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Abstract

This paper shows how a newtwork view of probabilistic

information indexing and retrieval with components may

implement query expansion and modification (based on user

relevance feedback) by growing new edges and adapting

weights between queries and terms of relevant documents.

Experimental results with two collections and partial

feedback confirm that the process can lead to much

improved performance. Learning from irrelvant documents

however was not effective.

1. Introduction

In automatic Information Retrieval (IR) one tries to

retrieve relevant natural language documents from a large

collection when given a statement or query of what one

wants, also in free text. Many models of IR exist, for a

review consult [SaMc83,Salt89]. We have been using the

probabilistic indexing and retrieval (PIR) model [MaKu60,

BoSw75,RoSp76,YuSa76,vanR77] because it satisfies the

Probability Ranking Principle [Robe77] and also incorpor-
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ates the concept of feedback naturally. Recently we have

extended PIR with the concept of document components

[KwKu88,Kwok90b] which leads to improvements on the

original method. Furthermore, we have also been able to

re-formulate our theory using an artificial neural network

(ANN) approach, with learning rules that show how the net

may evolve from its initial state to one with user relevance

feedback information [Kwok89,90a]. This paper describes

two enhancements: 1) to include adaptation of our network

architecture, a process equivalent to automatic query

expansion in IR; and 2) to allow for learning from

irrelevant documents. Some results based on partial

relevance feedback are reported in Section 4. Section 2

reviews our ANN approach to PIR, Section 3 describes the

extensions, and Section 5 contains the conclusion.

2. Background

2.1 Probabilistic Indexing and Retrieval with

Components

We view documents and queries as non-monolithic, but

constituted of many independent components (such as

phrases, single terms, etc.), and work in a component

universe. This can overcome certain shortcomings of the
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original PIR theory [Kwok90b] such as: 1) providing

probabilistic weights to each term even before relevance

feedback, based on a principle of document self-recovery;

2) making use of within-item term frequencies effectively;

and 3) accounting for query-focused and document-focused

indexing and retrieval strategies cooperatively in one

symmetric formula. Retrieval can be viewed as query-

focused: i.e. mnk documents with respect to ~, with WV~

being the retrieval status value (RSV) for document ~ and

corresponds to probabilistic retrieval [RoSp76, RoMa82]; or

as document-focused: i.e. rank queries with respect to di,

with WU~ being the RSV for ~ and corresponds to

probabilistic indexing [MaKu60,RoMa82]. With single

content terms as approximations to document components,

these RSV’S become:

WU9 = z~ d&i * W&,

Wvd= ZkqJLa* Wik; (1,2)

and a symmetric sum formula that accounts cooperatively

for both:

Wi = Wvq+ WY, (3)

Our notation is to use subscripts id for documents, a,b for

queries and k,l for terms. ~ (qJ is the frequency of term

k in di (qJ and Li = x~dk (L, = X@J is the length of the

respective item, interpreted as the number of components.

w~ (wJ are weights for each independent term k that

occurs in di or ~, and given as:

W* = In[rJ(l -r&) *(l -sJ/sJ,

Wti = ln[r&/(l -rJ*( 1-s&)/s.J. (4,5)

rk (r&) and Sk (sJ are the probabilities that given relevance

to item ~ or ~ (i.e. +Ri or +R) or non-relevance (-Ri or -

R.), that term k will be present in a componenc

rk = P(L presentl+RJ, r& = P(L presentl+RJ

S*= P(t~ presentl-Ri), Sk = P(L presentl-RJ (6)

The r’s may be estimated from a sample of relevant itams

and their components. However, even before feedback ‘we

can employ the fact that the set of terms must be self-

relevant tQ each item, and approximate them as: ri = d&/Li,

r& = q.JL,. To estimate the probabilities associated with

the irrelevant we use the statistics of the whole collection,

tacitly assuming that all are irrelevant to the item and which

is not unreasonable at this stage, thus: s& = S* = FJNW.

F~=X,d* is the collection frequency of term k for all

documents, and Nw is the total number of terms used in the

collection. For example, if di has length L,=40 terms

(including repeats) and the stem ‘retriev’ occurs &=3 times,

rk is estimated as 3/40 because all terms are self-relevan( to

~. If ‘retriev’ also occurs totally F~=200 times in the

collection which has NW=70000 terms, then sfi=2/700.

Better estimates result if more relevant items are available.

Experiments have confirmed [Kwok90b] that this

component theory can provide effectiveness better than

Croft’s extension to probabilistic retrievat [Crof83], and

comparable to those available from the vector IR model

[SaBu88], as well as the probabilistic model with default

beliefs for CACM ~urt90].

2.2 An Artificial Neural Network Approach to PIR

Fig, 1-3 shows a 3-layer ANN architecture for

simulating the PIR formulation of Section 2.1. The D layer

of nodes denote documents ~ (lc=i<=n~, no. of documents)

and the Q layer denote queries ~ (l<=a<=n~, no. of

queries,) These are hi-directionally connected with
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unsymmetrical weights to the middle T layer of content

terms t, (Ie=kc=m, no. of unique terms). Existence of

connections is defined by the presence or absence of a term

in an item. Nodes of the D and Q layer serve both as input

and output. For example, activity may originate from ~,

spread to the T and D layer synchronously, with appropriate

signal functions (we used a linear function at the D and Q

layer, and a ramp function with a threshold at the origin at

the T layer). If connection weights are set correctly,

activation deposited on a ~ node would correspond to the

RSV of Eqn.2. By ordering all ~ nodes based on

activations, we simulate document-focused ranking. If

activity originates from ~, spread to a q via the T layer, we

obtain the query-focused RSV, Eqn. 1, Adding the two

results in our symmetric formula Eqn.3 for retrieval

ranking. QTD or DTQ direction operations are independent

and the net is not meant to be recurrent. The following

paragraphs review the learning stages discussed previously

[Kwok89, 90a]. Section 3 describes additional mechanisms

to be considered in this investigation.

At the initial stage, connections w,, (wJ from d, (qJ

to a term ~, Fig. 1, are initialized as &Li (qJLJ based on

the manifestation of the terms within an item. Connections

W* (wJ from a term t~ to di (@ are given exactly as in

Eqn.4,5, with rfi (rJ set to a heuristically assigned constant

of 1/40, and Sk = Sk = FJNW, as discussed in Section 2.1.

With these values, operation of the net corresponds to the

Inverse Collection Term Frequency (ICTF) strategy

introduced in [Kwok89,90b], and has been shown to be

much more effective than the Inverse Document Frequency

(IDF) indexing [Spar72,CrHa79] that is popular for IR

experiments.

After the initial stage, we can perform self-learning,

Fig.2, since items must be self-relevant. Each ~ (dJ in turn

is clamped to activation of 1; it spreads to the T and then

back to the Q layer (the D layer). Each term t, associated

with ~ will have activation x~ = wk= qJLa (or xk = wki=

dJJ Since the originating item q, (dJ is also the item

under attention, it is the only node to receive a teaching

signalT, (TJ of 1, and we postulate that the connections

w& (from t~ to q) or W* get modified according to the

following learning algorithm (equations for Wk are not

shown):

W&’Q+l = W&vQ + AW&’Q

VQAW& = Ar&vQ/[r&vQ * (l-rtivQ)] (7)

with

Ar*’Q = qQ * (Xk - ‘dcv~ (8)

Here O c rlQ < 1 is a query-focused learning rate when

given relevant items, and VQ enumerates the iterations.

Document-focused learning employs a different schedule

(%,v.). Eqn.7 shows that w& adapts because of a change

in r& rk is the probability of Eqn.6, and is the current

activation x~ on term node k, since q. induces the current

relevant set and their activations. In Eqn.7 the factor s&

within Wti is regarded as a constant equal to FJNW assigned

in the initial stage. r&Ohas value 1/40, and its value during

iteration is obtained as:

VQ
rk = exp(w*’Q-C,)/[l+exp(w&’Q-CJ], (9)

if S* is stored so that

c, = in [(l-sJ/s&], a constant.

Alternately [Kwok89,90a], we can use a separate reverse

edge from ~ to t, to StOR this dynamic vtdUe rtivQ. As VQ->
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CO, r*vQ asymptotically approaches the value w~l=q&/L.,

and therefore:

W& -> h [~/(La-@ * (Nw-F~/&] , (lo)

The learning rule of Eqn.8 is similar to that used for comp-

etitive learning with decay ~uMc86]. In ANN,

competitive lcaming is an unsupervised learning paradigm

whereby a pool of output nodes compete to respond to a set

of environmental feature vectors, and classify them into

clusters. The winning node learns the expected feature

vector of that cluster. In our case, it learns under

supervision since the query (winning node) is known for the

cluster of relevant components. The self-learn weighting

formula Eqn. 10 corresponds to that of indexing based on a

principle of document self-recovery [Kwok86, 88], and has

effectiveness comparable to that of the best non-Boolean

term weighting methods available [Kwok90b].

User relevance feedback learning can be performed

next if it is available. Referring to Fig.3 if a set of q

documents {~) are known relevant to the query ~, we will

have query-focused DTQ direction learning. Items in {dj}

will have activations clamped to 1, and after one time step,

the average activity deposited at term & will be xk=

(Xjdj&j)/n, and is the current estimate of the probability r&

Thus, rti and w& would learn as in Eqn.7,8, but the estimate

is better since the sample of relevant components is bigger.

The initial value of r&Ofor this stage is the self-learn value.

Eqn.8 provides continuity from this self-learn value as well

as allowing for a varying degree of influence from the self-

relevant on the whole relevant set, controlled by the

learning rate ‘rIQ and the number of iterations VQ. By re-

sorting the feedback file, we can also provide document-

focused QTD direction learning (i.e. set of queries {qJ

known relevant to d), using a schedule q~, v~ and leading

to improved estimates for WV& It is found that results are

sensitive to these learning schedules.

3. Further Developments

The following subsections describe how the net

architecture may adapt during relevance feedback, as well

as how known irrelevant items may be employed. Both

correspond to the well-known procedures of query

expansion and modification studied by IR workers

[IdSa71,Rocc7 1, Smva83], and has been shown to deliver

good performance [SaBu90].

3.1 Adaptive Architecture for Query Expansion

Although queries and documents are viewed as items of

similar category in our theory, in practice queries are

usually short, terse statements of need, while dcxuments

generally are longer and more diverse in content. Our

probabilistic component approach, being based on statistics

of term usage, would be expected to perform better if

queries are longer, providing more clues to what a user

wants. One method is to expand queries automaticiilly

based on their feedback set of relevant items. Since

documents are permanent records, we do not intend to

expand document representations. Thus, during learning of

~ from relevant dccuments, a large number of terms nnay

be activated. A K-winner-take-all network [MaEr89] may

be assumed to be inherent among the nodes of the T layer

that chooses relatively quickly the term nodes that con(ain

the K largest activation levels. New connections may now
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grow between these highly activated nodes and the query q,

under consideration (Fig.3), with weights wk. and w& (via

rJ assigned values based on the activities x~ as follows:

wka=a*xk (11)

rti=j3*q~*x~ (12)

Once rti is known in Eqn, 12, Ww is defined as in Eqn.5

using stored values of Sw These are one-step Hebbian

learning [Hebb49] equations. Experimentrdly we find that

a=l and f3=0.7 lead to good results. Different node

expansion K values were tried, and it seems a small value

of 15 to 30 can account for most of the effects.

3.2 Learning from Irrelevant Documents

In the previous sections feedback learning is limited to

relevant items only. In general a set of the highest ranked

irrelevant documents would also be known, and these may

be employed to adapt the factors S* in the weights w*, with

analogues of Eqn.7,8 for learning irrelevant items, thus:

‘Q+l = W&uQ + AW&uQw*

AW& ‘Q = ‘AS&”Q/[S&uQ * (1-S&u9] (13)

with

‘Q = &Q* (Xk - s&”Q)AS& (14)

In practice, relevant and irrelevant learning will be

independent and separate, and the schedule (&~,ttJ is

expected to be quite different from (qQ,vQ) and has to be

empirically determined. The expectation is that this might

lead to decrease in WV~ values for, or rank demoting of,

items similar to the irrelevant ones.

4. Results and Discussion

Two evaluated databases were used for our investiga-

tion, namely, CACM(52q,3204d) with 52 queries and 3204

computer science abstracts and/or titles, and CISI(76q,

1460d) of information science literature. For each query an

initial run based on IDF strategy is made and the first 10

high-ranked documents are used for partial relevance

feedback learning. These 10 are then removed, and recall

and precision are evaluated using the residurd collection, so

that generalization capability from training can be

ascertained. After identifying these 10 documents, some

queries have no more relevant items left, while others do

not have any relevant documents in the first 10. These

queries are not used, so that CACM has 42 and CISI 60

queries remaining. Results are tabulated in Tables I

(CACM) 8L II (CISI).

In each table, the first two columns present the IDF and

SL (self-learn) precison values. The next two columns

IDFr, SLr show the same methods using the residual

collection. These do not involve relevance feedback, and

both will serve as basis for comparison with feedback

retrievals. Average precision Av3 at 3 recall points (.25,

.5, .75), and Av1O at 10 recall points are also given.

Percentages of increase (decrease) for each method versus

the basis are calculated using the Av1O. The columns

labelled PL’K’ show results of partial learning using K

expanded terms. Because some of the K highly activated

terms may atready exist in a query, usuatly less than K

terms are added. The feedback learning procedure is done

as follows: the relevant document set first deposits an

average activity on each connected term node in the DTQ

direction. The connection weights W* from ~ to q. are
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trained using the schedule (v~,r@ = (20,0.2) according to

Eqn.7,8. The K highest activated term nodes are then

identified, and edges are grown to and from ~ according to

Eqn, 11,12. QTD direction learning is then performed using

the expanded queries and the schedule (v~,qJ = (10,0.1).

Because there me in general fewer queries relevant to a

document (average 1.2) than vice versa (average 2.8), QTD

learning schedule is ‘softer’ than DTQ, and is confirmed by

experiments to give better results.

Results generally reflect what has been found in

[SaBu90]. Partial relevance feedback without query

expansion PLO is effective (+9294 better than IDFr for both

collections). Further gains are obtained with query

expansion of K terms, and most of the gains can be

accounted for with K=30 (CACM +113%, CISI +103Yo

versus IDFr). At K=60, CACM collection precision still

rises, while CISI appears to decline. Query lengths are

shorter in CACM (average about 13) compared to CISI

(about 33), and gains with expansion are larger for short

queries, as noted in [SaBu90]. Expansion based on term

occurrence frequency ordering rather than activation does

not perform as well. An example is given as PL 15f, i.e.

partial learning with expansion using 15 highest frequency

terms. Our results are based on the symmetric formula Wi

of Eqn.3. We find, as in [Kwok90b], that cooperative

effects between WV~ and WV~ exist in all partial learning; an

example is given for PL30, The fairly unsophisticated IDF

is used as an initial strategy to pick the first 10 documents

for feedback because we like to see how very few relevant

documents (average less than 3) may improve precision,

Using IDFr as basis may make our gains look large, and

another comparison is provided using SLr as the basis. ,411

PL’K’ methods reduce to SLr if feedback is not used, and

the 10 IDF feedback documents are independent of them.

It simulates the situation where a user poses a query and

comes equiped with some known relevant items. Compared

to using SLr, substantial improvements of 25% (PLO) to

39% (PL30) are recorded for CACM, and 13% (PLO) to

20% (PL30) for CISI. Comparison of PL30 versus PLO

shows that query expansion is useful: +11 ?io for CACM and

6% for CISI. The last row also shows the number of edges

added to the net at different expansion K values.

Our investigation of learning from irrelevant shows

that it is much less useful. We looked at Eqns. 13,14 for

DTQ learning by queries and found that we have to use

very ‘soft’ learning schedules such as (v~,q~)=(l, .05 to

0.2) or performance decreases, which means results do not

change much from those not using irrelevant. One can

have many options to test, such as: modification only or

modification with expansion for both relevant or irrelevant

item learning, varying the number of irrelevant items from

the feedback set, as well as the learning schedule. In a

number of cases we investigated, average performance is

not much changed, but precision values improve s]ighthy at

the low recall end. Examples from each collection for the

case of using all irrelevant from the feedback set,

employing the schedule (1,0.05), and with K=30 expansion

are as follows: CACM (.519, .464, .395, .336, .283, .183,

.144, .101, .070, .054; Av3, Av1O = .279, .257) and CISI

(.563, .431, .336, .292, .236, .197, .147, ,103, .067, ,0145;

Av3, Av1O = .245, .242). These are to be compared with
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the PL30 Sym columns. Using fewer irrelevant,

expanding queries with terms from irrelevant, or using

much larger learning rates usually decrease performance.

It seems that the global strategy of assuming the whole

collection as irrelevant for estimating the probabilities Sk,s&

works quite well. Moreover, every document that is not

about the query topic(s) is irrelevant, which means that the

irrelevant set do not necessarily have a focal topic(s). The

content terms used in the few irrelevant documents

therefore can be quite random, and expansion or learning

their probabilities is not useful. It appears that for our

model, the most cost-effective gains lie in using the

relevants only.

Direct comparison with [SaBu90] results is not

attempted because the number of queries and feedback

documents, and the initial strategy used are different,

Qualitatively they are very similar, and show that feedback

using our component theory of PIR is effective.

5. Conclusion

We have extended our artificial neural network for the

component theory of probabilistic information retrieval to

include growing of new edges betwem existing terms and

query nodes. This implements the well-known procedure of

query expansion and modification in an ANN. Learning

rules for the new edges are given. Results with net

architecture adaptation generally reflect those of [SaBu90]:

that query edge growing is effective. About 30 terms seems

to account for most of the gains. Expansion based on term

occurrence frequency is not as good as that based on node

activation, which has the interpretation as an average

probability that a term occurs in the relevant set. Learning

from irrelevant documents however does not lead to better

results.

Acknowledgments

This work is partially supported by a PSC grant (PSC-

CUNY 668292). Simulation experiments have been

performed on the Cornell National Supercomputer Facility,

a resource of the Center for Theory and Simulation in

Science and Engineering at Cornell University, which is

funded in part by NSF, New York State, and the IBM Corp.

and members of the Coporate Research Institute.

References

[BoSW75] Bookstein, A. & Swanson, D.R. (1975). A

decision theoretic foundation for indexing. J. of ASIS.

26:45-50.

[CrHa79] Croft, W.B & Harper D.J (1979). Using

probabilistic models of document retrieval without relevance

information. J. of Dec. 35:285-295.

[CroR3] Croft, W. B (1983). Experiments with

representation in a document retrieval system. Info. Tech.:

R&D. 2 (1983), 1-21.

[Hebb49] Hebb, D.O (1949). The organization of behavior.

N.Y.: Wiley.

[IdSa71] Ide, E & Salton, G (1971). Interactive search

strategies and dynamic file organization in information

retrieval. In: The Smart system - experiments in automatic

document processing. Salton, G. ed. N.J.: Prentice Hall. pp.

373-393.

[Kwok90a] Kwok, K.L (1990). Application of neural

network to information retrieval. In: Proc. Intl. Joint Conf.

on Neural Networks. (Washington D.C. Jan. 1990) Caudill,

M., ed. N.J.: Erlbaum. pp. 11623-626.

[Kwok90b] Kwok, K.L (1990). Experiments with a

component theory of probabilistic information retrieval

based on single terms as document components. ACM

198



Trans. on Info. Sys. 8:363-386.

[Kwok89] Kwok, K.L (1989). A neural network for

probabilistic information retrieval. In: Proc. ACM SIGIR

12th Ann. Intl. Conf. on R&D in IR. Belkin, N.J. and van

Rijsbergen, C.J., ed. N.Y.: ACM. pp.21-30.

[KwKu88] Kwok, K.L. & Kuan, W (1988). Experiments

with document components for indexing and retrieval Info.

Mngmt. Proc., 24,405-417.

[Kwok86] Kwok, K.L (1986). An interpretation of index

term weighting schemes based on document components.

In: Proc. of 1986 ACM Conf. on R&Din IR. Rabitti, F. ed.

N. Y.: ACM. pp.275-283.

[MaEr891 Majani, E; Erlanson, R & Abu-Mostafa, Y
(1989). On the K-winner-take- all network. In: Advances

in Neural Information Processing Systems I. Touretzky,
D.S. ed. CA: Kaufmann. pp. 634-642.

[MaKu60] Maron,M.E. & Kuhns,J. L (1960). On relevance,

probabilistic indexing and information retrieval. J. ACM.

7,216-244.

[Robe77] Robertson, S.E. (1977). The probability ranking

principle in IR. J. Dec. 33 (1977), 294-304.

[RoMa82] Robertson, S. E.; Maron, M.E. & Cooper, W.S.

(1982). Probability of relevance a unification of two

competing models for document retrieval.” Info. Tech .:R&D

1:1-21.

[RoSp76] Robertson, S.E. & Sparck Jones, K (1976).

Relevance weighting of search terms.” J. of ASIS. 27:

129-146.

[Rocc71] Rocchio, J,J.Jr (1971). Relevance feedback in

information retrieval. In: The Smart system - experiments

in automatic document processing. Salton, G. ed. N.J.:

Prentice Hall. pp.3 13-323.

[RuMc86] Rumelhart, D.E & McClleland, J.L (1986).

Parallel and Distributed Processing. Vol. 1. Cambridge, MA

: MIT Press.

[SaBu90] Salton, G. & Buckley, C (1990). Improving

retrieval performance by relevance feedback. J. of ASIS.

41:288-297.

[SaBu88] Salton, G. & Buckley, C (1988). Term weighting

approaches in automatic text retrieval. Info. Proc. Mgmnt.
24,513-523.

[SaMc83] Salton, G. & McGill, M (1983). Introduction to

Modem Information Retrieval. N.Y.: McGraw Hill

[Salt89] Salton, G. (1989). Automatic Text Processing.

N.Y.: Addison-Wesley.

[Smva83] Smeaton, A,F & van Rijsbergen, C.J (1983). The

retrieval effects of query expansion on a feedback document

retrieval system. Computer J. 26, 239-246.

[SPm721 Sparck Jones, K. (1972). A statistical
interprestation of term specificity and its application in

retrieval. J of Dec. 8:11-21.

[Turt90] Turtle, H.R (1990). Inference networks for

document retrieval. COINS T.R. 90-92, Univ. of Massach-

usetts at Amherst.

[vanR77] van Rijsbergen, C.J. (1977). A theoretical basis

for the use of co-occurrence data in information retrieval J.

of f)oc. 33: 106-119.

[YuSa76] Yu, C, T. & Salton, G. Precision weighting - an

effective automatic indexing method. J. of ACM. 23 (1976),

76-86.

199



TABIJ?, I : CACM Precision Values

(52q,3204d) I Residual Collection (42q,3194d)

Wo Feedback

Recall IDF SL I IDFr SLr I

0.1 .473 .650 I .255 .426 I

Partial (10 Dot) Feedback Learning

PLO PL15 ---- PL30 ----- PL60 PL15f
QTD DTQ Sym

.487 .515 .491 .476 .516 .527 .504

0.2 .370 .518
0.3 .299 .437
0.4 .258 .360
0.5 .210 .293
0.6 .178 .253
0.7 .110 .200
0.8 .086 .172
0.9 .066 .117
1.0 .053 .105

.210 .337

.175 .283

.156 .232

.139 .202

.085 .139
068 .098

:050 .063
.033 .033
.025 .025

.413 .429 .427 .419 .448 .459 .398

.354 .372 .346 .370 .397 .406 .356

.292 .324 .295 .319 .336 .357 .312

.260 .284 .242 .259 .287 .287 .267

.172 .184 .152 197 .187 .185 .165

.130 .143 .122 :133 .145 .147 .122

.098 .104 .087 .102 .103 .103 .088

.056 .075 .067 .065 .073 .073 .053

.042 .054 .051 .045 .056 .056 .038

Av3 .213 .324 .128 .198 .248 .268 .243 .253 .275 .281 .246

Av1O .210
% chng (Av1O
% chng (Av1O
% chng (Av1O

310 I .120 .184 I .230 .248 .228 .238 .255 .260 .230
o’ +53 +92 +107 +113 +117 +92

o +25 +35 +39 +41 +25
o +8 +11 +13 +0

# edges

Note 1:
2:

incz: o 556 1195 2339 626

0 denotes basis from which increases or % changes are calculated.
Increases in edges are calculated for 45 queries, 42 plus 3 that

have all relevant documents within the 10 feedback documents.

TABLE II: CISI Precision Values

(76q,1460d) I Residual Collection (60q,1450d)

No Feedback I Partial (10 Dot) Feedback Learning

Recall IDF SL I IDFr SLr I PLO PL15 ---- PL30 ----- PL60 PL15f
I QTD DTQ SymI

0.1 .301 .454 I .269 .508 I .531 .545 .541 .461 .564 .555 .534

0.2 .225 .353
0.3 .163 .264
0.4 .135 .219
0.5 .115 .189
0.6 .098 .150
0.7 .081 .113
0.8 .065 .085
0.9 .054 .060
1.0 .039 .042

.194

.151

.130

.116

.093

.369 I

.268 I

.229 [

.183 I

.407

.315

.270

.229

.418

.331

.280

.398

.325

.284

.354

.301

.255

.207

.155

.122

.089

.055

.426

.334

.289

.237

.197

.149

.424

.336

.283

.235

.195

.406

.311

.276

.227

.189
I .229

.191

.146

.102

.066

.220

.176

.139

.101

.148 I

.117 I

.090 I

.058 [

.184

.142

.100

.062

.079

.065

.054

.038

.145

.101

.068

.144

.102

.064
.103
.067.068

.040 I .040 .045 .044 .039 .045 .045 .042

Av3 .130 .201 I .119 .199 I .236 .241 .231 .217 .243 .246 .237

Av1O .128 193 I .119
% chng (AvlO~: 0’
% chng (Av1O):
% chng (Av1O) :

.201 I .228 .235 .230 .204 .241 .239 .229
+67 +92 +97 +103 +101

o
+92

+13 +17 +20 +19 +14
o +3 +6 +5 +0

# edges incz: o 695 1516 3135 745

Note 1: 0 denotes basis from which increases or % changes are calculated.
2: Increases in edges are calculated for 61 queries, 60 plus 1 that

have all relevant documents within the 10 feedback documents.
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-––––> QTD Direction DTQ Direction <-----

Q-Layer T–Layer D–Layer

A

●

e

A

i i I 1

Fi.g.1: Three Layer Network

(not all connections

A

e

.() t!

e

o“

●

A

o

0
I I

Fig.2: Self–Learning by ~ - relevant
activity 1; teaching signal T.=1
all connection weights W.k of q.

for

are

I

PIR

shown)

0

0

❑

U
❑

o

0

❑
❑

set (q. only) clamped
(only node that learns);

to

adapt- according to Eqn.7.

Fig.3: Relevance Feedback DTQ Learning by ~ - relevant set {dj}
clamped to activity 1; Ta=l; Wak learn according to Eqn.7;
Xk is activity on term tk at iteration ; dashed lines

denote new grown edges.
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