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Abstract - Efficiency in databases is a major requirement. This paper presents some solutions 
to cope with this problem. One solution is to execute operations in parallel: this is done in the 
“Delta Driven Computer” DDC, which is a multiprocessor machine with distributed memory 
dedicated to relational and deductive databases. In DDC, relations are distributed among the 
nodes of the machine, and the data are processed asynchronously in each node. To do that in an 
efficient way, a coprocessor, specialized for relational operations, is also proposed. It is called 
pSyC, for “microprogrammable Symbolic Coprocessor”. This paper is divided into two parts. 
The first part describes DDC, presenting the architecture, the languages, and an original 
computational model. The second part describes @yC, its architecture, instruction set and the 
data structures used at the @yC level. 

Introduction 

Efficiency in databases is a major requirement. Two complementary solutions are proposed here 
to cope with this problem. One solution is to increase efficiency through parallelism. The “Delta 
Driven Computer” DDCl is a multiprocessor machine with distributed memory dedicated to 
relational and deductive databases. The second solution is to accelerate the local processing in 
each processor node of the machine. This is done by the “microprogrammable Symbolic 
Coprocessor” pSyC* . 

DDC is currently under development at BULL Research Center. The DDC project includes 
@yC’s design and realization as a sub-project. Early papers describe some of our ideas about 
DDC [Gon 863 and about pSyC [Cou 873. An overview of the DDC project is presented in 
[Gon 871. 

The architecture of DDC was kept simple: it consists in a multiprocessor system composed of a 
set of interconnected PCM (Processor, Communication and Memory) nodes, with distributed 
memory. The originality of our work is the way parallelism is achieved. From a conceptual point 
of view, DDC executes a language based on production rules, called VIM (Virtual Inference 
Machine), where parallelism is implicit. The execution of a VIM program is performed using a 
forward chaining strategy. Given a set of rules and a set of initial facts, the only operation mode 
of DDC is saturation, that means that all the conclusions are found. 

* This project is partially supported by ESPRIT-415. 
2 This project is partially supported by ESPRIT-415, and ESPRIT-956. 
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Parallelism in the machine is achieved by distributing the facts (tuples) among the PCM nodes 
and by firing rules independently in each processor. 

VIM is an intermediate language; so, in the project, we are working on the compilation of a high 
level language into this interme.diate language. The high level languages which we are 
considering are declarative ones (e.g. SQL and Logic Programming). 

VIM execution is possible using the DDEbI (Delta Driven Execution Model.). In this model, 
execut.ion is driven by the facts deduced from the rules. We call such a fact a A (Delta). The 
paralle.1 architecture we propose can support DDEM. 

The implementation of DDEM is based on relational operations. so VIM rules are transformed 
into a DDCL program (Delta Driven Computer Language).The DDCL level is ~.tSyC’s level of 
operation. 

The choice of the data structures is crucial to ensure the efficiency of the microprogrammed 
algorithms. Since we use a finite state automaton based representation for the relations stored in 
memory, and because this type of representation can be very space-consuming in its naive form, 
we use: compaction techniques derived from those described in [Rob 801. 

The design of @yC was based on the study of the algorithms and data structures used in DDC. 
Since pSyC is microprogrammable, this instruction set can be modified to accept new 
functionalities. The circuit can also be used for other similar applications, like data filtering from 
disk or from memory. A set of microprograms has already been written for this application 
(Cou 871 using aIgorithms very similar to those of the SCHUSS filter [Gon 841. 

A performance evaluation showed that pSyC: is about five times faster than the MC 68020 with 
a 60 ns cycle time, while executing DDC operations. 

In the first part of this paper, we describe the architecture of DDC, its computational model, and 
the different language levels from SQL or Datalog down to the machine level language called 
DDCL.. 

In the second part, we describe the aims of @5yC, its architecture and specialized operators, and 
its instruction set used to implement DDCL. We also describe and evaluate the data structures 
that we use at the t.tSyC level. 

Part I: DDC 

I-1 Motivations 

The basic aim of the DDC project is to design an efficient computer dedicated mainly to 
databases and symbolic computation, for large “knowledge based” applications. 

We decided to study a parallel architecture in order to attain high performance. But a drawback 
of parallel systems is the cost of software devefopments. Maintaining software costs as low as 
possible could be achieved by using a simple high level language where parallelism is hidden 
from the programmer. 

A prerequisite to the design of a specialized parallel architecture is an execution model well 
adapte.d to the apphcation domain and able to handle parallelism in a simple way. Another 
prerequisite is that the architecture must not be dedicated to one particular language. Instead, it 
must be flexible enough to accommodate a variety of declarative programming styles, including 
relational [Ull 821 + deduction [Gal 783, logic [Kow 791, and functional [Bat 78], Typical 
applications for DDC stem from relational databases, deductive databases, expert systems, 
simulation systems, etc. 

I-2 The architecture 

The architecture of DDC consists of a set OF PCM nodes (Processor, Communication device, 
Memory), an interconnection network and a processor acting as a front-end (Most). There is no 
need for a shared memory (fig. I- I). 
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The processor of a PCM node has two parts, one general purpose microprocessor, a MC68020 
and one symbolic coprocessor pSyC. The latter is a custom VLSI which works as a MC68020 
coprocessor and is specially used in DDC to execute some operations faster than the processor. 
Memory is built with “off the shelf’ chips. The communication module of a PCM node sends 
and receives messages to and from the interconnection network. 

HOST 

INTERCONNECTION 

I I 

PCMO PCMl PCMn 

FiPure T-l: DDC architecture 

I-3 Languages on DDC 

As development methodology, we described all the levels, from the high level language down to 
the machine level language, and how to go down from one level to the next one (propositions of 
this method can be found in [Boy 781, [Das 841). 

The fanguage levels in DDC are: 
- a high level language, derived from relational technology, Iogic programming or 

functional programming. Currently, we are only considering the database and logic 
programming aspects. This language can be SQL [Dat 871, for the compatibility with 
other relational systems. An other language can be Datalog, as introduced in [Gal 781, 
[Ull 851 and [Ban 861, to handle deduction in the database. 

- an intermediate language is the key of our approach. This language is based on additive 
production rules with a forward chaining (saturation) strategy. We call this language 
VIM (Virtual Inference Machine). Some principIes of production rule systems are 
presented in [Ver 771, [Wat 783, [For 791. 

- to execute the saturation, the DeIta Driven Execution Model (DDEM) is provided. This 
model can be paralielized, as explained below. In fact a VIM program is translated into a 
DDCL (Delta Driven Computer Language) program. DDCL is the DDC machine 
language and the program is executed following the DDEM. 

The translation from a logic programming language into a VIM program is done following an 
algorithm called the Alexander Method, proposed by J. Rohmer [Rob 85, 861. The algorithm is 
also described in [Ker 873. The Alexander Method is an algorithm which transforms a set of 
VIM rules and a query into a new set of focalized rules. The Alexander Method simulates 
backward chaining using forward chaining. 

I-4 The Virtual Inference Machine VIM 

The design of VIM is based on our previous experience with production systems. Basically, this 
language is composed of production rules, i.e. rules of the form: 

hl => Cl, . . . . . . cp 
hl, h2 => cl, . . . . . . cp 
hl, --,hZ => cl, . . . . . . c 

where the hi and Cj are % pre lcates of the form: p(X1, . . . . . . X,) and where Xi is either an atom 
(constant) or a variable. This means that functions (or trees) are not visible at this level. 

We require that the variables in the conclusions also appear in the hypotheses (note that the 
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restrictions we impose on VIM are the same as those of Datalog). This means that if initially 
Ithere exists a set of facts containing only constants, all the generated facts will also contain only 
constants. 

‘The on11y operation mode of the machine is saturation: given a set of rules and a set of initial 
facts, find all the possible conclusions. In a VIM program, it is possible to execute a sequence of 
saturations, In this case, we call each saturation a s&ate. Stratification [Apt 861 is useful to deal 
with negation problems. 

I-5 The Delta Driven Execution Model DDEM 

DDEM is a model to execute saturation on a set of VIM rules. It is possible to describe the 
execution model in an informal way at the VIM level. When a rule is applied, a fact or a set of 
facts may be produced. Each produced fact is called a BA (read Black Delta). Only those facts 
which are not already present in the database are considered as new facts: we call them WA (read 
White Delta). A WA can be inserted in the daTabase, and it can be used to trigger the execution of 
rules. 

For example, a VIM rule like: p,q => r is transformed into two delta-rules: 

WAp,qc => BAr and WAq,p, => BAr 

where qc and pc are the current representations of q and p in the database. 

BAr may already exist in the database: if it is the case, it is called a duplicate, and nothing more 
happens. If it is not, the BA becomes a WA,. WAr contains a new fact on r that has just been 
produced. Consequently, this WAr is added to the current representation of r in the database, 
and then the whole set of rules is tried again using just the WAr as trigger in rules of the form: 

WAr ,... => BA... 
When no more WA is produced the logic database is saturated, then the processing is over. 

Two types of process have been specified, the application of rules and the elimination of 
duplicates (fig. I-2). In the case where rule:s are monotonic and commutative the order of A 
arrivals does not modify the final result. This means that the model is asynchronous and 
parallelism is implicit. 

Inference Process 

WAp,qc=>BAr 

Elimination Process 

WAq + WAq,pc=>BAr 

Fir I-3.: DDC or- 

f-6 From VIM to DDCL 

A predicate in the VIM environment corresponds to a relation in the DDCL environment. Thus, 
fact and tuple are two representations of the :iame semantic element (fig. I-3). 

At the DDCL level, a A is a tuple and with each A, a set of primitives is associated which has to 
be executed on it. The piece of DDCL code that contains this set of primitives is a special entity 
caIIed an action, whose identifier is closely related to the A. An action contains primitives which 
correspond, at VIM level, to the rules where the associated A is to be used (fig. I-4). 

I-7 The Delta Driven Computer Lang;uage DDCL 

DDCL is the language of the machine. Its cernpa&ical power is the one of @yC operations. 
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Fig T-4: Transforminp Rules into actions 

A DDCL program is structured into several independent modules, each corresponding to the 
code of an action. 

There are four different types of DDCL primitives: program control primitives, operations on 
relations, “propagation” operations (communication among processors), and input/output 
primitives. 

DDCL consists mainly in operations on relations. Most of them are executed following the 
principIes of filtering by automata presented in [Gon 84, 87b], and the join algorithm LA-JOIN 
presented in [Bra 861. 

The DDCL primitives are: 

- the control primitives for conditions or loops (if..tIcerr..endif, 
witk..map..endmap, with..mapfile..cndmapfile); 

- the input/output primitives (access-tuple, write); 

- the propagation primitives to create and send a delta to a destination node {message). 
The destination is calculated according to the hash function applied to the attribute 
values. 

- the operations on relations, which include data updating and pattern matching: 

- add adds a tuple in the automaton representation of a relation; 

- newTadd first checks if a tuple exists in the automaton representation of a 
relation. If it is the case, new-add returns the boolean value fuZse, if not, 
new-add adds the tupIe to the representation and returns true; 

- search retrieves part of a tuple in the automaton representation of a relation. 
Whenever the matching phase succeeds, the final pointer stored in the 
automaton (which points to the list of possible ends of tuples) is returned to 
permit the creation of solution tuples. 
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I-8 The mapping strategy 

The mapping strategy of DDEM into the DDC architecture is statical.ly determined and 
dynamically executed. We try to balance the load in the machine dynamically, while minimizing 
the communications. So at any moment during a saturation process, we. can assume that the facts 
are distributed among the PCM nodes and all the compiled rules are copied in each node. 

A relation is distributed according to a hash code function applied to the value of one of its 
arguments, This approach is simiilar to the notion of buckets introduced in [Bra 843, [Kit 831 
for the representation of relations, where the partitioned bucke.ts represent disjoint subsets of the 
original relation and provide a natural basis for parallelism (also mentioned in [Dew 861). 
Predicates can be duplicated. If so, the copies are distinguished at compile time by adding a 
suffix ‘to the predicate name. 

The advantage of this mapping is that data are sent cowards the only node where they can 
possibly be used. This improves the locality factor and reduces the rate of communications. 

Consider a DDC composed of three nodes, a set of two VIM rules: 
1~1: p(XW, q(XZ) => r(X,Z) 
1~2: p(XY), r(X,Z) => pW2.3 

and four initial facts: 

These facts must be stored as relations as foll.ows: at compile time, it can be determined that the 
relation p is used in R1 and R2 but in each1 one according to different attributes. So, in the 
machine, instead of having p , there are two c:opies: pet and pc2. 

pct(X,Y), to be used by R2, is distributed according to values of its first argument. 
p,&X,Y), to be used by Rt , is distributed according to values of its second argument. 
For q there is just qct distributed according to values of its first argument. 
For r there is just rcl. 

So if we apply the hash function to values of arguments of the initial facts, we can identify in 
which processor a tupie will be stored: 

H(l, p,l(aa,bb)) = H(1, r,r(aa,cc)) = h(aa) = 2 
H(2, p&aa,bb)) = H(l, q,t(bb,cc)) = ;h(bb) = 1 
H(l, qct(cc,dd)) = h(cc) = 3 

where H is a function, which takes as arguments: a tuple, and the rank of the attribute to which 
the function should be applied; h is the hash function which takes as argument the value of the 
selected attribute, and returns the identifier of the destination node; and 1, 2, 3 are the PCM node 
numbers (fig. I-5). 

The hash function h is applied to each tuple OF a BA produced at a given node. Then each tuple is 
sent to just one processor, 

Note that the execution is made independently on each. node. As sootl as a node receives a A, it 
can execute an action and possibly produce some new As that will activate other nodes or 
maintain this node in activity. 

I-9 An example of deduction in DDC 

Let us have the VIM rules: 
R 1: father(X,Y) =z= ancestor(X,Y) 
R2: ancestor(X,Y),ancestor(Y.Z) => ancestor(X,Z) 

The database contains a relation named father. 

There are two ways to calculate the descendants of “Jean”. The first one is to add the rule: 
R3: ancestor(“Jean”,X) => solution (X) 

DDC will deduce or produce in forward chaining all the facts “ancestor”, and those which are in 
the solution will be selected on the fly. 
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FiEure I-S: Mauling DDEM into DDC 

The second way is the application of the Alexander Method. 

In both cases, DDC receives a set of VIM rules to execute in forward chaining. When the 
Alexander Method is applied, an important speed-up is obtained: instead of producing all the 
ancestors, only the ancestors that are necessary to compute the solution are produced. It may be 
seen as forward chaining emulating backward chaining. 

Now, let us see how the three VIM rules in our first example are compiled into DDCL code. 
First, the rules are rewritten as: 

Rl’: INPUT “file-father” (X,Y) => ancestor(X,Y) 
R2: ancestor(X,Y),ancestor(Y,Z) =z ancestor(X,Z) 
R3’: ancestor(“Jean”,X) => OUTPUT “file-solution” (X) 

A DDCL program has the following structure: 

MAKN cset_of_actions I> NODES <set-of-actions 2> END 

<set-of-actions 2 > is executed by the host computer, while <set-uf-actions 2> is copied into 
every node. Then, each node executes some actions depending of the A arrivals. 

The “ancestor” relation is duplicated. rel-ancestor-I is distributed among the nodes by the 
application of the hash function to the first attribute, and rel-ancestor 2 is distributed by the 
application of the hash function to the second attribute. rel-ancestor-l is used as the reference 
for the elimination of the duplicates. 

The resulting DDCL program is: 

MAIN 

acfiort satururion : 
messuge(all,init,c >) 
open(‘Ifile_solution”,solution,write) 
opcrz(‘Ifiiefather” father,read) 
witlt file(father) mapfile 

access~tuple(<X,Y>) 

/* Beginning of the host actions 

I* This action opensfiles, and loads the 
I* source relation into the machineS nodes 

Y 

Y 
Y 

message(node,ancestor,cX,Y>) 
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if X=“Jean” then 
message(node,ancestor-1 I c Y >) 

endif 
endmapfile 
&xelfather) 
termination 

endaction 

action! output-l : 
access-deZta(<X >) 
~write(solution,cX>) 

endaction 

action: finish : 
close(solution) 

endaction 

NODES 

action init : 
idle idle 
init_telatian(rel~ances~or~.l} init_telatian(rel~ances~or~.l} 
init_relation(rel-ancestor-2) init_relation(rel-ancestor-2) 
n’nit-reiafion(rel-ancestor-sol) n’nit-reiafion(rel-ancestor-sol) 
init_terminationCfinish) init_terminationCfinish) 

/* Stores the As arriving to the lwst into the 
/* soh.uion file 

/* Closes the solution file 

/* Beginning of the nodes actions */ 

I* Initializes the local relations in each node *I 
/* and initializes the termination action */ 

endaction 

action ancestor-l : /* Elimination of duplicates and first part 
access-delta(<X,Y>) /* of the A-rule 
if new-add(rel-ancestor-l,<X,Y>) then 

message(node,ancestor_2,xY,X>} /* a WA *I 
with searclt(rel_ancestor_2.<X >) mop 

access-tupte( c Z>) 
message(node,ancestor-1 ,<Z,Y>) /* u BA */ 
if Z= ‘Jean” then 

message(node,ancestor-sol,<Y>) I* a BA */ 
eadif 

endmap 
endif 

endaction 

action ancestor-2 : f * Dual part of the A-ruk 
acces-deita(cX,Y>) 
a&i(rei_ancestor_2,cX>) 
-with search(rel-ancestor-l,<X>) maI1 

access-tuple(cZ>) 
message(node,ancestor-l,<Y,Z:>) /* a BA *! 
if Y= “‘Jean ” then 

endif 
message(node,ancestor_sol,<Z>) P a BA *I 

endmap 
endaction 

action: ancestor sol : /* Eliminates zhe duplicarcs in the solution 
access-dbz( <X >) /* and sendr dr to the host 
if ne w-add(rei-ancestor-sol, <X >) then 

message(main,output-1, <X >) I* a WA */ 
endif 

endacfion 

*f 
*/ 

-424- 



I-10 Example of rdational operations in DDC 

Let us consider a relation S with the attributes: S#, SNAME, STATUS, CITY. 

A selection query can be expressed by the VIM rule: 
rel-S(X,-,Y,“Paris”) => solution(X,Y) 

Let us now consider the relation S and a relation SP with the attributes: S#, P#, QTY. 

The following VIM rule is an example of join operation: 
rel-S(X ,-,-, Y),relSP(X,Z,J => solution (Z,Y) 

These two examples show how these queries can be translated into VIM rules, in order to be 
executed in DDC. The translation of other relational operations to VIM is possible: VIM is 
reIaGonally complete because it can express the five basic relational operations. Because VIM 
can also express recursion, DDC is a relational deductive system. 

Part IT: uSvC in DDC 

In every node of DDC. the 68020 processor will be assisted by @yC (microprogrammable 
Symbolic Coprocessor). pSyC is microprogrammable because we want to have an adaptable 
instruction set, which corresponds to DDCL and its evolution. 

We have studied @3yC speed (with a cycle of 100 ns) compared to a 68020 (with a cycle of 
60 ns). The simulation showed that @yC is about five times faster, for our application, than 
the MC68020. 

The design of pSyC is now finished. It is currently being implemented with a HCMOS 
1.2 micron, standard cells technology. @yC will be integrated to the DDC prototype in 1989. 

II-1 Motivations 

The most basic data in databases are character strings and numbers (integers, reals). While 
numbers are easily and naturally processed by computers, character strings are more difficult to 
compute because of their variable length. One of the most frequent basic operations in DBMSs 
consists in searching whether a given character string can be found or not within a huge set of 
strings. This operation is in fact, one of the primitives of DDCL, the “search” primitive. 

Relations must be stored in memory in a structured way. To facilitate searches, we have chosen 
to store some attributes of a relation as a compacted automaton. Traditionally, the representation 
of an automaton in memory consists in a two-dimensional array, where each row represents a 
state of the automaton. In the columns are stored pointers to other states, which represent the 
transitions between states. When using the automaton, the input character indexes the current 
state or row in the array, to find a pointer to the new current state. 

The problem with this representation of automata is that in most cases the array is very large, 
and contains mostly null pointers, assuming that a nulI pointer indicates the failure of the search 
in the automaton. 

Instead of this space-consuming representation of automata, we use a compact format with 
several types of state representation. The choice of a representation for a given state will depend 
on the number of transitions starting from this state. 

This is why every pointer to an automaton state must be tagged with the type of the state’s 
representation, so that the search program can know how to compute the next state when an 
input is given. 

II-2 @yC architecture 

pSyC may be seen by the host processor (the 68020) as a DMA-type peripheral, that is, pSyC 
may request the mastership of the bus. The external microprogram memory is accessed via a 
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l2-bit micro-address bus and a 69-bit micro-instruction bus. As a matter of fact, it is possible, 
t.hanks to the 69-bit micro-instruction word, to command 1 to 8 simultaneous actions, e.g. two 
arithmetic operations, two byte extractions with the decrement of associated counters, a byte 
comparison and a memory access request. 

,4s shown in fig. II-l, pSyC is composed of a data path, a micro-instruction sequencer, a 
memor,y controller, and host CPU interface logic and registers. 

pinstruction bus paddress bus 

FiPure 11-l: uSv6 internal 0rFanization 

The data path is organized around two main busses, the data bus and the address bus. There arc 
smaller secondary busses for the connection between the main busses and independent operators 
like counters and byte extractors.’ 

The data bus connects together sixteen 32-bit registers, one ALU, one shifter, a byte injector, a 
bit tester that can test a bit among 32, and a set of four wired 32-bit constants. 

The address bus connects together one ALU, sixteen 32-bit registers and four 32-bit wired 
constants. In addition, there is a tag comparator and a 4-bit three-state gate that allows a tag to be 
associated to a 28-bit pointer. 

The other operators are two l-byte extractors, one byte comparator and two sets of counters. 
Each counter set is made up of four registe.rs and a decrementer. These counters can drive 
directly the byte extractors and the byte injector, giving the position in which the byte is to be 
extracted from or inserted into a 32-bit word. 

The sequencer of @yC contains an eight I2-bit address stack for sub-microprogram calls, an 8- 
bit counter for short loops, and an address calculator able to perform multi-destination branches 
and calls in a single cycle. 

The memory controller allows the microprogrammer to ignore such details as the number of 
cycles the memory needs to perform a read operation, wait states, bus errors, etc. 

The host CPU and @yC communicate via 9 interface registers and 9 control signals. All of the 
interface registers are read/write for both pSyC and the host CPU. One of the registers serves as 
a status word and a particular bit in this word is used to start pSyC at the beginning. 

Specialized operators in @yC 

@yC has specialized hardware features in order to deal efficiently with character strings and 
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tagged pointers. These operators are in the data path. l.rSyC has a 32-bit data bus and a 32-bit 
address bus. In order to minimize the number of memory accesses, l.rSyC only reads or writes 
32-bit words, but it has specialized operators able to extract one byte from a 32-bit word, or 
insert a byte into a 32-bit word, at any S-bit aligned position. 

There are two byte extractors (with their associated registers) and one byte comparator, that can 
operate in parallel. These features make character string operation - especially comparison - very 
efficient in @yC. One byte injector is used to prepare the results before writing them - 32 bits at 
a time - back into memory. 

@yC also has specialized hardware features that make tag manipulation easy and efficient. Tags 
are 4 bits long and are located in the 4 higher-order bits of a 32 bit word. Thus, 16 different type 
identifiers can be associated with pointers, while 28 bits remain available to address a 256 
megabyte memory space. 

II-3 pSyC’s instruction set for DDC 

When a delta reaches a node, its tuples are immediately stored into the local memory of the node, 
and pointers to these tuples are pushed onto a stack. This work is done by the 68020. Then, the 
68020 triggers j.~LsyC and lets it work on the data, assuming pSyC has a program indicating 
what to do with this data, and knows the location where the tuples are referenced. 

The three principal actions that @yC is asked to perform are searclz, add and new-add. 
pSyC must also know how to execute a very simple stack-based language, allowing the 
scheduling of the operations on tuples and relations. At the end of its program, or during 
program execution, @yC will need to send messages either to other nodes or to the host 
system. 

The search, add and new-add instructions 

Their implementation depends heavily on the format under which the relations are stored in 
memory. Since we have chosen a compact finite state automaton format for the relations, the 
search instruction is very fast indeed, the number of @yC cycles it lasts is proportional to the 
length of the tuple. 

Messages 

Sending a message is not a job that @yC can handle easily, because it deals with system 
features and routines that are written in 68020 machine code. Thus, the message primitives of 
pSyC are only requests to the 68020, and only after a message request has been answered, can 
@yC start its work again. 

A general purpose stack language 

In order to schedule these operations and to do some elementary calculus, we defined a low level 
general purpose stack-based language. This simple language is necessary to implement the high- 
level control structures of DDCL (if.. tken.. erzdif, witlt.. map.. endmap, witlz.. 
mapfile.. endmapfile). 

II-4 The data internal format 

Finite state automata are used here to retrieve very quickly a tuple from a relation, given a key 
attribute or a set of keys. Since relations are large, we use compaction techniques in order to 
reduce the size of the automaton representation in memory. These techniques must not penalize 
too much the performance of the search operation, while reducing significantly the memory 
usage. For each state, the appropriate format is chosen dynamically at creation time depending 
on the number of transitions. 

The vector sme representation 

An automaton state may be represented as a N-element vector, N being the size of the alphabet. 
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The rank of an element in the vector corresponds to the input character code, and the value of 
this element indicates the transition induced by this input character. The element in the ‘vector is 
null if there is no transition in this state for this input. and otherwise contains the address of the 
next state (fig. II-Z). 

Pointer to the a b c d 
.S?ip*~pZ------l 

Pointer Pointer 
transition transition 
9, II a “d” 

FiPure H-2: The vector reDresentation 

This representation is very expensive in terms of memary space, and needs to be initialized, but 
it allows a very fast searching, because there is only one indexed memory access in the transition 
program. It is used when a state has many tra.nsitions. 

The lirwar representation for states 

Sequences of states with a single transition in each state are very common in a database context. 
We call such a sequence a “linear” state sequence, and it can be represented by a simple character 
string (fig II-3), allowing the transitions between states to be simple and fast (a comparison and 
the increment of a pointer). 

Pointer to the 

v 
Pointer for transition 

P 

in case of success 

Fivure TI-3: The linear representation 

The packed state representaiion 

A state. with a small number of transitions (e. g. 2 to 6) may be represented as a list of couples 
(Ai, Pi) , where Ai is a value within the alphabet and Pi is a pointer to the next state if the actual 
input value equals Ai (fig H-4). 

The program calculating the transition for suc.h a state representation sequentially searches if the 
actual :input matches one of the Ai in the state, and sets the new current state pointer to Pi if this 
is the case. This is of course slower than other transition programs, and the automaton 
construction program must have a simple garbage collector to manage this representation, but 
this structure saves a lot of memory space compared to the vector one. 

Further compaction can be achieved by splitting the alphabet into two parts: the “usual 
characters” which are the most frequent in the database, and the other characters. 

The representation of one individual state is divided into two parts. The first part corresponds to 
the “usual character set”, and uses the vector and packed representation. The second part 
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corresponds to the other characters, and for those characters we only use a list representation 
like the packed one. 

Pointer to the 
current state 

Pointer 
) transition “a” 

Pointer 
transition “c” 

NIL 

Figure 11-4: The uacked reuresentntion 

The drawbacks of this method are the need of a transcoding table, and the fact that the efficiency 
of the representation depends on some statistical information about the contents of the database. 

II-5 An evaluation of the compact automaton format 

A pragmatic evaluation of the algorithms based on the previously described data structures 
shows the interest of this approach. In this section, we present the results of this evaluation, 
which is concerned with both speed and memory occupation. Further details about this 
experiment can be found in [Cou 881. 

Let Qi be the initial quantity of data, in bytes, which will be represented by the automaton. Let 
Qf be the final quantity of memory space, in bytes, which is necessary to hold the automaton. 
We will call Expansion Rate (Ex) the ratio Qf / Qi , and we will focus on the variations of Ex 
with the use of the different data structures. 

We are also interested in the time -more precisely, the number of memory accesses- which is 
necessary to construct (compile) the automaton and to search a string in the automaton: 

Tc = (number of memory accesses for compiling NC characters) / NC 
Ts = (number of memory accesses for searching a Ns character long string) / Ns 

The initial data has been randomly generated, following a Gaussian law. The parameters of the 
random generator have been statistically determined. 10000 strings were generated for each 
configuration. The alphabet comprises 256 characters. The size of a pointer is 32 bits. 

The following table summarizes the results of the evaluation: 

Ex 

Tc 

TS 

Vectors 

907 

61.6 

2.00 

Vectors + 
Linear 

20.8 

4.40 

2.24 

Vectors + 
Linear + 
Packed 

2.94 

3.82 

2.49 

Vectors + 
Linear + 
Packed + 
Sep,aration 

1.81 

4.76 

3.41 

We point out an important decrease of Tc with the introduction of linear and packed structures. 
This is due to the decreasing number of vector structures, and therefore to the reduction of 
initialization time. 
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