit the XML Fragment query language to
perform semantic search over a text corpus pre-processed
with a set of named entity and/or relation annotators. We
assume that the annotators adopt a common type system,

446

and that the annotations, along with lemmatized terms in
the corpus, are stored in the search index. This technique
is an extension of Predictive Annotation in [15] and of [14].

4. USING XML FRAGMENTS FOR
SEMANTIC SEARCH

In our work, we focus on enriching query expressiveness to
address four query-time semantic needs and to yield higher
precision search results. We have identified three operations
for this purpose that one may apply using the XML Frag-
ment query syntax with its classical operators [2]:

• The conceptualization operation, which generalizes
a lexical string to an appropriate concept in the type
system represented by that string. For example, the
query animal returns documents containing the word
“animal”, while the conceptual query [[<Animal>
</Animal>]] retrieves documents containing the anno-
tation Animal, which applies to all subtypes of the con-
cept animal, e.g., lion, owl, and salmon.

• The restriction operation, which constrains the XML
tags in which keywords must appear to be considered rel-
evant. For example, [[<Animal> bass </Animal>]] re-
turns documents in which the literal “bass” is used in its
fish sense, while [[<Instrument> bass </Instrument>]]
retrieves those where it represents a musical instrument.
Note that in this operation, the span of the specified an-
notation needs to contain the span of the keywords, but
need not exactly match it. For instance, [[<Animal>
bass </Animal>]] will match both highlighted instances
in the sentence Fish in the <Animal> bass </Animal>
family include <Animal> striped bass </Animal>.

• The relation operation, in which the annotation rep-
resents a relation that holds between terms covered by
the annotation. These relations may be syntactic, e.g.,
[[<SubjectVerb> Unabomber kill </SubjectVerb>]], se-
mantic, e.g., [[<Kill> Unabomber <Person> </Person>
</Kill>]], or pragmatic, e.g., [[<HasNegativeOpinion>
Clinton war on Iraq </HasNegativeOpinion>]]. In ad-
dition, the XML Fragment query syntax allows for nest-
ing of relation and entity annotations, e.g., [[<Visit>
<Person> John </Person> <Person> Victoria
</Person> </Visit>]]. This generally matches docu-
ments where John and Victoria visited one another but
excludes those where John visited the city of Victoria.

Using XML Fragments to enable the conceptualization,
restriction, and relation operations allows us to enhance the
expressiveness of user queries and to obtain better search re-
sults. We have utilized these three operations to express four
different query-time semantic needs, i.e. to specify target in-
formation type, to disambiguate keywords, to specify search
term context, and to specify relations between select terms,
which we discuss in detail in the following sections. Note
that the ways we applied the operations place additional
constraints on the queries compared to keyword queries,
thus we expect them to result in more focused, higher pre-
cision queries at the possible expense of recall.1

1Another application of the conceptualization operation cor-
responds to walking up a hierarchy to generalize concepts in
the query, resulting in a more recall-oriented query. We do
not address this use of the operation in this paper.

4.1 Target Information Type Specification
The conceptualization operation, indicated by the XML

Fragment [[<tag></tag>]], enables semantic search queries
that explicitly specify the semantic type of the information
the user is seeking. The inclusion of the target information
type ensures that each returned document contains some in-
formation of the target type that could potentially satisfy
the user’s information need. This capability is particularly
useful when 1) the query consists of low idf keywords, and
2) the target information does not frequently co-occur with
these keywords. For example, suppose the user wants to
find the zip code for the White House. In a typical newswire
corpus, the query “white house” will retrieve a large num-
ber of documents. However, few, if any, of them are likely
to mention its zip code, which co-occurs with the search
terms fairly infrequently. Adding “zip code” to the query
is unlikely to improve the results as the most common con-
text in which the correct answer is mentioned is as part
of the address: The White House, 1600 Pennsylvania Av-
enue NW, Washington, DC 20500, without explicit indica-
tion that 20050 represents the zip code.2 On the other hand,
the query [[+“white house” +<Zipcode></Zipcode>]] will
only retrieve documents containing both “white house” and
a Zipcode annotation. This query will successfully retrieve
documents containing the above sentence, assuming 20050
was annotated as a Zipcode, a fairly straightforward task
given the regularity of most street address expressions.

In addition to the zip code example, target information
types suitable for this operation include, for instance, Pho-
neNumber, StreetAddress, URL, and Date where the lexical
formats of the target strings for the most part unambigu-
ously identify their semantic types. Thus, they are often
not cued by relevant keywords that would facilitate their re-
trieval. Without the conceptualization operation, it would
be difficult, if not impossible to locate such information in a
large corpus. In other cases, information may equally likely
be expressed in textual description or through an estab-
lished convention. For instance, one may say “John Gr-
isham’s ‘The Testament’ (1999) was a bestseller.” Here be-
ing able to recognize “1999” as a PubDate enables retrieval
of those documents where publication dates are expressed
in this convention and which would otherwise be difficult to
retrieve.

We have utilized this capability of specifying target infor-
mation type in two applications. The first is the Semantic
Analysis Workbench (SAW) for exploring different search
paradigms, one of which supports semantic search with con-
ceptualization capability [11]. In the SAW, the user can
include desired concepts in the query to focus search either
by directly typing “<tag></tag>” as part of the query or
selecting tag from a dropdown list of available types. The
second application is an open-domain question answering
(QA) system in which the concept included in the query
represents the semantic type of the answer the user is seek-
ing [15]. In this system, the search query is automatically
generated after the user’s question is analyzed to deter-
mine, among other things, the answer semantic type and
the salient terms in the question. For instance, the ques-
tion “What is the telephone number for the University of

2In our reference corpus of one million news articles, the
queries +“white house” combined with either +“zip code”
or +zipcode yielded empty hitlists.

447

Kentucky?” results in the following XML Fragment query:
[[+<PhoneNumber></PhoneNumber> +“University of Ken-
tucky”]], while “How long is the Rio Grande?” yields
[[+<Length> </Length> +“Rio Grande” long]].

4.2 Search Term Disambiguation
The restriction operation can be applied to disambiguate

terms based on their word senses, thus focusing search to-
ward retrieving documents more likely to match the user’s
information need. This operation is particularly useful when
the query terms have multiple senses in the corpus and when
either the senses are fairly evenly distributed or when the
user intends a minority word sense. For example, the string
“Victoria” can be annotated as a City (city name in many
countries), County (county name in a few countries), State
(in Australia), Person (as a first name), Royalty (British
Queen), or Deity (Roman goddess). In order to focus search
on specific interpretations of “Victoria”, for instance as a
city or royalty, we can use the restriction operation to dis-
ambiguate the search term by generating the query [[<City>
Victoria </City>]] or [[<Royalty>Victoria</Royalty>]], re-
spectively. Our use of the restriction operation here can
be viewed as a coarser grained application of WSD in IR
adopted by earlier systems (cf. [13, 17]).

One may argue that in some cases, inclusion of extra dis-
ambiguating keywords can yield similar search results with-
out the XML Fragment disambiguation capability. For ex-
ample, the query +city +Victoria is likely to steer search re-
sults in the same direction as [[<City> Victoria </City>]]
and similarly +Queen +Victoria may be used in lieu of
[[<Royalty> Victoria </Royalty>]]. We agree with this
observation with respect to these examples where very spe-
cific information is sought; however, we maintain that our
semantic search approach offers a more desirable solution
than the use of disambiguating keywords in that it 1) pro-
vides a uniform query representation, 2) eliminates the need
for query-time keyword selection for disambiguation, and 3)
enables higher precision query with potentially lower loss in
recall. We illustrate these advantages by way of the following
example. Suppose a user is interested in finding out about
geographic locations named “Victoria”. With XML Frag-
ments, formulating a query involves finding the semantic
type in the type system that covers all geographic entities,
in this case, GPE (GeoPolitical Entity). This results in the
query [[<GPE> Victoria </GPE>]] which is analogous in
form to the semantic query representing the city of Victoria.
On the other hand, without using the restriction operator,
it is up to the user to come up with a list of geographic
“units” for disambiguation and to construct a query such as
[[+Victoria +<>city state county</>]].3 With semantic
search, this burden of knowing what kinds of location Vic-
toria can be is shifted to the developers of the named entity
recognizers (the domain experts) and to inferences within
the type system (city, state and county are all subtypes of
GPE). Furthermore, requiring disambiguating keywords as
in the example above may result in a loss in recall when the
keywords selected by the user is incomplete or when the ge-
ographic “unit” of “Victoria” is implicitly conveyed in the
document (e.g., “Victoria, British Columbia”).

We employed the restriction operation for disambiguation
in the same two applications described in the previous sec-

3The empty tags represent a disjunction. In this case, one
of city, state, or county must occur in the document.

tion. In the SAW, the semantic search paradigm also sup-
ports the restriction operation for disambiguation. This ca-
pability is useful in this end user application when the user
enters a keyword query and, upon examining the search re-
sults, discovers that a large number of irrelevant documents
are returned because a keyword is ambiguous in the target
corpus. The user can then refine the original query and for-
mulate a disambiguating XML Fragment query using the re-
striction operator, resulting in a set of documents that better
addresses his information need. In the QA application, our
named entity recognizer is invoked during the question anal-
ysis process and the restriction operation is applied to all
keywords/phrases found to be potentially ambiguous. For
example, for the question “When was George Washington
born?”, the disambiguating XML Fragment query (with lem-
matized keywords) [[+<Date></Date> bear +<Person>
+George +Washington </Person>]] eliminates matches with
<College> George Washington University </College> and
<Facility> George Washington Bridge </Facility>.

4.3 Search Term Context Specification
In addition to being used for keyword disambiguation, the

restriction operation can also be used to specify the context
in which keywords should occur. In this case, the XML tags
surrounding a keyword are not used to identify the mean-
ing of the keyword, but are used to specify meta information
which will be difficult, if not impossible, to express with key-
word queries. Such meta information represents the context
of the keyword and may include syntactic information (Sub-
ject/Object), semantic information (Agent/Patient), and dis-
course information (Request/Suggest).

There is growing interest in identifying and retrieving
texts along the fact versus opinion dimension as well as the
strength and polarity of opinions (cf. [23, 24]). The identifi-
cation of opinion texts sets the context for the words appear-
ing in these texts. With proper query support, this in turn
enables the user to retrieve documents where keywords ap-
pear in particular contexts, for instance, the war on Iraq be-
ing discussed in a positive light or as part of a negative opin-
ion about US foreign policy. A sample query to retrieve rel-
evant documents using XML Fragments in this setting may
be [[<PositiveOpinion> “war on Iraq” </PositiveOpinion>]].
Note that although this query is syntactically equivalent to
the previous case in which XML Fragments are used for
keyword disambiguation, in this case, the semantic tags are
used to specify the context in which the keywords occur,
and regardless of context, the phrase “war on Iraq” is un-
ambiguous and refers to the same event.

In our work on the AQUAINT 2005 opinion pilot, the goal
was to establish a baseline performance for the task without
making use of opinion-specific annotations. Our approach
was based on the observation that many opinions in docu-
ments are expressed as direct quotes from a person’s speech,
which are annotated by our existing named entity recognizer
with the semantic type Quotation. Thus by setting the con-
text of the subject matter to appear within a Quotation in
the query we are targeting a select subset of all opinions
regarding the subject matter, i.e., those expressed in di-
rect speech. For example, for the following question, taken
from the opinion pilot test set, “What was the Pentagon
panel’s position with respect to the dispute over the US Navy
training range in the island of Vieques?”, our system gen-
erates the following XML Fragment query which includes

448

the identified opinion holder and the subject matter con-
strained in the context of a Quotation: [[+Pentagon +panel
+<Quotation> +US +Navy training range island +Vieques
</Quotation>]]. We recognize that our attempt to increase
precision may result in a loss in recall, as our approach tar-
gets only opinions expressed as direct speech. We also note
that we do not require that there be any connection, other
than textual proximity, between the opinion holder and the
subject matter, which is a potential loss in precision.4

4.4 Relation Specification
The relation operation can be used to express relations

that must hold between query terms. These relation queries
are inherently more precise than keyword queries because of
this added constraint. For example, to find out about the bi-
ological weapons Iraq owns, the following XML Fragment re-
lation query may be constructed: [[<WeaponOwner> +Iraq
+<BioWeapon> </BioWeapon> </WeaponOwner>]]. A
document matches this query if it contains a text span which
is annotated as WeaponOwner and contains the term Iraq
and an embedded text span annotated as BioWeapon. As
would be expected from text search queries, the terms within
the relation annotation are neither order nor type specific
(unless specified), so [[<Visit> Mary Sue </Visit>]] will
retrieve documents in which Mary visited Sue, Sue visited
Mary, Mary Sue (one person) visited some person or place,
or some person visited Mary Sue, among others.

As in the case for using the restriction operation for disam-
biguation, the use of the relation operation has one key ad-
vantage in that it shifts the burden of synonym expansion as
a query-time process performed by the user or search engine
to the relation annotator development process. For example,
while it is reasonable to suggest that, without the relation
operator, the user or search engine frontend may expand an
initial query such as [[+Iraq +<BioWeapon></BioWeapon>
+own]] into [[+Iraq +<BioWeapon></BioWeapon> +<>
own have possess </>]], it is much less likely that either
would come up with a query that would retrieve the sen-
tence The UN weapons inspection team confirmed the exis-
tence of Iraq’s anthrax stockpile. This is because using the
term stockpile to denote ownership is specific to this appli-
cation domain, and thus we believe that the task of making
the link between them explicit is best left to the domain
expert involved in annotator development.

A natural question that arises with using XML Fragments
to express relations is, once the relations are annotated in
the corpus, why not extract all relations and their argu-
ments and store the triplets in a database for efficient re-
trieval? This approach has been taken by many researchers,
including [11, 7], and we argue that both approaches have
their merits. While SQL queries are more precise and po-
tentially more efficient than text search, our approach of us-
ing XML Fragments for relation queries offers more flexibil-
ity and can retrieve relevant documents/relations that SQL
queries against a database recording extracted relations can-
not. The key difference is in that a database records only
the extracted relevant information, i.e., relations and their
arguments, while the semantic search index records the be-
gin and end offsets of relations with complete information

4This issue can be remedied by specifying a relation between
these two entities using the relation operation discussed in
the next section. We leave developing such a relation anno-
tator and utilizing the resulting annotations for future work.

over the text spans they cover. For example, in our system
Iraq possesses 33kg of 80 percent enriched uranium is anno-
tated as <WeaponOwner> <Nation>Iraq</Nation> pos-
sesses 33kg of 80 percent <NucWeaponAgent> enriched ura-
nium </NucWeaponAgent> </WeaponOwner>. From the
WeaponOwner annotation, a record for the database would
contain the relation name, WeaponOwner, as well as its two
arguments, Iraq and enriched uranium, thus losing the addi-
tional information 33kg and 80 percent.5 Using XML Frag-
ments, the following query (with lemmatized keywords) can
retrieve documents, including the above example, stating
that Iraq possesses uranium that is 75 percent enriched or
higher: [[<WeaponOwner> +Iraq +<.GE.> 75 </.GE.>
+percent +enrich +uranium </WeaponOwner>]].

We have made use of the relation operation in our SAW
system, where the user can formulate XML Fragment queries
containing relations. Because of the additional constraint
imposed by the relation, these queries typically retrieve fewer
relevant documents than an otherwise identical query with
the relation tag replaced by one or more keywords. This
enables the user to quickly home in on a few relevant doc-
uments with little or no noise. Our QA system provides
the capability of automatically generating XML Fragment
queries containing relations from natural language questions.
For example, the question “When did Nixon visit China?”
generates the following relation XML Fragment query
[[<HoldsDuring> +<At> +Nixon +China </At> +<Date>
</Date></HoldsDuring>]].

5. EVALUATION
Aside from enhancing the expressiveness of user queries,

our use of the three XML Fragment operations to include
target information type, to disambiguate keywords, to spec-
ify search term context, and to specify relations, results in
more constrained queries. We hypothesize that these seman-
tic search queries, even in the face of imperfect annotations,
will still result in significant improvement in precision in re-
trieval results. This section describes our experiments for
validating this hypothesis and their results for each of our
four uses of XML Fragments for semantic search. Where
possible, we use standard test and judgment sets in our eval-
uation.

5.1 Target Information Type Specification

5.1.1 Experimental Setup
In this experiment we evaluate the impact of using the

conceptualization operation to specify target information
type. The reference corpus is the 3GB AQUAINT corpus
used in the TREC QA track since 2002, which contains just
over one million news articles between 1996-2000.

The corpus is pre-processed with a named entity recog-
nizer that identifies about 100 entity types, ranging from
common types such as Person, Organization and Date, to
specific types such as PhoneNumber and URL for address-
ing particular information needs. The corpus is then pro-
cessed by the indexer and both lemmatized keywords and
the identified semantic types are stored in the index.

5It is possible to include this information in the database
by adding extra arguments to the relation. The point here,
however, is that there will always be text where extra, pre-
viously unanticipated information is provided and thus not
recorded in the database entry.

449

Table 1: Target Information Type Evaluation Re-
sults

R-Prec MAP Exact Precision
Baseline 0.4219 0.4329 0.0817
w/ Target 0.4342 0.4505∗ 0.1124∗∗

∗p < 0.01; ∗∗p < 0.001

For our test set, we used the 50 questions and relevant
judgments in the TREC 2005 QA track document task [22].6

Each question is processed by the question analysis compo-
nent of our QA system [16] to identify one or more answer
types and a set of salient keywords. The keywords and an-
swer types are used to generate an XML Fragment query,
where the conceptualization operator is applied to the an-
swer type to specify target information. For our baseline
run, a query is constructed from the keywords alone. In
other words, the only difference between the baseline run
and the run using semantic search is the presence of the con-
cept [[+<tag></tag>]] in the latter run that corresponds
to the semantic type of the answer.

5.1.2 Results and Discussion
Table 1 shows the results of this experiment in which up

to 1000 documents were returned for each query. In con-
trast to the INEX evaluation metrics [10] in which scoring
is based on the relevance of an element (part of an XML doc-
ument determined by the document structure), we evaluate
our results at the document level because the annotations
in our documents do not convey structural information. We
report both the “Precision at R” score (R-Prec, where R is
the number of relevant documents for each question), and
the MAP score, which were the two official evaluation met-
rics used in the TREC 2005 QA track document task. Our
results show a 2.9% and 4.1% relative improvement in R-
Prec and MAP scores, respectively, where the MAP score
improvement is statistically significant at the p < 0.01 level
(using the Wilcoxon Signed Rank Test in this and subse-
quent evaluations). Although both of these metrics reward
retrieving relevant documents and ranking them high in the
hitlist, neither of them takes into account the total number
of documents retrieved, which can be a critical element in
an end user application. Since all of the semantic search
operations discussed in this paper constrain the query and
presumably lead to fewer matches for each query, we include
a third evaluation metric in the table, the Exact Precision
score as returned by the trec eval script, which is the exact
precision over the retrieved document set. This measure fa-
vors queries that return the same relevant documents with a
smaller hitlist. Our Exact Precision score demonstrates that
including target information type in the query resulted in a
37.5% improvement in precision, significant at p < 0.001.

5.2 Search Term Disambiguation

5.2.1 Experimental Setup
In this experiment, where we evaluate the impact of us-

ing the restriction operation to disambiguate keywords, we
used the same corpus, index, and test set as in the previous

6In order to focus our experiment on the impact of seman-
tic search, the anaphoric expressions in questions with ref-
erents in previous questions or answers have been manually
resolved so all questions are self-contained.

Table 2: Disambiguation Evaluation Results

R-Prec MAP Exact Precision
Baseline 0.4464 0.4357 0.1443
w/ Disambiguation 0.4658 0.4409 0.1443

experiment. Our QA system was reconfigured to generate
XML Fragment queries that include, in addition to target
information type, disambiguating XML tags for query terms
that 1) are considered likely to be ambiguous based on a pre-
determined occurrence threshold, and 2) have specific de-
sired word senses as indicated in the question. We compare
this run to one without disambiguation capabilities, i.e., the
outcome of the semantic search run in the previous section.

5.2.2 Results and Discussion
In manually examining the queries generated by the two

runs, we found that most terms in this standard test set were
not considered ambiguous relative to the reference corpus.
In fact, out of the 50 questions, only 2 questions resulted
in different queries. Table 2 shows the evaluation results on
this subset of questions that yielded a difference. Our results
show a 4.3% improvement in R-Prec score and a slight gain
in MAP score; however, in both cases, the improvement is
not statistically significant due to the small sample size.

5.3 Search Term Context Specification

5.3.1 Experimental Setup
This experiment evaluates the impact of using the restric-

tion operation to specify search term context, and is again
based on the same corpus and index. The test set is 46 out of
the 50 questions in the AQUAINT 2005 opinion pilot which
were of the general form ”What does OpinionHolder think
about SubjectMatter?” Each question was processed by the
question analysis component of our QA system to extract
OpinionHolder and SubjectMatter, along with keywords in
the question that do not fall into either category. As de-
scribed in Section 4.3, the restriction operation is applied
to SubjectMatter to constrain the context in which it should
appear. In this case, the query consists of OpinionHolder,
the additional relevant keywords, and an XML Fragment
where the Quotation tag is wrapped around SubjectMatter.
For each question, the system returned up to two passages
each containing 1-3 sentences.

For the baseline run, instead of wrapping Quotation tags
around SubjectMatter, we merely added [[+<Quotation>
</Quotation>]] as the target information type. In other
words, the query still required that a direct quote be present
in the document, although the subject matter does not nec-
essarily have to be present within the quote.

5.3.2 Results and Discussion
We manually judged the two runs based on the list of

“vital” and “okay” nuggets [22] used by the NIST assessors
in the opinion pilot evaluation.7 “Vital” nuggets are those
that must be present in the returned passages while “okay”
nuggets are considered relevant but not essential. In the
opinion evaluation, an F-score is computed based on the

7Since some passages in our current runs were potentially
previously unseen by the assessors, we augmented the as-
sessors’ list in our best attempt to reproduce the assessor’s
thinking, adding 20 nuggets to their list of 233 nuggets.

450

Table 3: Context Specification Evaluation Results

Vital Nuggets # Okay Nuggets
Baseline 14 4
w/ Context 28∗ 5

∗p < 0.05

number of “vital” nuggets returned (recall) and a length
allowance determined by the total number of “vital” and
“okay” nuggets returned (precision).

Since the two runs each returned two passages of similar
average length per question, the final F-score is simply a
function of the recall of “vital” and “okay” nuggets in each
run. Given the same judgment set, we simply report the
number of “vital” and “okay” nuggets returned by each run
as shown in Table 3. Our results show that using semantic
search to specify the context of the subject matter, we re-
trieved twice as many “vital” nuggets as our baseline run,
thus effectively doubling the recall as well as precision.

5.4 Relation Specification

5.4.1 Experimental Setup
In this experiment, where we evaluate the impact of spec-

ifying relations between search terms, we used a corpus in
the national intelligence domain from the Center for Non-
Proliferation Studies (CNS) because 1) there is no standard
test set for evaluating relation semantic queries, and 2) our
relation annotators focused on this domain. This corpus
contains over 37,000 documents and is about 75MB in size.

The corpus was pre-processed with our named entity and
relation recognizers, and the resulting annotations were in-
dexed along with the lemmatized terms as in the AQUAINT
corpus. The relation recognizer identifies 10 relations in
this application domain, including ProducesWeapon (coun-
try X produces weapon Y), ImportExport (country X im-
ports/exports goods to/from country Y), and Destruction-
Potential (weapon X can kill Y people).

Our test set for this experiment targets the 10 relations
relevant to the reference corpus. For each relation, we con-
structed semantic queries by randomly instantiating its ar-
guments. For example, for ProducesWeapon we generated
[[<ProducesWeapon> +<Nation></Nation> +weapon
+grade +uranium </ProducesWeapon>]] (countries that pro-
duce weapon-grade uranium) and [[<ProducesWeapon> +Rus-
sia +<BioWeapon> </BioWeapon> </ProducesWeapon>]]
(biological weapons produced by Russia). We constructed
2-3 semantic queries for each relation, resulting in a total
of 25 queries. The baseline queries which do not make use
of relations were generated by replacing the relation in each
query with one or more keywords to express the semantics of
the relation. For example, the baseline queries for the above
two relation queries are [[+<Nation></Nation> +weapon
+grade +uranium +produce]] and [[+Russia +<BioWeapon>
</BioWeapon> +produce]], respectively.

For our evaluation runs, each query returned up to 10 doc-
uments, which correspond to the typical “first page” search
results that a user examines. The documents returned by
each question pair in the two runs are pooled and the doc-
uments manually judged by one of the authors as relevant
or irrelevant (without knowledge of which of the two runs
retrieved a particular document). The pooled judgment set
is used in the final evaluation for both runs.

Table 4: Relation Specification Evaluation Results

R-Prec MAP Exact Prec #docs/Q
Baseline 0.3895 0.4147 0.3530 9.72
With Relation 0.4139 0.4108 0.6108∗ 6.32∗∗

∗p < 0.005; ∗∗p < 0.00005

5.4.2 Results and Discussion
Table 4 shows our experimental results. While there is a

6.3% increase in R-Prec score and a very slight drop in MAP
score, the relation queries achieved a 73% relative improve-
ment in Exact Precision, which is significant at the p < 0.005
level. This result confirms our hypothesis and is expected
because 1) our relation annotators were developed to favor
precision over recall, and 2) the application of the relation
operator constrains the query and results in a more precise
hitlist. While the overall results are as expected, the statisti-
cal insignificance of the R-Prec score improvement warrants
some explanation. Because both the relation query and the
relation annotators targeted high precision, in a fair num-
ber of cases, this resulted in a loss in recall and hence a
decrease in R-Prec scores. While the substantial gain in R-
Prec scores in other questions are sufficient to result in a
net improvement, the improvement is not sufficiently uni-
form across questions to be statistically significant.

The last column in Table 4 shows the average number of
documents returned for each query. In the baseline run, the
average is very close to the maximum number of documents
requested, with only two queries retrieving fewer than the
maximum. In the relation run, however, all but three queries
returned fewer than the maximum. This result is significant
in applications where it is desirable to provide the user with
a very targeted, short hitlist that may only contain partial
evidence for the information sought. For example, if the
user wants to know whether or not Iraq has a heavy water
stockpile, returning a few documents that confirm its exis-
tence may be sufficient to meet the user’s information need.
On the other hand, a more extensive hitlist with higher re-
call that details the storage facilities and quantities may be
appropriate under a difference scenario. Based on these ob-
servations and our evaluation results, we believe that the
relation operation is a powerful semantic search query op-
eration that is suitable for applications in which high recall
is not initially an important factor and where the cost of
processing large numbers of return documents is high.

6. RELATED WORK
Semantic search is deeply related to the concept and vision

of the Semantic Web. Efforts on semantic search in this
context assume a yet-to-be-constructed, large, distributed
semantic network containing documents pre-annotated with
metadata and focus on methods for the retrieval of relevant
information from such documents [7, 8].

Research in XML query and retrieval can be divided into
document-centric, where an XML document is viewed as
text with markup, and the data-centric view, where an XML
document is just a free form database. Research in the
document-centric view has focused on marrying traditional
IR techniques over text spans and tree retrieval techniques
over XML tags [5, 2], as well as extending document repre-
sentation to support stand-off annotations [12] that allow for
the crossing of tags. In our work, we build upon these results

451

to demonstrate how the XML Fragments query language
can leverage a collection of annotated XML documents to
address different query-time semantic needs.

To improve search performance, many researchers have in-
vestigated encoding in an index additional information such
as syntactic information [18, 9, 20], word sense informa-
tion [21, 13], as well as named entity information [15, 13,
20]. Although there is some conceptual overlap between our
work and these previous efforts at the indexing stage, we
have demonstrated innovative uses of the semantic index
to significantly improve precision in search. Furthermore,
none of these previous efforts attempted to operationalize
an existing query language and systematically apply these
operations to address different query-time semantic needs.

7. CONCLUSIONS
In this paper, we have presented our work on seman-

tic search using the XML Fragments query language. We
presented three operations that are supported by the XML
Fragments query syntax: conceptualization, restriction, and
relation. When applied to a traditional keyword query,
each of these operations places additional constraints on the
query, and thus leads to more focused and more precise re-
sults. These operations are therefore particularly valuable
for applications in which the benefits of achieving high pre-
cision strongly outweighs potential loss in recall.

We further demonstrated the use of these three operators
to express different query-time semantic needs. The concep-
tualization operation was used to specify target information
type, the restriction operation was used to either disam-
biguate keywords or to specify search term context, while
the relation operation was used to specify the relation be-
tween select terms. These uses of XML Fragment operators
have been implemented and evaluated in multiple systems
and, as we hypothesized, have led to significant increase in
the precision of search results, thus validating their useful-
ness in the precision-centric class of applications.

8. ACKNOWLEDGMENTS
We would like to thank Eric Brown and Bill Murdock

for helpful discussions. This work was supposed in part by
the Disruptive Technology Office (DTO)’s Advanced Ques-
tion Answering for Intelligence (AQUAINT) Program under
contract number H98230-04-C-1577.

9. REFERENCES
[1] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel.

Nymble: a high-performance learning name-finder. In
Proc. 5th ANLP Conference, 1997.

[2] A. Broder, Y. Maarek, M. Mandelbrod, and Y. Mass.
Using XML to query XML – from theory to practice.
In Proceedings of RIAO, 2004.

[3] D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, and
A. Soffer. Searching XML documents via XML
fragments. In Proc. 26th SIGIR Conference, 2003.

[4] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In Proc.
29th VLDB Conference, 2003.

[5] N. Fuhr and K. Grosjohann. XIRQL: A query
language for information retrieval in XML documents.
In Proc. 24th SIGIR Conference, 2001.

[6] P. Grosso and D. Veillard. XML fragment interchange.
W3C Candidate Recomendation 12 February 2001.
http://www.w3.org/TR/xml-fragment.

[7] R. Guha, R. McCool, and E. Miller. Semantic search.
In Proc. 12th WWW Conference, 2003.

[8] J. Heflin and J. Hendler. Searching the web with
SHOE. In AAAI Workshop on AI for Web Search,
2000.

[9] B. Katz and J. Lin. Selectively using relations to
improve precision in question answering. In Proc.
EACL Workshop on NLP for QA, 2003.

[10] G. Kazai and M. Lalmas. INEX 2005 evaluation
metrics. http://inex.is.informatik.uni-
duisburg.de/2005/inex-2005-metricsv6.pdf.

[11] A. Levas, E. Brown, J. Murdock, and D. Ferrucci. The
Semantic Analysis Workbench (SAW): Towards a
framework for knowledge gathering and synthesis. In
Proc. Int’l Conf. in Intelligence Analysis, 2005.

[12] R. Mack, S. Mukherjea, A. Soffer, N. Uramoto,
E. Brown, A. Coden, J. Cooper, A. Inokuchi, B. Iyer,
Y. Mass, H. Matsuzawa, , and L. V. Subramaniam.
Text analytics for life science using the unstructured
information management architecture. IBM Systems
Journal, 43(3), 2004.

[13] R. Mihalcea and D. Moldovan. Semantic indexing
using WordNet senses. In Proc. ACL Workshop on IR
and NLP, 2000.

[14] R. Mihalcea and D. Moldovan. Document indexing
using named entities. Studies in Informatics and
Control, 10(1), 2001.

[15] J. Prager, E. Brown, A. Coden, and D. Radev.
Question-answering by predictive annotation. In Proc.
23rd SIGIR Conference, 2000.

[16] J. Prager, J. Chu-Carroll, E. Brown, and K. Czuba.
Question answering using predictive annoation. In
Advances in Open-Domain Question Answering.
Kluwer Academic Publishers, 2006.

[17] M. Sanderson. Retrieving with good sense.
Information Retrieval, 2(1), 2000.

[18] A. Smeaton, R. O’Donnell, and F. Kelledy. Indexing
structures derived from syntax in TREC-3: System
description. In Proc. 3rd TREC, 1995.

[19] R. Srihari, W. Li, C. Nui, and T. Cornell. InfoXtract:
A customizable intermediate level information
extraction engine. Journal of Natural Language
Engineering, 2006.

[20] J. Tiedemann. Integrating linguistic knowledge in
passage retrieval for question answering. In Proc.
HLT/EMNLP Conference, 2005.

[21] E. Voorhees. Using WordNet to disambiguate word
sense for text retrieval. In Proc. SIGIR, 1993.

[22] E. Voorhees and H. Dang. Overview of the TREC
2005 question answering track. In Proc. TREC, 2006.

[23] J. Wiebe, T. Wilson, R. Bruce, M. Bell, and
M. Martin. Learning subjective language.
Computational Linguistics, 30(3), 2004.

[24] H. Yu and V. Hatzivassilogou. Towards answering
opinion questions: Separating facts from opinions and
identifying the polarity of opinion sentences. In Proc.
EMNLP Conference, 2003.

452

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

