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A simple algorithm is presented for increasing the 
efficiency of information retrieval searches which 
are implemented using inverted files. This optimiza- 
tion algorithm employs knowledge about the methods 
used for weighting document and query terms in ord- 
er to ezamine as few inverted lists as possible. An 
eztension to the basic algorithm allows greatly in- 
creased performance optimization at a modest cost 
in retrieval effectiveness. Ezperimental runs are 
made ezamining several different term weighting 
models and showing the optimization possible with 
each. 

I. Introduction 

Efficiently comparing a query to a collection 
of documents is a critical topic for information 
retr ieval  research. The  vast  store of information 
contained in any collection is useless if users are 
not willing to wait  for the system to respond to 
their  query. Not only is efficient comparison 
impor tant  for actual  retrieval of documents,  but  
many subsidiary activities, such as Maximum 
Spanning Tree generation or nearest neighbor 
searches, depend on it. 

For  the purposes of this paper,  a query i s ,  m -  
sidered to be a vector in n-dimensional space, each 
dimension corresponding to a concept which could 
potent ial ly  occur in the query. In part icular ,  this 
paper does not look at  Boolean queries. Each 
document is a vector  in the same space; the simi- 
lari ty between the query and a document  is a 
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measure of how close the document vector is to 
the query vector. 

The straight-forward method of finding the 
closest documents to a query is simply to go 
through the document collection sequentially. 
Each document vector is compared in turn to the 
query vector. This sequential search is fine for 
very small collections, but  it is infeasible for most 
collections since so many similarities must  be com- 
puted.  Something must  he done to cut down on 
the number  of s imilar i ty  computat ions.  

One approach is to group the documents in a 
collection such tha t  similar documents  are 
clustered together.[I,2,3] Only those documents  
whose cluster representat ive has a high similari ty 
to the query are candidates  for retrieval. Unfor- 
tunately,  no clustering method has yet  proven 
itself to be effective across a wide variety of docu- 
ment  collections. 

Another  approach,  tha t  of Eas tman and 
Weiss[4,5,6], finds the nearest neighbor using a 
binary search tree with terms as node values. Any 
document  appearing in the left sub-tree of a node 
has no terms in common with the node, a docu- 
ment  in the right sub-tree has a least one term in 
common. At  any point in the tree search, an 
upper bound can be placed on the similari ty for all 
unseen documents.  The search terminates  when 
this upper  bound becomes less than the similari ty 
of a seen document.  However, it  is quite difficult 
to construct  a good binary tree (possibly as hard 
as it  is to cluster). In addit ion,  only a small  saving 
in efficiency was demonstra ted on the small docu- 
ment  collection used in these experiments.  

A third approach comes from the observation 
tha t  most documents in a collection have no terms 
in common with any given query. Therefore, an 
inverted file giving the documents in which a 
query term occurs can be used [7,8]. Query- 
document  similarities will only be computed for 
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those documents whicb occur in an inverted list of 
some query term. In this way, each similarity is 
known to be non-zero since there will be at least 
one term in common. To further speed up 
retrieval, stopping conditions can be calculated so 
that not all of the inverted lists need to be exam- 
ined. These stopping conditions consider the max- 
imum similarity that the query can have with 
documents not yet examined. The maximum simi- 
larity is based on the particular retrieval method 
used, and on the minimum length of the docu- 
ments remaining. 

The problem with these methods for retrieval 
is that they were designed for another purpose, 
nearest neighbor matching of binary weighted vec- 
tors. They extend to the task of weighted 
retrieval in a straight-forward manner, but not 
efficiently. They also require a large number of 
random accesses to a direct document vector file in 
addition to the accesses to an inverted file. If the 
similarity function can be chosen such that all the 
necessary information can be stored within the 
inverted file, then the accesses to the document 
vector file can be eliminated. 

The current paper examines one such similar- 
ity function, looking at several term weighting 
methods. Different stopping conditions are 
obtained for each weighting method. An inner 
product function is used. The similarity between a 
query and a document is simply the sum of the 
products of corresponding term weights. Note 
that this is not as restrictive a choice as it might 
appear at first glance. With appropriate term 
weighting functions, the inner product is 
equivalent to a number of other similarity func- 
tions. For example, the cosine function is identical 
to an inner product function with each document 
weight normalized by the length of the document 
it occurs in. An inverted file is used to store the 
list of documents and document weights associated 
with each term in the collection. The inverted file 
can be used to compute an inner product similar- 
ity function easily, in the manner of the SIRE sys- 
tem of McGill et ai[9,10], and the CITE system of 
Doszkocs and Rapp[ll]. 

This paper considers an approach in which 
query-document similarities are only partially cal- 
culated. The inverted file is used to access lists of 
documents corresponding to each term in the 
query. Each inverted list is accessed and a partial 
similarity due to the current term is computed and 
s tored. .As soon as these partial similarities deter- 
mine the set of documents to be returned to the 

user, the retrieval operation is over, despite the 
fact that the total similarity of each of the 
returned documents may not have been computed 
yet. The stopping condition will be dependent on 
the term weights used. 

This approach can be contrasted to that pro- 
posed by Harper[12] who also used an inverted file 
implementation of the inner product similarity 
function {although with binary document weights). 
Harper kept track of partial similarities for only 
those documents which might enter the set of 
documents to be returned to the user. His optimi- 
zations involved considering all inverted lists, but 
only calculating similarities for "possible" docu- 
ments. The approach in this paper calculates par- 
tial similarities for all involved documents, but 
only considers the "useful" inverted lists. The two 
algorithms are actually complementary and with a 
bit of work could be merged. This work is left for 
the future, however. 

The basic algorithm here can be extended for 
further operating efficiencies. Instead of stopping 
when the set of documents to be returned to the 
user is completely determined, retrieval can stop 
when the majority of the most similar documents 
are guaranteed to be among the retrieved set, but 
some highly similar documents may not be. There 
might be a slight degradation in retrieval 
effectiveness if this is done. Experimental results 
are presented that show the degradation is not 
serious and that the performance improvement is 
significant. 

This approach is feasible now because of the 
comparatively large amounts of cheap memory 
available on today's machines. Ten years ago 
memory limitations would prohibit the storage of 
all of the partial similarities within main memory. 
The overhead associated with storing the partial 
similarities on disk would outweigh any advantage 
to be gained from using the partial similarities. 
Now, this method would be feasible for all but the 
largest collections {greater than 2 million docu- 
ments). 

2. The Basic Algorithm 

Assume that the user is initially interested in 
looking at the top K documents for a particular 
query. Informally, the algorithm is as follows: 

Consider the list of query terms in order of 
decreasing query term weight. 
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For each <document id, document term 
weight> pair in a query term's inverted 
list, add the partial similarity due to the 
present term to the partial similarity for 
this document already computed from pre- 
vious terms.. Keep track of the top K+ I 
partial similarities computed so far. 

Stop when enough terms have been looked 
at so that  it is impossible for the K+  1 a 
ranked document  to increase in rank, even 
if all of the remaining query terms occur in 
the K+  I a ranked document.  

The  exact stopping condition used is really the 
only interesting par t  of the algorithm. As seen 
below, it depends greatly on the particular docu- 
ment  and query weighting schemes used. 

More formally, represent query Q by 
<q~, q2, q3, " ' ,  q t> .  Let If, be the inverted list 
for term q, with elements ~j,, giving the weight of 
term i in document  O~. 

Sort the q, in order of decreasing query weight; 
Set all elements of array SlM[I..N I to 0. (N is 

the number  of documents in the collection). 
$IM[j] is the partial similarity computed thus 
far between query q and document Dj; 

Set hum_top to 0; 
Set all elements of array TOP DOC[I..K+ 11 to 0. 

TOP DOC[1..numJop] keeps, in decreasing 
similarity, the documents with the highest 
partial  similarities computed.  

foreach q, in Q 
foreach dj,, in If, 

Set 5IM[/I = StMI./I + ¢, • ~,,,; 
If(hum_top < K or 

$1M[j] > SIM[TOP DOC[num_top]]) then 
If (y not in TOP DOC[1..K+ 11) then 

If (hum top < K+ I) then 
Set hum top = hUm top + 1 

end if; 

Set TOP DOC[numtopl = j; 
end if; 

Restore TOP_DOC to sorted order; 
end if; 

endJoreach; 

If (hum top -- K+ 1) then 
Set rnazremaining_sim to maximum possible 

partial similarity of document  K+  1 to 
the query terms not yet considered; 

If (SlM[TOP DOC[K + 111+ raaL remaining_sim 
<_ SlM[TOP_DOC[K]]) then 

D o n e -  return TOP_DOC[1..KI 
documents to the user. 

end if; 
end if; 

end_foreach; 

I t  is now time to look at  some examples of 
weighting schemes to see how maEremaining_sim 
can be bounded. Three common term weighting 
schemes are discussed below. 

2 . 1 .  N o r m s l l s e d  D o c u m e n t  V e c t o r  

The weights in a document vector are often 
normalized so tha t  a long document will not be 
retrieved before a short document  just because of 
its length. Suppose the weights are normalized so 
tha t  ~,/,  = 1. This can be done by taking an arbi- 
trarily weighted vector and dividing each term 
weight by the sum of the term weights in the vec- 
tor. Since the query terms are sorted by decreas- 
ing weight, the maximum partial similarity of a 
document  to the query terms following ¢,, the 
present query term, is bounded by 1 * q,+l- The  
maximum similarity will be achieved if a document  
consists of a single term matching q,+t. 

Actually, this can be improved on slightly 
because document  K+  1 already has a similarity 
due to matching one or more of the first i query 
terms. Therefore, the maximum document weight 
that  can match query term q,+t is: 

1 - the document weight used in matching the 
first i query terms. 

The  worst case occurs if as little documentweigh t  
as possible was used in calculating the existing 
partial  similarity; i.e., the document matched the 
highest weighted query term. The  first query 
term, qt, is the maximum weight term in the 
query, so the minimum document weight is 

SIM[ rOe_OOCIr + 111 
ql 

This yields the final upper bound for the remain- 
ing partial similarity after term q, as 

max remaining elm = 

q,+, [1-  SIM[TOP_DOC[Kq, + 111 ] (El) 
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Note that this first stopping condition is entirely 
independent of the overall type of weighting 
scheme used; it depends only on the normalization 
of the document weight. 

As an example, consider the situation where 
the user requests 5 documents with a query, Q, of 

Q ---- (qt---0.5, q2----0.25, qa----O.1, q¢----O.1, q6----0.05) 

Suppose the highest six partial similarity values 
after processing the first three query terms 
(qx,q2,fs) are 

Document_Id Partial S imilarity 

1 .45 
2 .42 
3 .40 
4 .38 
5 .35 
6 .30 

° 

At this point, the algorithm should stop and 
return the top 5 documents to the user if it is 
impossible for document 6 to have a final similar- 
ity value of .35 or greater. 

For document 6 to have its current partial 
similarity of .30, at least one of its terms had to 
match the first three query terms. The worst pos- 
sible case is if document 6 matched query term ql 
with a document weight of 0.6. This maximizes 
the total weight which the rest of the terms in 
document 6 can have. Since the sum of the 
weights of the entire document is 1.0, the remain- 
ing terms of document 6 can have a maximum 
total weight of 0.4. If the entire weight of 0.4 
matches the highest weighted query term remain- 
ing (term q4), the maximum final similarity which 
could be achieved is .30 + .4 * .I •ffi .34. Therefore, 
it is impossible for document 6 to have a similarity 
greater than .35, and the retrieval algorithm 
should halt now. 

I . I .  Document Weight u • Function of Query 
Weight 

Several weighting schemes compute both 
document weights and query weights in roughly 
the same fashion. A bound for the document 
weight can thus be computed from the query 
weight. An example of this is the t /  * idl weight- 
ing function used by the SMART system for many 

years. Both the query and the document vectors 
are indexed with the same formula. Since the id$ 
( i n v e r s e  d o c u m e n t  f r e q u e n c y )  component is depen- 
dent on features of the entire collection, the only 
difference between the weights in the two vectors 
is due to the difference in the term frequency com- 
ponent. The exact formula used in recent years by 
SMART is 

t/ 1-~) (wx) w,ight = 10.5 + o.s . ~ - 1  ,o, 

where 

t l  = within document frequency of term 
m o z t f  ~ maximum t l  for all terms in vector 
N ---- number of documents in the collection 
n ~- number of documents which contain term. 

The minimum value for the term frequency com- 
ponent is 0.5 and the maximum value is 1.0. 
Therefore, an upper-bound for the weight for a 
document term is twice the weight of that term in 
the query. This yields an equation for the remain- 
ing partial similarity after query term i of 

t 

maz_reraaining_sim= ~ q~ (2q,) (E2) 
I ~ * ÷ l  

A slight variation of this would be to normalize 
both the document and query vectors by the 
length of the respective vectors. If the document 
length is assumed to be greater than the query 
length, then E2 still gives an upper bound. This 
variation is equivalent to the classical cosine run 
using t f * i d l  weights. 

2.3. Bounded Document Weight 

A third type of weighting scheme is that in 
which there is a constant bound, say B, (normally 
1) on the weight of a document term. Examples of 
this are: 

Binary document weight 

weight = I (W2) 
Croft's Probabilistic weight [13, 14] 

weight = Pros (d, -~ 1) (W3) 

Normalized term frequency 

tf ($V4) weight ---- raaz_tf 

Augmented normalized term frequency 

t /  (ws) weight = 0.5 + 0.5 ma= t f  

A bounded document weight situation, with bound 
B, gives the following equation: 
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maz remaining_sim ~ B # 
t 

E q~ (E3) 
t m ~ + l  

3. Further Optlmlzations of the Bule Algorithm 

Two major extensions to the basic optimiza- 
tion algorithm suggest themselves. The first 
extension is based on equations El,  E2, and E3 all 
being worst case equations. It is very unlikely that 
any document will ever satisfy the worst case con- 
ditions. Modifications to the equations could be 
made so it would be expec ted  that no document 
would exceed maz_rernaining_sirn. Unfortunately, 
changes of this type are extremely sensitive to 
both the particular weighting scheme in use, and 
the particular document collection. In the absence 
of any general theory of what kind of changes 
would work, this further optimization is not pur- 
sued. 

A more workable extension comes from the 
observed fact that the chance of the K a ranked 
document being relevant is not that much greater 
than the chance of the K + I  't ranked document 
being relevant. Effectiveness should not suffer 
greatly if the K+ 1 't document were to be returned 
instead of the K t' document. Instead of guaran- 
teeing the top K documents will be returned to the 
user, the retrieval system can guarantee the top n 
(for n < g )  documents will be returned, along with 
another K - n  documents which will have "high" 
similarity. 

This extension can be aehieved simply by 
using the similarity of the n a ranked document 
instead of the K t' in the stopping condition: 

If  (SIM I TOP DOe[K+ III + maz_eernaining~im 
_< S1MITOP_DOClnlI) then 

Done - return TOP DOC[I..K] 
documents to the user. 

end_if; 

The new stopping condition assures that every 
document with a total similarity greater than the 
current n t' ranked document's partial similarity is 
returned to the user. Therefore, at least the top n 
documents with highest total similarity will be 
returned. 

4. Analys is  of  Algor i thms  

The major requirement for both the basic 
algorithm and the extended algorithm is that the 
document collection must be available in inverted 
list form with document term weights given in the 
inverted lists. There is no need for a sequential 
form of the document collection to be kept, where 

the individual document vectors are directly avail- 
able. Several of the previous algorithms already 
mentioned required both the inverted list and 
sequential forms of the collection to be kept, eg. 
[7,8]. 

Each algorithm calls for the partial similari- 
ties to be kept within main memory. The current 
implementation uses 4 bytes per partial similarity 
and allocates enough memory to hold a partial 
similarity for every document in the collection. A 
collection with 100,000 documents would need 
400,000 bytes of memory to store the partial simi- 
larities. The cost of a computer with sufficient 
memory is currently much less than the cost of a 
reasonably fast disk holding the documents and 
associated inverted lists. 

As was previously mentioned, the extended 
algorithm is expected to achieve its performance 
improvement at a cost in retrieval effectiveness. 
Some highly similar documents may not be found 
by the time the extended algorithm satisfies its 
stopping conditions. The size of the effectiveness 
degradation will depend (among other things) on 
how closely the number of top documents actually 
retrieved matches the number of top documents 
guaranteed to he retrieved. For example, if the 
stopping condition guarantees that the top 3 docu- 
ments will be among 10 documents returned to the 
user, but in practice the top 9 documents are 
retrieved, then there will be little change in 
effectiveness between the optimized and basic runs. 

The documents returned to the user by either 
algorithm are not as strongly ranked as they would 
be without using any optimization. Even if the 
top 10 documents are returned to the user, they 
will he ranked in order of their partial similarity 
instead of total similarity. A user interested in 
high precision among the documents retrieved may 
not wish to use any optimization. 

The running time of the algorithms is deter- 
mined by the number of entries in the inverted 
lists for the query terms examined. The fewer the 
number of lists looked at, and the shorter these 
lists, the better the running time will be. Note 
that a term which occurs frequently in a collection 
is probably a poor term [15] and should receive a 
low query weight. Terms with long inverted lists 
will therefore be examined last since the query 
terms are sorted by decreasing query weight. The 
most expensive lists to look at will be the ones 
dropped because of optimization. 

As presented, the algorithm does have a com- 
ponent with a running time linear in the number 
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of documents in the collection. This is the initiali- 
zation of the array of partial similarities to 0. A 
clever implementation can avoid having to do this 
initialization explicitly, so this is not a problem. 

5. Exper imenta l  Runs  

Experimental runs exploring both the basic 
and the extended algorithm were done on two col- 
lections. The CACM document collection consists 
of the titles, abstracts, and other information for 
3,204 computer science articles published in the 
Communications of the A C M  between 1958 and 
1979 [16]. The INSPEC collection contains the 
abstracts of 12,684 scientific documents. It was 
obtained from Syracuse University, with additional 
relevance assessments being done at Cornell. See 
table I for statistics on the two document collec- 
tions. The experiments were performed using the 
SMART information retrieval system on a DEC 
VAX 11/780 under the UNIX operating system 
[171. 

In order to examine the effect of query length 
on optimization performance, two sets of queries 
were used for each collection. The first set was the 
set of original natural language queries obtained 
from users. The t/ * idl functions given in equa- 
tions W1 and W5 were used to index this set. The 
other set was a set of longer feedback queries. 
These were obtained by retrieving the best 10 
documents for each query in the original set. The 
original query terms were combined with terms 
from the corresponding relevant documents in 
order to form a new query. These query terms 
were weighted using a term-relevance weighting 
scheme [18]. Table 2 gives statistics for the four 
sets of queries. 

Document weighting methods were chosen 
from each of the three categories discussed earlier. 
To test equation E1 {normalized document vec- 
tors), the document collections were indexed using 
weighting function W5. Each document was then 
normalized by dividing its term weights by the 
sum of the term weights in the vector. For equa- 
tion E2, the documents were weighted using the 
same approach as the original queries (t/ * id / )  
according to weighting function W1. Note that 
this approach could not be used with the feedback 
query sets, since the feedback query weights were 
assigned by the feedback method itself, and thus 
bore no relation to the document weights. The 
bounded document weight category (equation E3) 
was tested using weighting function W5 again, but 
for this category no normalization of the vectors 
was done. 

For each combination of collection, query set, 
and document weighting method specified above, a 
set of 11 retrieval runs was made. Each run 
returned 10 documents to the user, but guaranteed 
only a given target number of the best documents 
in those 10. Target values 1 through 10 were all 
tested. A target value of 10 corresponded to the 
basic optimization procedure first presented. A 
target value less than 10 guaranteed that that 
many of the top documents were returned to the 
user. An unoptimized retrieval run was also per- 
formed. 

5.1. Evaluat ion  o f  Opt imizat ion  

Tables 3.-12 present the consequences of not 
examining all inverted lists corresponding to query 
terms. There are three main categories of effects 
given: the absolute savings due to the actual 
number of inverted lists looked at; the savings in 
CPU time and actual disk accesses caused by the 
lowered number of inverted lists; and the retrieval 
effectiveness which is changed because less infor- 
mation is available. 

The "Num Con:' sub-category under "Abso- 
lute Statistics" in each table gives the number of 
query concepts used (and thus the number of 
inverted lists). "Num Block" gives the estimated 
number of disk blocks that need to be read to get 
the inverted lists. Each list requires one disk 
access to learn the head of the list, and one or 
more disk accesses to obtain the actual inverted 
list, depending on the length of the list. The 
number of floating point multiplications done (of 
query weight times document weight) is given in 
the "Num Mult" field. 

The sub-categories under "System Statistics" 
verify that the savings suggested by the absolute 
statistics are actually being realized by the 
retrieval system. "CPU Time" indicates the total 
amount of time spent by the computer on the 
retrieval run. This includes the work the operat- 
ing system had to do to read data from the disk; it 
does not include the time spent waiting for the 
disk. The "Num Block" field gives the actual 
number of disk blocks read during the course of 
the retrieval. Since CACM is a "small" collection 
(3204 documents) and a number of inverted lists 
can be read with one disk block access, the actual 
number of disk blocks will be considerably smaller 
than the estimated number found under the 
"Absolute Statistics" category. Note: the system 
statistics presented are load-sensitive. They vary 
depending on the other processes being run on the 
computer at the same time. 
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Retrieval effectiveness is measured by the 
average recall at the 10 document cut-off level. 
Thus a recall figure of .3 means that, on average, 
30~0 of the relevant documents for a query were 
retrieved within the top 10 documents. Note that 
for a feedback query, any document seen during 
the original query retrieval is no longer considered 
part of the collection. Therefore, .3 indicates that 
30% of the remaining relevant documents were 
retrieved within the top 10. 

6.2. Analys i s  of  Results  

We first examine several of the individual 
result tables. Table 3 gives the results for original 
query runs on CACM with document weights 
bounded by 1.0. The number of concepts exam- 
ined does not fall quickly as the target decreases to 
1. It is only when target reaches 2 that more than 
one concept is dropped per query on average. 
Despite this, the number of floating point multipli- 
cations done by this point has almost halved. 
Both query weighting methods {for original and 
feedback queries) will assign the lowest weights to 
terms which occur in many documents. The 
lowest weight query concepts are examined last, so 
the longest inverted lists will be the first ones 
dropped. Also, note the very small decrease in 
average recall as target approaches 1. There is a 
3% recall degradation while there is a 37% CPU 
time improvement (comparing the base case and 
target -~ 1). 

Table 5 gives the results for retrievals with 
normalized document vectors on the CACM collec- 
tion. There are two features which are immedi- 
ately obvious. The first is that very little optimi- 
zation could he done. There wasn't enough infor- 
mation ~bout the document weights to stop the 
retrieval process early. The other (unintended) 
feature is the poor recall values obtained. While 
the particular weighting scheme chosen is not one 
to be strongly recommended for any collection, it 
is particularly bad for the CACM collection. (For 
CACM, there is a strong correlation between 
length of a document and relevance. Documents 
published in early years tended to be short and 
non-relevant.) 

The results of feedback query runs on the 
INSPEC collection are given in tables 10 and 12. 
Table 10 shows the results of optimization know- 
ing that the document weight is bounded by 1. 
The performance improvement is tremendous! As 
target goes to 1, there is a 77~  decrease in the 
estimated number of disk accesses, an 88~  
decrease in the number of floating point 

multiplications, and an 84% decrease in the CPU 
time spent. The recall penalty paid for this per- 
formance is beginning to be noticeable: 10~a 

In the runs shown in table 12, the document 
vector is known to be normalized. As opposed to 
table 5 (also using normalized document vectors), 
there is a substantial performance improvement. 
The absolute recall level is still low, but degrades 
very little as the efficiency greatly increases. 

There are a number of general observations 
that can be made from Tables 3-12. Perhaps the 
most surprising one is that recall values do not 
degrade significantly as the number of guaranteed 
top documents goes from 10 towards 1. The worst 
effectiveness penalty is only 10% (in Table 10). 
This suggests that the most drastic optimizations 
given in this paper just barely reach the point 
where the result of optimization trades off retrieval 
effectiveness for retrieval efficiency. 

As is to be expected, the more information 
that is known about the document weights 
involved, the more performance optimization can 
be done. The largest performance increase is con- 
sistently obtained when the document weight is 
known to be bounded by twice the query weight. 
The bounded document weight does almost as well 
in these experiments. Note that the particular 
weighting function used yields a weight which is 
very often close to the upper bound. If only the 
total length of the document vector is known, then 
the performance increase available is quite a bit 
less. There is still a significant performance 
improvement with a sufficiently long query. 

For original queries, stopping the search 
immediately after all of the top 10 documents have 
been found does not prove worthwhile (this was 
the original basic optimization). There is no 
improvement in four original query runs, and only 
slight improvement in the other two. The longer 
feedback queries offer more opportunity for 
improvement; up to a 21~  decrease in the number 
of disk blocks accessed is observed {see Table 10). 
Note that this rise in the efficiency level is 
obtained while guaranteeing no decrease in 
retrieval effectiveness. 

The small deterioration in effectiveness as 
fewer query terms are considered suggests that 
some queries have a good number of redundant or 
even useless terms. The question of whether these 
terms can be eliminated during the query indexing 
process deserves further investigation. 

Another contributing factor to the small 
change in effectiveness is that the upper bound for 

103 



ma~remaining_sim is a wors t  case upper bound. 
It is rarely, if ever, achieved. A mathematical 
model of term weight distributions within a docu- 
ment will give a much smaller expected bound 
for maL remainingsim. Use of a tighter bound 
would allow a user (or database administrator} 
greater options in trading off retrieval effectiveness 
for retrieval efficiency. 

6. Conclusion 

An. algorithm has been presented which per- 
forms a retrieval using an inner product similarity 
function on vector collections with weighted terms. 
The algorithm uses an inverted file representation 
of the document collection and examines the 
minimum number of inverted lists possible in order 
to retrieve the best (most highly similar) docu- 
ments. Fewer lists can be examined if the algo- 
rithm only assures that some of the best docu- 
ments are retrieved. The optimization in the 
number of lists considered is based on knowledge 
about the particular term weighting method used. 

Experimental results show that little perfor- 
mance improvement can be expected if all of the 
best documents are guaranteed to be retrieved. 
However, significant improvement (up to 8 8 ~  is 
achieved if the algorithm's guarantee is relaxed. 
Only a slight effectiveness deterioration results 
from this relaxation. This experimental evidence 
suggests that the extended algorithm is a practical 
optimization of the basic inverted file search. 
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CACM INSPEC 

Number of Documents 3204 12684 
Number of Terms 17141 14573 

Mean Terms per Doc 36.7 32.5 

T a b l e  1. Document Collection Characteristics 

Number of Queries 
Number of Terms 

Mean Terms per Query 
Mean Relevant Docs per Query 

CACM 
Original Feedback 

64 64 
378 1578 
10.8 45.9 
15.3 13.1 

INSPEC 
Original 

84 
609 
15.6 
33.0 

Feedback 

84 
730 
23.3 
28.8 

T a b l e  2. Query Collection Characteristics 
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Targe t  

1 

2 
3 

4 

5 

6 

7 

8 
9 

10 

Base 

Absolu te  Stat is t ics  
Num Con Num Block Num Mult  

System Stat is t ics  
CPU Time Num Block 

589 1189 54217 9.6 545 

623 1263 65888 10.9 583 .3173 

643 1313 76073 12.0 611 .3122 

855 1345 84049 12.8 825 .3120 

669 1384 94448 13.3 646 .3092 

678 1411 101750 14.3 854 .3130 

680 1417 103304 14.3 655 .3130 

686 1438 109708 15.4 729 .3130 

887 1442 111022 15.4 708 .3130 

689 1449 113118 15.5 712 .3120 

889 1449 113118 I 15.3 869 .3120 

Recall  

.3001 

Table 3. CACM - Bounded Document Weight 

Target  

1 
2 
3 
4 

5 
6 
7 

8 
9 

10 

Base 

Absolu te  Stat is t ics  

Num Con 

1132 
1178 

Num Block 

2946 
3178 

N u m M u l t  

573153 
656545 

System Stat is t ics  
CPU Time 

61.3 
68.2 

Num Block 

2833 
3058 

Recall  

.1588 

.1566 
1213 3396 743683 75.9 3255 .1555 
1241 3595 824413 83.1 3451 .1538 

1285 3789 904855 90.3 3830 .1548 
1276 3891 948261 93.6 3721 .1543 

1291 4054 1019918 99.7 3863 .1501 

1303 4191 1081440 104.5 3980 .1505 

1309 4265 1114178 107.0 4033 .1508 
1313 4317 1138152 109.2 4111 .1508 

1313 4094 109.7 4317 1138152 .1508 

T a b l e  4. INSPEC - Bounded Document  Weight  
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Target 

1 

2 

3 

4 

5 

6 

7 

8 
9 

l0 

Base 

Absolute Statistics 

Num Con Num Block 

689 

Num Mult 

System Statistics 

CPU Time 

15.1 

Num Block 
Recall 

688 1445 111802 671 .0613 

689 1449 113118 15.4 680 .0613 

689 1449 113118 15.2 675 .0613 

1449 113118 15.4 702 .0613 

689 15.1 113118 

li3n8 
686 1449 .0613 

689 1449 15.0 668 .0613 

689 1449 113118 15.2 676 .0613 

689 1449 113118 15.4 683 .0613 

689 1449 113118 15.0 671 .0613 

689 1449 113118 15.3 680 .0613 

689 1449 699 I13118 15.4 .0613 

T a b l e  5. CACM - Normalized Document Vector 

Target 

I 

2 
3 
4 

5 
6 

7 

8 
9 

I0 

Base 

Absolute Statistics S~¢stem Statistics 
N u m C o n  Num.Block N u m M u l t  C P U T i m e  NumBlock,,,l 

1275 3957 982179 95.4 3797 .0567 

1302 4194 1083213 105.6 4011 .0577 

1312 4306 1133220 109.3 4084 .0577 

1312 4306 1133220 108.6 4111 .0577 

1313 4317 1138152 110.5 4184 .0577 

4317 1138152 1313 111.4 4178 

Recall 

.0577 

1313 4317 1138152 110.2 4105 .0577 

1313 4317 1138152 109.3 4091 .0577 
1313 4317 1138152 109.6 4096 .0577 

1313 4317 1138152 110.9 4119 .0577 

1313 4317 1138152 111.8 4169 .0577 

T a b l e  6. INSPEC - Normalized Document Vector 
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Target  

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 

Base 

Absolu te  Stat is t ics  

Num Con 

558 

598 
613 

628 

Num Block 

1116 

1199 
1235 

1271 

Num Mult  

43297 

53251 

58156 

66013 

System Stat is t ics  

CPU Time 

8.3 

9.8 

10.4 

10.9 

Num Block 

490 

552 
582 

595 

Recall  

.2932 

.2988 

.3063 

.3063 

644 1312 75855 12.2 603 .3118 
655 1343 83298 12.8 636 .3126 
662 1354 88836 13.4 645 .3126 

669 1384 93969 13.5 640 .3104 

683 1426 105852 14.7 663 .3115 
685 ! 1434 108484 [ 14.8 704 .3115 

i 

689 1449 113118 15.3 675 .3115 

T a b l e  7. CACM - Document  Weight  as Func t ion  of Query Weight  

Target  

1 

2 
3 
4 

5 
6 
7 

8 
9 
10 

Base 

Absolu te  Stat is t ics  

Num Con Num Block Num Mult  

System Stat is t ics  

CPU Time Num Block 
Recall 

1000 2362 375294 44.8 2302 .1478 

1082 2669 471754 53.4 2615 .1499 
1123 2848 532421 58.8 2821 .1515 
1157 3017 593231 65.8 3172 .1515 

1178 3130 634603 69.1 3175 .1524 
1205 3305 703269 75.4 3442 .1527 
1233 3518 788301 81.3 3434 .1525 

1253 3683 858989 86.0 3537 .1525 
1278 3924 983865 95.4 3817 .1531 
1297 4128 1053226 101.3 3847 .1581 

1313 4317 1138152 117.2 4927 .1561 

Table 8. INSPEC - Document Weight as Function of Query Weight 
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Target 
i | l  i i  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Base 

Absolute Statistics S~'stem Statistics 

N u m C o n  NumBloek  N u m M u l t  C P U T i m e  NumBloek  

1467 2939 37113 16.4 1268 .2223 

1637 3284 50810 18.5 1348 .2288 

1785 3583 60191 20.8 1613 .2262 

1919 3852 72041 21.7 1638 .2264 

2052 4119 82324 23.4 1661 .2308 

2193 4403 94928 25.7 1767 .2346 

2333 4694 117529 28.5 1936 .2341 

2465 4964 139080 31.9 2122 .2333 

2577 5192 161292 34.3 2254 .2333 

2775 5623 218899 40.0 2503 .2437 

2935 6000 289386 47.8 2754 .2437 

T a b l e  9. CACM - Feedback - Bounded Document Weight 

Recall 

Target 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

Base 

Absolute Statistics System Statistics 
N u m C o n  NumBloek  N u m M u l t  CPU Time NumBlock  

659 1544 230236 29.2 1390 .1211 

761 1853 306433 36.4 1701 .1203 

842 2101 367772 42.9 1946 .1259 

978 2535 480119 53.6 2386 .1277 

1084 2858 559626 63.5 2758 .1322 

1195 3282 690624 74.2 3148 .1328 

1308 3669 802142 82.9 3558 .1342 

1434 4135 938614 96.4 3996 .1342 

1538 4612 1100732 110.7 4465 .1355 

1712 5427 1383291 136.2 5245 .1355 

1954 6876 1937397 185.3 6542 .1355 

T a b l e  10. INSPEC - Feedback - Bounded Document Weight 

Recall 
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Targe t  

1 

2 

3 

4 

5 

6 
7 

8 
9 

10 

Base 

T a b l e  11,  

Absolu te  Stat is t ics  

Num Con N u m B l o c k  Num Mult  
System Statistics 

CPU Time Num Block 

1665 3347 62240 19.3 1387 

2002 4023 88168 24.0 1645 .1676 

2202 4427 110713 27.0 1896 .1668 

2375 4779 131918 30.3 2046 .1622 

2527 5098 155268 33.3 2142 .1668 
2613 5280 176078 36.1 2393 .1668 

2720 5507 204985 39.2 2674 .1668 

2812 5712 I 237261 41.8 2562 .1668 
2885 5877 263688 45.5 2865 .1668 
2911 5040 276387 47.8 2862 .1668 

6000 2935 49.5 289386 2975 

RecaU 

.1588 

.1668 

CACM - Feedback - Normalized Document Vector 

Targe t  I 

1 

2 
3 
4 
5 
6 
7 

8 

9 
10 

Base 

T a b l e  12,  

Absolute Statistics 

Num Con Num Block [ Num Mult 

System Stat is t ics  
CPU Time Num Block 

I 

Recall 

675 1658 264651 32.0 1446 .0808 

824 2000 370981 42.2 1869 .0816 
953 2494 473254 51.7 2287 .0816 

1097 2930 584009 62.1 2758 .0824 

12.06 3299 686639 73.3 3184 .0830 
1315 3721 817201 84.8 3586 .0821 

1422 4168 962177 102.5 4002 .0821 

1554 4673 1119342 117.7 4542 .0821 

1686 5397 1385397 140.7 5323 .0824 
1809 6039 1620427 159.7 5777 .0824 

180.0 1937397 1954 6665 6876 .0824 

INSPEC - Feedback - Normalized Document Vector 
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