
O p t i m i z a t i o n o f I n v e r t e d V e c t o r S e a r c h e s

Chris Buckley
Department of Computer Science

Cornell University
Ithaca, New York 14853

Alan F. Lewit
College of the Virgin Islands

Box 84, Kingshill
St. Croix, Virgin Islands 00850

A simple algorithm is presented for increasing the
efficiency of information retrieval searches which
are implemented using inverted files. This optimiza-
tion algorithm employs knowledge about the methods
used for weighting document and query terms in ord-
er to ezamine as few inverted lists as possible. An
eztension to the basic algorithm allows greatly in-
creased performance optimization at a modest cost
in retrieval effectiveness. Ezperimental runs are
made ezamining several different term weighting
models and showing the optimization possible with
each.

I. Introduction

Efficiently comparing a query to a collection
of documents is a critical topic for information
retr ieval research. The vast store of information
contained in any collection is useless if users are
not willing to wait for the system to respond to
their query. Not only is efficient comparison
impor tant for actual retrieval of documents, but
many subsidiary activities, such as Maximum
Spanning Tree generation or nearest neighbor
searches, depend on it.

For the purposes of this paper, a query i s , m -
sidered to be a vector in n-dimensional space, each
dimension corresponding to a concept which could
potent ial ly occur in the query. In part icular , this
paper does not look at Boolean queries. Each
document is a vector in the same space; the simi-
lari ty between the query and a document is a

This study w u supported in p,r t by the NttionaJ Science Foundation
under grant IST 83-16166.

Permission to copy without fee all or part of this material is
granted prodded that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1985 ACM 0-89791-159-8/85/006/0097 $00.75

measure of how close the document vector is to
the query vector.

The straight-forward method of finding the
closest documents to a query is simply to go
through the document collection sequentially.
Each document vector is compared in turn to the
query vector. This sequential search is fine for
very small collections, but it is infeasible for most
collections since so many similarities must be com-
puted. Something must he done to cut down on
the number of s imilar i ty computat ions.

One approach is to group the documents in a
collection such tha t similar documents are
clustered together.[I,2,3] Only those documents
whose cluster representat ive has a high similari ty
to the query are candidates for retrieval. Unfor-
tunately, no clustering method has yet proven
itself to be effective across a wide variety of docu-
ment collections.

Another approach, tha t of Eas tman and
Weiss[4,5,6], finds the nearest neighbor using a
binary search tree with terms as node values. Any
document appearing in the left sub-tree of a node
has no terms in common with the node, a docu-
ment in the right sub-tree has a least one term in
common. At any point in the tree search, an
upper bound can be placed on the similari ty for all
unseen documents. The search terminates when
this upper bound becomes less than the similari ty
of a seen document. However, it is quite difficult
to construct a good binary tree (possibly as hard
as it is to cluster). In addit ion, only a small saving
in efficiency was demonstra ted on the small docu-
ment collection used in these experiments.

A third approach comes from the observation
tha t most documents in a collection have no terms
in common with any given query. Therefore, an
inverted file giving the documents in which a
query term occurs can be used [7,8]. Query-
document similarities will only be computed for

97

those documents whicb occur in an inverted list of
some query term. In this way, each similarity is
known to be non-zero since there will be at least
one term in common. To further speed up
retrieval, stopping conditions can be calculated so
that not all of the inverted lists need to be exam-
ined. These stopping conditions consider the max-
imum similarity that the query can have with
documents not yet examined. The maximum simi-
larity is based on the particular retrieval method
used, and on the minimum length of the docu-
ments remaining.

The problem with these methods for retrieval
is that they were designed for another purpose,
nearest neighbor matching of binary weighted vec-
tors. They extend to the task of weighted
retrieval in a straight-forward manner, but not
efficiently. They also require a large number of
random accesses to a direct document vector file in
addition to the accesses to an inverted file. If the
similarity function can be chosen such that all the
necessary information can be stored within the
inverted file, then the accesses to the document
vector file can be eliminated.

The current paper examines one such similar-
ity function, looking at several term weighting
methods. Different stopping conditions are
obtained for each weighting method. An inner
product function is used. The similarity between a
query and a document is simply the sum of the
products of corresponding term weights. Note
that this is not as restrictive a choice as it might
appear at first glance. With appropriate term
weighting functions, the inner product is
equivalent to a number of other similarity func-
tions. For example, the cosine function is identical
to an inner product function with each document
weight normalized by the length of the document
it occurs in. An inverted file is used to store the
list of documents and document weights associated
with each term in the collection. The inverted file
can be used to compute an inner product similar-
ity function easily, in the manner of the SIRE sys-
tem of McGill et ai[9,10], and the CITE system of
Doszkocs and Rapp[ll].

This paper considers an approach in which
query-document similarities are only partially cal-
culated. The inverted file is used to access lists of
documents corresponding to each term in the
query. Each inverted list is accessed and a partial
similarity due to the current term is computed and
s tored. .As soon as these partial similarities deter-
mine the set of documents to be returned to the

user, the retrieval operation is over, despite the
fact that the total similarity of each of the
returned documents may not have been computed
yet. The stopping condition will be dependent on
the term weights used.

This approach can be contrasted to that pro-
posed by Harper[12] who also used an inverted file
implementation of the inner product similarity
function {although with binary document weights).
Harper kept track of partial similarities for only
those documents which might enter the set of
documents to be returned to the user. His optimi-
zations involved considering all inverted lists, but
only calculating similarities for "possible" docu-
ments. The approach in this paper calculates par-
tial similarities for all involved documents, but
only considers the "useful" inverted lists. The two
algorithms are actually complementary and with a
bit of work could be merged. This work is left for
the future, however.

The basic algorithm here can be extended for
further operating efficiencies. Instead of stopping
when the set of documents to be returned to the
user is completely determined, retrieval can stop
when the majority of the most similar documents
are guaranteed to be among the retrieved set, but
some highly similar documents may not be. There
might be a slight degradation in retrieval
effectiveness if this is done. Experimental results
are presented that show the degradation is not
serious and that the performance improvement is
significant.

This approach is feasible now because of the
comparatively large amounts of cheap memory
available on today's machines. Ten years ago
memory limitations would prohibit the storage of
all of the partial similarities within main memory.
The overhead associated with storing the partial
similarities on disk would outweigh any advantage
to be gained from using the partial similarities.
Now, this method would be feasible for all but the
largest collections {greater than 2 million docu-
ments).

2. The Basic Algorithm

Assume that the user is initially interested in
looking at the top K documents for a particular
query. Informally, the algorithm is as follows:

Consider the list of query terms in order of
decreasing query term weight.

98

For each <document id, document term
weight> pair in a query term's inverted
list, add the partial similarity due to the
present term to the partial similarity for
this document already computed from pre-
vious terms.. Keep track of the top K+ I
partial similarities computed so far.

Stop when enough terms have been looked
at so that it is impossible for the K+ 1 a
ranked document to increase in rank, even
if all of the remaining query terms occur in
the K+ I a ranked document.

The exact stopping condition used is really the
only interesting par t of the algorithm. As seen
below, it depends greatly on the particular docu-
ment and query weighting schemes used.

More formally, represent query Q by
<q~, q2, q3, " ' , q t> . Let If, be the inverted list
for term q, with elements ~j,, giving the weight of
term i in document O~.

Sort the q, in order of decreasing query weight;
Set all elements of array SlM[I..N I to 0. (N is

the number of documents in the collection).
$IM[j] is the partial similarity computed thus
far between query q and document Dj;

Set hum_top to 0;
Set all elements of array TOP DOC[I..K+ 11 to 0.

TOP DOC[1..numJop] keeps, in decreasing
similarity, the documents with the highest
partial similarities computed.

foreach q, in Q
foreach dj,, in If,

Set 5IM[/I = StMI./I + ¢, • ~,,,;
If(hum_top < K or

$1M[j] > SIM[TOP DOC[num_top]]) then
If (y not in TOP DOC[1..K+ 11) then

If (hum top < K+ I) then
Set hum top = hUm top + 1

end if;

Set TOP DOC[numtopl = j;
end if;

Restore TOP_DOC to sorted order;
end if;

endJoreach;

If (hum top -- K+ 1) then
Set rnazremaining_sim to maximum possible

partial similarity of document K+ 1 to
the query terms not yet considered;

If (SlM[TOP DOC[K + 111+ raaL remaining_sim
<_ SlM[TOP_DOC[K]]) then

D o n e - return TOP_DOC[1..KI
documents to the user.

end if;
end if;

end_foreach;

I t is now time to look at some examples of
weighting schemes to see how maEremaining_sim
can be bounded. Three common term weighting
schemes are discussed below.

2 . 1 . N o r m s l l s e d D o c u m e n t V e c t o r

The weights in a document vector are often
normalized so tha t a long document will not be
retrieved before a short document just because of
its length. Suppose the weights are normalized so
tha t ~,/, = 1. This can be done by taking an arbi-
trarily weighted vector and dividing each term
weight by the sum of the term weights in the vec-
tor. Since the query terms are sorted by decreas-
ing weight, the maximum partial similarity of a
document to the query terms following ¢,, the
present query term, is bounded by 1 * q,+l- The
maximum similarity will be achieved if a document
consists of a single term matching q,+t.

Actually, this can be improved on slightly
because document K+ 1 already has a similarity
due to matching one or more of the first i query
terms. Therefore, the maximum document weight
that can match query term q,+t is:

1 - the document weight used in matching the
first i query terms.

The worst case occurs if as little documentweigh t
as possible was used in calculating the existing
partial similarity; i.e., the document matched the
highest weighted query term. The first query
term, qt, is the maximum weight term in the
query, so the minimum document weight is

SIM[rOe_OOCIr + 111
ql

This yields the final upper bound for the remain-
ing partial similarity after term q, as

max remaining elm =

q,+, [1- SIM[TOP_DOC[Kq, + 111] (El)

99

Note that this first stopping condition is entirely
independent of the overall type of weighting
scheme used; it depends only on the normalization
of the document weight.

As an example, consider the situation where
the user requests 5 documents with a query, Q, of

Q ---- (qt---0.5, q2----0.25, qa----O.1, q¢----O.1, q6----0.05)

Suppose the highest six partial similarity values
after processing the first three query terms
(qx,q2,fs) are

Document_Id Partial S imilarity

1 .45
2 .42
3 .40
4 .38
5 .35
6 .30

°

At this point, the algorithm should stop and
return the top 5 documents to the user if it is
impossible for document 6 to have a final similar-
ity value of .35 or greater.

For document 6 to have its current partial
similarity of .30, at least one of its terms had to
match the first three query terms. The worst pos-
sible case is if document 6 matched query term ql
with a document weight of 0.6. This maximizes
the total weight which the rest of the terms in
document 6 can have. Since the sum of the
weights of the entire document is 1.0, the remain-
ing terms of document 6 can have a maximum
total weight of 0.4. If the entire weight of 0.4
matches the highest weighted query term remain-
ing (term q4), the maximum final similarity which
could be achieved is .30 + .4 * .I •ffi .34. Therefore,
it is impossible for document 6 to have a similarity
greater than .35, and the retrieval algorithm
should halt now.

I . I . Document Weight u • Function of Query
Weight

Several weighting schemes compute both
document weights and query weights in roughly
the same fashion. A bound for the document
weight can thus be computed from the query
weight. An example of this is the t / * idl weight-
ing function used by the SMART system for many

years. Both the query and the document vectors
are indexed with the same formula. Since the id$
(i n v e r s e d o c u m e n t f r e q u e n c y) component is depen-
dent on features of the entire collection, the only
difference between the weights in the two vectors
is due to the difference in the term frequency com-
ponent. The exact formula used in recent years by
SMART is

t/ 1-~) (wx) w,ight = 10.5 + o.s . ~ - 1 ,o,

where

t l = within document frequency of term
m o z t f ~ maximum t l for all terms in vector
N ---- number of documents in the collection
n ~- number of documents which contain term.

The minimum value for the term frequency com-
ponent is 0.5 and the maximum value is 1.0.
Therefore, an upper-bound for the weight for a
document term is twice the weight of that term in
the query. This yields an equation for the remain-
ing partial similarity after query term i of

t

maz_reraaining_sim= ~ q~ (2q,) (E2)
I ~ * ÷ l

A slight variation of this would be to normalize
both the document and query vectors by the
length of the respective vectors. If the document
length is assumed to be greater than the query
length, then E2 still gives an upper bound. This
variation is equivalent to the classical cosine run
using t f * i d l weights.

2.3. Bounded Document Weight

A third type of weighting scheme is that in
which there is a constant bound, say B, (normally
1) on the weight of a document term. Examples of
this are:

Binary document weight

weight = I (W2)
Croft's Probabilistic weight [13, 14]

weight = Pros (d, -~ 1) (W3)

Normalized term frequency

tf ($V4) weight ---- raaz_tf

Augmented normalized term frequency

t / (ws) weight = 0.5 + 0.5 ma= t f

A bounded document weight situation, with bound
B, gives the following equation:

100

maz remaining_sim ~ B #
t

E q~ (E3)
t m ~ + l

3. Further Optlmlzations of the Bule Algorithm

Two major extensions to the basic optimiza-
tion algorithm suggest themselves. The first
extension is based on equations El, E2, and E3 all
being worst case equations. It is very unlikely that
any document will ever satisfy the worst case con-
ditions. Modifications to the equations could be
made so it would be expec ted that no document
would exceed maz_rernaining_sirn. Unfortunately,
changes of this type are extremely sensitive to
both the particular weighting scheme in use, and
the particular document collection. In the absence
of any general theory of what kind of changes
would work, this further optimization is not pur-
sued.

A more workable extension comes from the
observed fact that the chance of the K a ranked
document being relevant is not that much greater
than the chance of the K + I 't ranked document
being relevant. Effectiveness should not suffer
greatly if the K+ 1 't document were to be returned
instead of the K t' document. Instead of guaran-
teeing the top K documents will be returned to the
user, the retrieval system can guarantee the top n
(for n < g) documents will be returned, along with
another K - n documents which will have "high"
similarity.

This extension can be aehieved simply by
using the similarity of the n a ranked document
instead of the K t' in the stopping condition:

If (SIM I TOP DOe[K+ III + maz_eernaining~im
_< S1MITOP_DOClnlI) then

Done - return TOP DOC[I..K]
documents to the user.

end_if;

The new stopping condition assures that every
document with a total similarity greater than the
current n t' ranked document's partial similarity is
returned to the user. Therefore, at least the top n
documents with highest total similarity will be
returned.

4. Analys is of Algor i thms

The major requirement for both the basic
algorithm and the extended algorithm is that the
document collection must be available in inverted
list form with document term weights given in the
inverted lists. There is no need for a sequential
form of the document collection to be kept, where

the individual document vectors are directly avail-
able. Several of the previous algorithms already
mentioned required both the inverted list and
sequential forms of the collection to be kept, eg.
[7,8].

Each algorithm calls for the partial similari-
ties to be kept within main memory. The current
implementation uses 4 bytes per partial similarity
and allocates enough memory to hold a partial
similarity for every document in the collection. A
collection with 100,000 documents would need
400,000 bytes of memory to store the partial simi-
larities. The cost of a computer with sufficient
memory is currently much less than the cost of a
reasonably fast disk holding the documents and
associated inverted lists.

As was previously mentioned, the extended
algorithm is expected to achieve its performance
improvement at a cost in retrieval effectiveness.
Some highly similar documents may not be found
by the time the extended algorithm satisfies its
stopping conditions. The size of the effectiveness
degradation will depend (among other things) on
how closely the number of top documents actually
retrieved matches the number of top documents
guaranteed to he retrieved. For example, if the
stopping condition guarantees that the top 3 docu-
ments will be among 10 documents returned to the
user, but in practice the top 9 documents are
retrieved, then there will be little change in
effectiveness between the optimized and basic runs.

The documents returned to the user by either
algorithm are not as strongly ranked as they would
be without using any optimization. Even if the
top 10 documents are returned to the user, they
will he ranked in order of their partial similarity
instead of total similarity. A user interested in
high precision among the documents retrieved may
not wish to use any optimization.

The running time of the algorithms is deter-
mined by the number of entries in the inverted
lists for the query terms examined. The fewer the
number of lists looked at, and the shorter these
lists, the better the running time will be. Note
that a term which occurs frequently in a collection
is probably a poor term [15] and should receive a
low query weight. Terms with long inverted lists
will therefore be examined last since the query
terms are sorted by decreasing query weight. The
most expensive lists to look at will be the ones
dropped because of optimization.

As presented, the algorithm does have a com-
ponent with a running time linear in the number

101

of documents in the collection. This is the initiali-
zation of the array of partial similarities to 0. A
clever implementation can avoid having to do this
initialization explicitly, so this is not a problem.

5. Exper imenta l Runs

Experimental runs exploring both the basic
and the extended algorithm were done on two col-
lections. The CACM document collection consists
of the titles, abstracts, and other information for
3,204 computer science articles published in the
Communications of the A C M between 1958 and
1979 [16]. The INSPEC collection contains the
abstracts of 12,684 scientific documents. It was
obtained from Syracuse University, with additional
relevance assessments being done at Cornell. See
table I for statistics on the two document collec-
tions. The experiments were performed using the
SMART information retrieval system on a DEC
VAX 11/780 under the UNIX operating system
[171.

In order to examine the effect of query length
on optimization performance, two sets of queries
were used for each collection. The first set was the
set of original natural language queries obtained
from users. The t/ * idl functions given in equa-
tions W1 and W5 were used to index this set. The
other set was a set of longer feedback queries.
These were obtained by retrieving the best 10
documents for each query in the original set. The
original query terms were combined with terms
from the corresponding relevant documents in
order to form a new query. These query terms
were weighted using a term-relevance weighting
scheme [18]. Table 2 gives statistics for the four
sets of queries.

Document weighting methods were chosen
from each of the three categories discussed earlier.
To test equation E1 {normalized document vec-
tors), the document collections were indexed using
weighting function W5. Each document was then
normalized by dividing its term weights by the
sum of the term weights in the vector. For equa-
tion E2, the documents were weighted using the
same approach as the original queries (t/ * id /)
according to weighting function W1. Note that
this approach could not be used with the feedback
query sets, since the feedback query weights were
assigned by the feedback method itself, and thus
bore no relation to the document weights. The
bounded document weight category (equation E3)
was tested using weighting function W5 again, but
for this category no normalization of the vectors
was done.

For each combination of collection, query set,
and document weighting method specified above, a
set of 11 retrieval runs was made. Each run
returned 10 documents to the user, but guaranteed
only a given target number of the best documents
in those 10. Target values 1 through 10 were all
tested. A target value of 10 corresponded to the
basic optimization procedure first presented. A
target value less than 10 guaranteed that that
many of the top documents were returned to the
user. An unoptimized retrieval run was also per-
formed.

5.1. Evaluat ion o f Opt imizat ion

Tables 3.-12 present the consequences of not
examining all inverted lists corresponding to query
terms. There are three main categories of effects
given: the absolute savings due to the actual
number of inverted lists looked at; the savings in
CPU time and actual disk accesses caused by the
lowered number of inverted lists; and the retrieval
effectiveness which is changed because less infor-
mation is available.

The "Num Con:' sub-category under "Abso-
lute Statistics" in each table gives the number of
query concepts used (and thus the number of
inverted lists). "Num Block" gives the estimated
number of disk blocks that need to be read to get
the inverted lists. Each list requires one disk
access to learn the head of the list, and one or
more disk accesses to obtain the actual inverted
list, depending on the length of the list. The
number of floating point multiplications done (of
query weight times document weight) is given in
the "Num Mult" field.

The sub-categories under "System Statistics"
verify that the savings suggested by the absolute
statistics are actually being realized by the
retrieval system. "CPU Time" indicates the total
amount of time spent by the computer on the
retrieval run. This includes the work the operat-
ing system had to do to read data from the disk; it
does not include the time spent waiting for the
disk. The "Num Block" field gives the actual
number of disk blocks read during the course of
the retrieval. Since CACM is a "small" collection
(3204 documents) and a number of inverted lists
can be read with one disk block access, the actual
number of disk blocks will be considerably smaller
than the estimated number found under the
"Absolute Statistics" category. Note: the system
statistics presented are load-sensitive. They vary
depending on the other processes being run on the
computer at the same time.

102

Retrieval effectiveness is measured by the
average recall at the 10 document cut-off level.
Thus a recall figure of .3 means that, on average,
30~0 of the relevant documents for a query were
retrieved within the top 10 documents. Note that
for a feedback query, any document seen during
the original query retrieval is no longer considered
part of the collection. Therefore, .3 indicates that
30% of the remaining relevant documents were
retrieved within the top 10.

6.2. Analys i s of Results

We first examine several of the individual
result tables. Table 3 gives the results for original
query runs on CACM with document weights
bounded by 1.0. The number of concepts exam-
ined does not fall quickly as the target decreases to
1. It is only when target reaches 2 that more than
one concept is dropped per query on average.
Despite this, the number of floating point multipli-
cations done by this point has almost halved.
Both query weighting methods {for original and
feedback queries) will assign the lowest weights to
terms which occur in many documents. The
lowest weight query concepts are examined last, so
the longest inverted lists will be the first ones
dropped. Also, note the very small decrease in
average recall as target approaches 1. There is a
3% recall degradation while there is a 37% CPU
time improvement (comparing the base case and
target -~ 1).

Table 5 gives the results for retrievals with
normalized document vectors on the CACM collec-
tion. There are two features which are immedi-
ately obvious. The first is that very little optimi-
zation could he done. There wasn't enough infor-
mation ~bout the document weights to stop the
retrieval process early. The other (unintended)
feature is the poor recall values obtained. While
the particular weighting scheme chosen is not one
to be strongly recommended for any collection, it
is particularly bad for the CACM collection. (For
CACM, there is a strong correlation between
length of a document and relevance. Documents
published in early years tended to be short and
non-relevant.)

The results of feedback query runs on the
INSPEC collection are given in tables 10 and 12.
Table 10 shows the results of optimization know-
ing that the document weight is bounded by 1.
The performance improvement is tremendous! As
target goes to 1, there is a 77~ decrease in the
estimated number of disk accesses, an 88~
decrease in the number of floating point

multiplications, and an 84% decrease in the CPU
time spent. The recall penalty paid for this per-
formance is beginning to be noticeable: 10~a

In the runs shown in table 12, the document
vector is known to be normalized. As opposed to
table 5 (also using normalized document vectors),
there is a substantial performance improvement.
The absolute recall level is still low, but degrades
very little as the efficiency greatly increases.

There are a number of general observations
that can be made from Tables 3-12. Perhaps the
most surprising one is that recall values do not
degrade significantly as the number of guaranteed
top documents goes from 10 towards 1. The worst
effectiveness penalty is only 10% (in Table 10).
This suggests that the most drastic optimizations
given in this paper just barely reach the point
where the result of optimization trades off retrieval
effectiveness for retrieval efficiency.

As is to be expected, the more information
that is known about the document weights
involved, the more performance optimization can
be done. The largest performance increase is con-
sistently obtained when the document weight is
known to be bounded by twice the query weight.
The bounded document weight does almost as well
in these experiments. Note that the particular
weighting function used yields a weight which is
very often close to the upper bound. If only the
total length of the document vector is known, then
the performance increase available is quite a bit
less. There is still a significant performance
improvement with a sufficiently long query.

For original queries, stopping the search
immediately after all of the top 10 documents have
been found does not prove worthwhile (this was
the original basic optimization). There is no
improvement in four original query runs, and only
slight improvement in the other two. The longer
feedback queries offer more opportunity for
improvement; up to a 21~ decrease in the number
of disk blocks accessed is observed {see Table 10).
Note that this rise in the efficiency level is
obtained while guaranteeing no decrease in
retrieval effectiveness.

The small deterioration in effectiveness as
fewer query terms are considered suggests that
some queries have a good number of redundant or
even useless terms. The question of whether these
terms can be eliminated during the query indexing
process deserves further investigation.

Another contributing factor to the small
change in effectiveness is that the upper bound for

103

ma~remaining_sim is a wors t case upper bound.
It is rarely, if ever, achieved. A mathematical
model of term weight distributions within a docu-
ment will give a much smaller expected bound
for maL remainingsim. Use of a tighter bound
would allow a user (or database administrator}
greater options in trading off retrieval effectiveness
for retrieval efficiency.

6. Conclusion

An. algorithm has been presented which per-
forms a retrieval using an inner product similarity
function on vector collections with weighted terms.
The algorithm uses an inverted file representation
of the document collection and examines the
minimum number of inverted lists possible in order
to retrieve the best (most highly similar) docu-
ments. Fewer lists can be examined if the algo-
rithm only assures that some of the best docu-
ments are retrieved. The optimization in the
number of lists considered is based on knowledge
about the particular term weighting method used.

Experimental results show that little perfor-
mance improvement can be expected if all of the
best documents are guaranteed to be retrieved.
However, significant improvement (up to 8 8 ~ is
achieved if the algorithm's guarantee is relaxed.
Only a slight effectiveness deterioration results
from this relaxation. This experimental evidence
suggests that the extended algorithm is a practical
optimization of the basic inverted file search.

References

[1] G. Salton, ed., The SMART Retrieval System.
Prentice-Hall, Englewood Cliffs, N.J. (1971).

[2] R.E. Williamson, "Real-time Document
Retrieval". Ph.D. Thesis, Cornell University
(1971).

[3] N. Jardine and C.J. van Rijsbergen, "The Use
of Hierarchic Clustering in Information
Retrieval". Inform. Stor. Retr. 1971, 7, 217-
240.

[4] C.M. Eastman, "A Tree Based Algorithm for
Nearest Neighbobr Searching in Document
Retrieval Systems". Ph.D. Thesis, The
University of North Carolina at Chapel Hill,
(1977}.

[5] C.M. Eastman and S.F. Weiss, "A Tree Algo-
rithm for Nearest Neighbor Searching in
Document Retrieval Systems". Proc. Inter.

Conference on Information Storage and
Retrieval, SIGIR, Rochester, N.Y. (1978)

[6] S.F. Weiss, "A Probabilistic Algorithm for
Nearest Neighbor Searching". Proc. ACM-
BCS Symposium on Research and Develop-
ment in IR, Cambridge, England {1980).

[7] A.F. Smeaton and C.J. van Rijsbergen, "The
Nearest Neighbour Problem in Information
Retrieval". Pro¢. Inter. Conference on Infor-
mation Storage and Ret, SIGIR, Oakland,
California (1981).

[8] F. Murtagh, "A Very Fast Exact Nearest
Neighbor Algorithm for Use in Information
Retrieval". Information Technology: Research
and Development, 1, 1982, 275-283.

[91 M.J. McGill, T. Noreault, "Syracuse Informa-
tion Retrieval Experiment (SIRE): Rationale
and Basic System Design". Report, School of
Information Studies, Syraeue University, May
1977.

[10] M.J. McGilI, L. Smith, S. Davidson, T.
Noreault, "Syracuse Information Retrieval
Experiment {SIRE): Design of an On-Line
Bibliographic Retrieval System". SIGIR
Forum, 10, Spring 1976, 37-44.

[11] T.E. Doszkocs, B.A. Rapp, "Searching MED-
LINE in English: A Prototype User Interface
with Natural Language Query, Ranked Out-
put and Relevance Feedback", Proceedings of
the ASIS Annual Meeting, 18, 1979, 131-139.

[12] D.J. Harper, "Relevance Feedback in Docu-
ment Retrieval Systems: An Evaluation of
Probabilistie Strategies". Ph.D. Thesis, The
University of Cambridge (1980}.

[13] W.B. Croft, "Document Representation in
Probabilistic Models of Information
Retrieval". Journal of the American Society
for Information Science, 32, 451-457.

[14] W.B. Croft, "Experiments with Representa-
tion in a Document Retrieval System". Infor-
mation Technology: Research and Develop-
ment, 2, 1983, 1-21.

[15] G. Salton, C.S. Yang, C.T. Yu, "A Theory of
Term Importance in Automatic Text
Analysis". Journal of the American Society for
Information Science, 26, 1975, 33-44.

[16] E.A. Fox, "Characteristics of Two New
Experimental Collections in Computer and
Information Science Containing Textual and
Bibliographic Concepts". Technical Report
83-561, Cornell University, 1983.

104

[17] C.A. Buckley, "An Overview of the Imple-
mentation of SMART". Technical Report,
Cornell University, 1985.

[18] H. Wu and G. Salton, "The Estimation of
Term Relevance Weights Using Relevance
Feedback". Journal of Documentation, 37,
1981, 194-214.

CACM INSPEC

Number of Documents 3204 12684
Number of Terms 17141 14573

Mean Terms per Doc 36.7 32.5

T a b l e 1. Document Collection Characteristics

Number of Queries
Number of Terms

Mean Terms per Query
Mean Relevant Docs per Query

CACM
Original Feedback

64 64
378 1578
10.8 45.9
15.3 13.1

INSPEC
Original

84
609
15.6
33.0

Feedback

84
730
23.3
28.8

T a b l e 2. Query Collection Characteristics

I05

Targe t

1

2
3

4

5

6

7

8
9

10

Base

Absolu te Stat is t ics
Num Con Num Block Num Mult

System Stat is t ics
CPU Time Num Block

589 1189 54217 9.6 545

623 1263 65888 10.9 583 .3173

643 1313 76073 12.0 611 .3122

855 1345 84049 12.8 825 .3120

669 1384 94448 13.3 646 .3092

678 1411 101750 14.3 854 .3130

680 1417 103304 14.3 655 .3130

686 1438 109708 15.4 729 .3130

887 1442 111022 15.4 708 .3130

689 1449 113118 15.5 712 .3120

889 1449 113118 I 15.3 869 .3120

Recall

.3001

Table 3. CACM - Bounded Document Weight

Target

1
2
3
4

5
6
7

8
9

10

Base

Absolu te Stat is t ics

Num Con

1132
1178

Num Block

2946
3178

N u m M u l t

573153
656545

System Stat is t ics
CPU Time

61.3
68.2

Num Block

2833
3058

Recall

.1588

.1566
1213 3396 743683 75.9 3255 .1555
1241 3595 824413 83.1 3451 .1538

1285 3789 904855 90.3 3830 .1548
1276 3891 948261 93.6 3721 .1543

1291 4054 1019918 99.7 3863 .1501

1303 4191 1081440 104.5 3980 .1505

1309 4265 1114178 107.0 4033 .1508
1313 4317 1138152 109.2 4111 .1508

1313 4094 109.7 4317 1138152 .1508

T a b l e 4. INSPEC - Bounded Document Weight

106

Target

1

2

3

4

5

6

7

8
9

l0

Base

Absolute Statistics

Num Con Num Block

689

Num Mult

System Statistics

CPU Time

15.1

Num Block
Recall

688 1445 111802 671 .0613

689 1449 113118 15.4 680 .0613

689 1449 113118 15.2 675 .0613

1449 113118 15.4 702 .0613

689 15.1 113118

li3n8
686 1449 .0613

689 1449 15.0 668 .0613

689 1449 113118 15.2 676 .0613

689 1449 113118 15.4 683 .0613

689 1449 113118 15.0 671 .0613

689 1449 113118 15.3 680 .0613

689 1449 699 I13118 15.4 .0613

T a b l e 5. CACM - Normalized Document Vector

Target

I

2
3
4

5
6

7

8
9

I0

Base

Absolute Statistics S~¢stem Statistics
N u m C o n Num.Block N u m M u l t C P U T i m e NumBlock,,,l

1275 3957 982179 95.4 3797 .0567

1302 4194 1083213 105.6 4011 .0577

1312 4306 1133220 109.3 4084 .0577

1312 4306 1133220 108.6 4111 .0577

1313 4317 1138152 110.5 4184 .0577

4317 1138152 1313 111.4 4178

Recall

.0577

1313 4317 1138152 110.2 4105 .0577

1313 4317 1138152 109.3 4091 .0577
1313 4317 1138152 109.6 4096 .0577

1313 4317 1138152 110.9 4119 .0577

1313 4317 1138152 111.8 4169 .0577

T a b l e 6. INSPEC - Normalized Document Vector

107

Target

1

2

3
4

5
6

7

8
9

10

Base

Absolu te Stat is t ics

Num Con

558

598
613

628

Num Block

1116

1199
1235

1271

Num Mult

43297

53251

58156

66013

System Stat is t ics

CPU Time

8.3

9.8

10.4

10.9

Num Block

490

552
582

595

Recall

.2932

.2988

.3063

.3063

644 1312 75855 12.2 603 .3118
655 1343 83298 12.8 636 .3126
662 1354 88836 13.4 645 .3126

669 1384 93969 13.5 640 .3104

683 1426 105852 14.7 663 .3115
685 ! 1434 108484 [14.8 704 .3115

i

689 1449 113118 15.3 675 .3115

T a b l e 7. CACM - Document Weight as Func t ion of Query Weight

Target

1

2
3
4

5
6
7

8
9
10

Base

Absolu te Stat is t ics

Num Con Num Block Num Mult

System Stat is t ics

CPU Time Num Block
Recall

1000 2362 375294 44.8 2302 .1478

1082 2669 471754 53.4 2615 .1499
1123 2848 532421 58.8 2821 .1515
1157 3017 593231 65.8 3172 .1515

1178 3130 634603 69.1 3175 .1524
1205 3305 703269 75.4 3442 .1527
1233 3518 788301 81.3 3434 .1525

1253 3683 858989 86.0 3537 .1525
1278 3924 983865 95.4 3817 .1531
1297 4128 1053226 101.3 3847 .1581

1313 4317 1138152 117.2 4927 .1561

Table 8. INSPEC - Document Weight as Function of Query Weight

108

Target
i | l i i

1

2

3

4

5

6

7

8

9

10

Base

Absolute Statistics S~'stem Statistics

N u m C o n NumBloek N u m M u l t C P U T i m e NumBloek

1467 2939 37113 16.4 1268 .2223

1637 3284 50810 18.5 1348 .2288

1785 3583 60191 20.8 1613 .2262

1919 3852 72041 21.7 1638 .2264

2052 4119 82324 23.4 1661 .2308

2193 4403 94928 25.7 1767 .2346

2333 4694 117529 28.5 1936 .2341

2465 4964 139080 31.9 2122 .2333

2577 5192 161292 34.3 2254 .2333

2775 5623 218899 40.0 2503 .2437

2935 6000 289386 47.8 2754 .2437

T a b l e 9. CACM - Feedback - Bounded Document Weight

Recall

Target

1

2
3

4

5

6

7

8

9

10

Base

Absolute Statistics System Statistics
N u m C o n NumBloek N u m M u l t CPU Time NumBlock

659 1544 230236 29.2 1390 .1211

761 1853 306433 36.4 1701 .1203

842 2101 367772 42.9 1946 .1259

978 2535 480119 53.6 2386 .1277

1084 2858 559626 63.5 2758 .1322

1195 3282 690624 74.2 3148 .1328

1308 3669 802142 82.9 3558 .1342

1434 4135 938614 96.4 3996 .1342

1538 4612 1100732 110.7 4465 .1355

1712 5427 1383291 136.2 5245 .1355

1954 6876 1937397 185.3 6542 .1355

T a b l e 10. INSPEC - Feedback - Bounded Document Weight

Recall

109

Targe t

1

2

3

4

5

6
7

8
9

10

Base

T a b l e 11,

Absolu te Stat is t ics

Num Con N u m B l o c k Num Mult
System Statistics

CPU Time Num Block

1665 3347 62240 19.3 1387

2002 4023 88168 24.0 1645 .1676

2202 4427 110713 27.0 1896 .1668

2375 4779 131918 30.3 2046 .1622

2527 5098 155268 33.3 2142 .1668
2613 5280 176078 36.1 2393 .1668

2720 5507 204985 39.2 2674 .1668

2812 5712 I 237261 41.8 2562 .1668
2885 5877 263688 45.5 2865 .1668
2911 5040 276387 47.8 2862 .1668

6000 2935 49.5 289386 2975

RecaU

.1588

.1668

CACM - Feedback - Normalized Document Vector

Targe t I

1

2
3
4
5
6
7

8

9
10

Base

T a b l e 12,

Absolute Statistics

Num Con Num Block [Num Mult

System Stat is t ics
CPU Time Num Block

I

Recall

675 1658 264651 32.0 1446 .0808

824 2000 370981 42.2 1869 .0816
953 2494 473254 51.7 2287 .0816

1097 2930 584009 62.1 2758 .0824

12.06 3299 686639 73.3 3184 .0830
1315 3721 817201 84.8 3586 .0821

1422 4168 962177 102.5 4002 .0821

1554 4673 1119342 117.7 4542 .0821

1686 5397 1385397 140.7 5323 .0824
1809 6039 1620427 159.7 5777 .0824

180.0 1937397 1954 6665 6876 .0824

INSPEC - Feedback - Normalized Document Vector

110

