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ABSTRACT
Recent advances in neural networks, along with the growth of rich
and diverse community question answering (cQA) data, have en-
abled researchers to construct robust open-domain question an-
swering (QA) systems. It is often claimed that such state-of-the-
art QA systems far outperform traditional IR baselines such as
BM25. However, most such studies rely on relatively small data
sets, e.g., those extracted from the old TRECQA tracks. Givenmas-
sive training data plus a separate corpus of Q&A pairs as the tar-
get knowledge source, how well would such a system really per-
form? How fast would it respond? In this demonstration, we pro-
vide the attendees of SIGIR 2017 an opportunity to experience a
live comparison of two open-domain QA systems, one based on
a long short-term memory (LSTM) architecture with over 11 mil-
lion Yahoo! Chiebukuro (i.e., Japanese Yahoo! Answers) questions
and over 27.4 million answers for training, and the other based
on BM25. Both systems use the same Q&A knowledge source for
answer retrieval. Our core demonstration system is a pair of Japan-
ese monolingual QA systems, but we leverage machine translation
for letting the SIGIR attendees enter English questions and com-
pare the Japanese responses from the two systems after translating
them into English.

CCS CONCEPTS
• Information systems → Question answering;
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1 INTRODUCTION
Recent advances in neural networks, along with the growth of rich
and diverse community question answering (cQA) data, have en-
abled researchers to construct robust open-domain question an-
swering (QA) systems. It is often claimed that such state-of-the-
art QA systems far outperform traditional IR baselines such as
BM25 [8] (See Section 2). However, most such studies rely on rel-
atively small data sets, e.g., those extracted from the old TREC QA
tracks. Givenmassive training data plus a separate corpus of Q&A
pairs as the target knowledge source, how well would such a sys-
tem really perform? How fast would it respond?

In this demonstration, we provide the attendees of SIGIR 2017
an opportunity to experience a live comparison of two open-domain
QA systems, one based on a long short-term memory (LSTM) [10]
architecture with over 11 million Yahoo! Chiebukuro (i.e., Japan-
ese Yahoo! Answers) questions and over 27.4 million answers for
training, and the other based on BM25. Both systems use the same
Q&A knowledge source for answer retrieval. Our core demonstra-
tion system is a pair of Japanese monolingual QA systems, but we
leverage machine translation for letting the SIGIR attendees enter
English questions and compare the Japanese responses from the
two systems after translating them into English.

Yahoo! Chiebukuro is the major cQA service in Japan, which
claimed 714 million pageviews in October 2014. As of December
2014, it had over 84 million questions. While we only have 100,000
questionswith 241,994 answers in the target Q&Aknowledge source
at the time of this writing, we plan to deliver a demonstration with
a much larger data set for answer retrieval.

2 RELATEDWORK
TREC (Text Retrieval Conference) ran the QA Track from 1999 to
2007; over the years, the task evolved from the relatively simple
factoid QA to question series ending with others questions, which
meant “Tell me other interesting things about this target I don’t know
enough to ask directly” [2] and therefore solicited complex answers.
Other evaluation tasks have also tackled the open-domainQAprob-
lem: examples include theQAC (QuestionAnsweringChallenge) [3]
and the ACLIA (Advanced Crosslingual Information Access) [7]
tasks of NTCIR, which were run from 2002 to 2010 when taken
together.

While the above efforts in QA aim at automatic extraction of
good answers from corpora such as the web and news, leveraging
cQA as the knowledge source has also become a promising way to

Demonstration Paper SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

1309



tackle the QA problem, as both questions and answers in cQA data
are diverse and rich in content. In 2012, Liu et al. reported that un-
successful web searchers often turn to cQA [5]. The NTCIR-8 cQA
task [4] tackled the problem of ranking cQA answers given a ques-
tion, by leveraging the best answers data available in the Yahoo!
Chiebukuro data. However, the entire Yahoo! Chiebukuro data set
from that task contained only about 3.1 million resolved questions
from 2004 and 2005, which is substantially smaller compared to the
data used in our demonstration.

More recently, the TREC LiveQA track was launched [1], where
unresolved cQA questions are sampled in real time and the sys-
tems are expected to respond effectively to them. Wang and Ny-
berg [10], the top performer in that track, first searched the web
and Yahoo! Answers to obtain answer clues, which are texts simi-
lar to the question string, and answer passages, which are likely to
contain sentences that serve as the answer to the question. Then
they ranked candidate sentences based on answer clue scores that
leverage BM25 as well as answer passage scores that leverage a
multilayer stacked bidirectional LSTM (BLSTM) where the input
words are pre-trained by skip-gram-based word embedding [6].

Wang and Nyberg [11] also tackled the problem of answer selec-
tion for QA using a combination of a BLSTM approach and BM25.
Based on an experiment that utilised topics from the QA tracks
of TREC-8 through 13, they reported that their combination of
BLSTM and BM25 outperformed BM25 as well as other previously
reported methods that were evaluated on the same data. However,
it remains to be seen whether their conclusion will generalise to
more realistic situations where we have millions of questions and
answers. Tan et al. [9] proposed QA-LSTM, Convolutional-pooling
and Convolution-based LSTM, and Attentive LSTM, and reported
further improvements on the aforementioned data set.

3 LSTM-BASED QA
This section describes the LSTM-based algorithm that we use for
our QA demonstration system. LSTM-based answer selection con-
sists of two phases: training and retrieval. In the training phase,
given a question and an answer, the trainer converts each of them
into a representation vector as described below and calculates the
distance between these vectors. Figure 1 provides an overview of
how we calculate the distance between a question and an answer .

Figure 1: Computation of the distance between questions
and answers with LSTM.

Using Mecab1, a widely-used Japanese morphological analysis
tool, we tokenise both the given question and the answer, and then
convert them into a word embedding vector pre-trained by a skip-
gram method with the Japanese Wikipedia data2. Similar to the
system of Tan et al. [9], our BLSTM takes a sequence of word em-
bedding vectors as input and yields an encoded vector as output.
Given a sequence ofword embedding vectorsX = x1, . . . ,xt , . . . ,xn ,
a hidden vector ht at time step t is updated as follows:

it = σ (Wixt + Uiht−1 + bi )
ft = σ (Wf xt + Uf ht−1 + bf )
ot = σ (Woxt + Uoht−1 + bo )
jt = tanh(Wjxt + Ujht−1 + bj )
Ct = it ∗ jt + ft ∗Ct−1
ht = ot tanh(Ct ),

where an LSTM has three gates, namely input i , forget f and out-
put o, and a cell memory vector Ct . σ is the sigmoid function.
W ∈ RH×E , U ∈ RH×H and b ∈ RH×1 are the network parameters.
E is the dimension of word embedding vectors, and H is that of
hidden vectors; we let E = 600 and H = 600. A BLSTM processes
the sequence from forward and backward directions, generating
two sequences of output vectors, which are then concatenated. We
use 1,200-dimensional output vectors at each time step. Given the
concatenated output vectors from BLSTM, max pooling over the
concatenated vectors is performed in order to generate fixed-sized
distributed vector representations of a sequence of tokens. Given
token sequences of a question-answer pair, the question and an-
swer BLSTMs generate a vector representation of the question and
the answer, respectively. The distance between the question and
the answer is calculated as the euclidean distance between thus
generated vectors.

We train the parameters of two BLSTMs and a embedding ma-
trix to minimize triplet loss, which is formulated as follows:

L = max{0,M + d(q,a+) − d(q,a−)}
where d denotes a euclidean distance function and q denotes a
question representation vector. a+ and a− denote positive and neg-
ative example answers, respectively. M denotes the margin of the
separation; we letM = 0.2.

In the retrieval phase, given a question, we rank answers by
euclidean distance by the same mechanism depicted in Figure 1.

4 DEMONSTRATION SYSTEM
4.1 Overview
Figure 2 shows an overview of our demonstration system. We let
SIGIR 2017 attendees enter arbitrary questions in either Japan-
ese or English; English questions are automatically translated into
Japanese. As can be seen, the Japanese question is fed to the LSTM
component and the BM25 component simultaneously, so that re-
trieved answers obtained with each method can be viewed side by
side. The retrieved Japanese answers are also translated into Eng-
lish.

1http://taku910.github.io/mecab/
2https://dumps.wikimedia.org/jawiki/
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Figure 2: Overview of the demonstration system.

4.2 Yahoo! Chiebukuro Data

Table 1: Number of questions and answers in our test and
training dataset.

(a) training data (b) Q&A knowledge source
# of questions 11,074,960 100,000
# of answers 27,429,741 241,994

Table 1 shows the statistics of the Yahoo! Chiebukuro data we
use. Column (a) shows the number of questions and the number
of corresponding answers for training our LSTM component. Col-
umn (b) shows the scale of the target knowledge source used by
both LSTM and BM25; for the actual demonstration, we plan to
expand this data set so that we can cover as diverse questions as
possible with the answers that we have for retrieval.

4.3 Ranking Components
Our LSTM component trains the parameters of BLSTM and an em-
bedding matrix using the aforementioned training data, where we
use only posts with 50 tokens or less. After the training is done, our
LSTM-component indexes answers in the Q&A knowledge source,
by converting answer sentences into representation vectors using
the BLSTM for answers, where the dimension of representation
vectors is 1,200, which are then indexed with NGT3, a spatial in-
dexing tool. Due to the memory limitation of GPU boards, we only
indexed answers shorter than 50 tokens. Table 2 shows the elapsed
3https://github.com/yahoojapan/NGT

Table 2: Elapsed time of the LSTM component to retrieve the
top n answers (n = 10, 1000).

retrieving top n n = 10 n = 1000
average elapsed time [msec] 5.76 41.31

time of the LSTM component for retrieving the top 10 and 1,000
answers from 155,648 candidates.

On the other hand, our BM25 component uses Elasticsearch (v5.2.1) 4
with default settings. We indexed all answers in the Q&A knowl-
edge source for retrieval. Search queries are formulated by extract-
ing only nouns, verbs and adjectives from the input question after
performing morphological analysis with Mecab.

4.4 Examples
Figure 3 shows an example question from our target Q&A knowl-
edge source, and the answers retrieved by LSTM and BM25, with
rough English translations. Note that in the actual demonstration,
attendees can enter arbitrary questions, whose topics may be out-
side the target Q&A knowledge source. How will LSTM and BM25
compare in terms of effectiveness and efficiency?

5 SUMMARY
Given the abundance of data, are neural network-based QA sys-
tems going to completely replace traditional IR-based systems in
the near future? Please come to the demo, enter a question, com-
pare the answers, and let us know what you think.
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Figure 3: An example question, with answers returned by the LSTM-based system (left) and the BM25-based system (right).
Rough English translations are provided by one of the authors; in the actual demonstrations, machine translationwill be used.
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