
Compact Snippet Caching for Flash-based Search Engines

Rui Zhang1† Pengyu Sun1,2† Jiancong Tong1,2

Rebecca J. Stones1 Gang Wang1‡ Xiaoguang Liu1‡

1College of Computer and Control Engineering & College of software, Nankai University, China
2Baidu, Inc

{zhangruiann, sunpengyu, jctong, becky, wgzwp, liuxg}@nbjl.nankai.edu.cn

ABSTRACT
In response to a user query, search engines return the top-
k relevant results, each of which contains a small piece of
text, called a snippet, extracted from the corresponding do-
cument. Obtaining a snippet is time consuming as it requires
both document retrieval (disk access) and string matching
(CPU computation), so caching of snippets is used to re-
duce latency. With the trend of using flash-based solid state
drives (SSDs) instead of hard disk drives for search engine
storage, the bottleneck of snippet generation shifts from I/O
to computation. We propose a simple, but effective method
for exploiting this trend, which we call fragment caching:
instead of caching the whole snippet, we only cache snippet
metadata which describe how to retrieve the snippet from
the document. While this approach increases I/O time, the
cost is insignificant on SSDs. The major benefit of fragment
caching is the ability to cache the same snippets (without
loss of quality) while only using a fraction of the memo-
ry the traditional method requires. In our experiments, we
find around 10 times less memory is required to achieve com-
parable snippet generation times for dynamic memory, and
we consistently achieve a vastly greater hit ratio for static
caching.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval-Search process

Keywords
Cache; Snippet; Solid State Drive

1. INTRODUCTION
Caching is an important method for reducing query laten-

cy in search engines. A large-scale search engine typically

†The authors contributed equally to this work.
‡Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15, August 09 - 13, 2015, Santiago, Chile.
c© 2015 ACM. ISBN 978-1-4503-3621-5/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2766462.2767764.

consists of three sets of servers [2, 5]: (a) web servers, which
interact with users and coordinate the whole query process-
ing, utilizing a query result cache (QRC), (b) index servers,
which match top-k documents that are most related to the
query, and (c) document servers, which generate the query
result pages, which include the title, URL, and a snippet for
each of the top-k documents.

For a given query, a snippet is the portion of a docu-
ment which matches the query best and the query terms are
highlighted. In order to alleviate query latency, frequently
requested documents and snippets are cached. These two
in-memory caches are called document cache (DC) [10] and
snippet cache (SC) [3], respectively. DC stores document
pages to decrease disk accesses when generating snippets,
while SC stores snippets for documents to avoid repeated
computation and disk access.

Recently, solid state drives (SSDs) have been increasingly
used by the industries as a secondary storage medium. Many
companies are replacing their hard disk drives (HDDs) by
SSDs. SSDs have properties such as fast read (10 to 100
times faster than HDD) and write, lower power consump-
tion, and better shock resistance [4].

Snippet generation is an expensive process in terms of
both disk access and CPU computation [10]. In traditional
HDD-based search engines, the latency of snippet processing
is dominated by disk access operations (i.e., I/O). As SSD
has faster read (especially random read), snippet calculation
time becomes the bottleneck in snippet processing [11]. In
this context, techniques for increasing caching efficiency will
have changed.

To address this hardware difference, we adopt a relative
location representation, motivated by Hoobin et al. [6], which
allows more snippets to be cached, and so fewer snippets
need to be generated on the fly. Instead of caching the full
snippet, we cache the snippet metadata, indicating how to
retrieve the snippet, along with the text that needs high-
lighting, from the document; the idea being to increase the
number of queries that can be cached within a limited me-
mory space.

To the best of our knowledge, this is the first study that
takes advantage of SSDs to improve the efficiency of snippet
caching (although Tong et al. [8] used SSDs to improve list
caching).

2. RELATED WORK
Snippet generation is one of the most time-consuming

processes in document servers. The problem of reducing
snippet processing latency has been studied from different

1015

directions. Liu et al. [7] used a CPU-GPU hybrid system
to accelerate snippet generation. Ceccarelli et al. [3] intro-
duced an effective “supersnippet” method, but this method
may degrade the accuracy of snippet. Turpin et al. [10] used
zlib to compress documents and reduced snippet generation
latency by 58%; their method can dramatically reduce I/O
cost in HDD-based search engine. Tsegay et al. [9] stored
“surrogates” instead of the whole document to reduce I/O
time.

Once SSDs are used to replace HDDs, methods which aim
to reduce I/O time may not be of significant benefit. To
illustrate, Wang et al. [11] found that document caching,
which may significantly reduce the I/O of a document server,
is not as effective on SSD-based search engines.

3. FRAGMENT CACHE
The use of SSDs dramatically reduces the disk accessing

time of snippet processing. As a result, the CPU computa-
tion time plays a proportionally larger role in snippet gene-
ration. Thus, we will present a snippet caching model with
this in mind.

For a given snippet, we define its fragment to be the data
structure

〈docID,Frags,Frage,Highlights,Highlighte〉
where docID denotes the ID number of the corresponding
document, Frags and Frage record the start and end points
of the snippet to be returned, respectively, and Highlights
and Highlighte are two arrays which record the start and end
points of the highlighted terms. A fragment records where
on the document the relevant snippet data can be found.

Figure 1 depicts what is recorded in a toy example. In it,
we have Frags = offset, Frage = offset+length, Highlights =
[offset1, offset2], and Highlighte = [offset1+length1, offset2+
length2].

t1 t2

ooffseto olengtho

ooffset1o olength1o

olength2oooffset2o

Document

Snippet

Figure 1: Illustrating the snippet structure. The
top image shows the full document stored on the
SSD (and possibly also in the document cache). The
zoomed in image shows the snippet to be returned,
along with which parts of it need highlighting.

This method of generating fragments is independent of
the snippet generation algorithm used, so any snippet gene-
ration method can be used while utilizing fragment caching.
Caching fragments instead of the full snippets will reduce
the size of cached items, thereby increasing the number of
snippets represented in the cache and increasing the cache
hit ratio.

Figure 2 depicts the snippet processing and the fragment
processing methods on document servers. The cache stores
fragments instead of snippets is called fragment cache (FC).

We can model the snippet generation time mathemati-
cally. For a random query q for which the snippet for the
document d = docID is required, we define the following
variables:

A

B

C

: calculating snippet by document and query

: recovering snippet by fragment and document

: calculating fragment by document and query

Snippet Cache

A

Document cache

snippetdocID q

q

docID

docID
document

document

snippetmiss

miss

Fragment Cache

Document Cache

C

B

docID q

docID

docID

q

document

document

snippet

fragment

miss

fragment

Drive-stored Docs

SNIPPET PROCESSING

Drive-stored Docs

FRAGMENT PROCESSING

miss

Figure 2: An outline of the workflow in snippet pro-
cessing and fragment processing. The query q and
document ID docID will be sent from the web server.
Both methods return exactly the same snippet.

• C
(sn)

(q,d) and C
(fr)

(q,d) are the total times of processing (q, d)

using snippet caching and fragment caching, respectively;

• Cdrive is the average time it takes to retrieve a document
from the drive;

• p(sn-miss) and p(fr-miss) are the probabilities of a snippet
cache miss or a fragment cache miss, respectively;

• r is the probability a document is not represented in the
document cache;

• Cdoc-cache is the time it takes to check the document cache
for a document;

• Csn-cache and Cfr-cache are the respective times it takes to
check the snippet cache and fragment cache;

• Csn-gen and Cfr-gen are the respective average times it takes
to generate the snippet or fragment from (q, d);

• In the case of fragment caching, Cfr-sn-rec is the average
time it takes to recover the snippet, given the fragment
and document.

In snippet processing, we always check the snippet cache.
If we hit the snippet cache, we’re done, otherwise we check
the document cache (which occurs with probability p(sn-miss)).
If we miss the document cache (which occurs with probabi-
lity r), we also check the disk, and in either case, we generate
the snippet from the document and the query.

In fragment processing, we always check the fragment
cache, and if we miss, we will need to generate the frag-
ment from the query and the document. Whether or not we
hit the fragment cache, we search for the document in the
document cache, and if we miss the document cache (which
occurs with probability r), we also check the drive. When
the document is found after a fragment cache miss, we gen-
erate the fragment, and subsequently the snippet from the
fragment.

As a result of the above discussion, the expected run-
times for snippet processing and fragment processing can be
modelled as follows (using linearity of expectation):

1016

E(C
(sn)

(q,d)) = Csn-cache

+ p(sn-miss) (Cdoc-cache + r Cdrive + Csn-gen),

E(C
(fr)

(q,d)) = Cfr-cache + Cdoc-cache + r Cdrive

+ Cfr-sn-rec + p(fr-miss) Cfr-gen.

For SSD-based search engines, these equations are domi-
nated by the p(sn-miss)Csn-gen and p(fr-miss)Cfr-gen terms, re-
spectively (i.e., computation time). Since Csn-gen ≈ Cfr-gen,

when p(fr-miss) < p(sn-miss) (i.e., the hit ratio of fragment
caching is higher than the hit ratio of snippet caching), we
can expect fragment caching to perform better than snippet
caching.

This mathematical model also predicts that on HDD-based
systems, where these equations are instead dominated by
p(sn-miss)r Cdrive and r Cdrive, respectively, fragment caching
will perform worse than snippet caching.

4. PERFORMANCE EVALUATION
We evaluate the proposed fragment caching by comparing

it vs. traditional snippet caching. We test both static and
dynamic cache strategies. For static caching, we use MFU
(Most Frequently Used) [1], and for dynamic caching, we
use LRU (Least Recently Used). We control the hit ratio of
the query result cache (in the web server) as 30% in order
to keep the workload of document server realistic during the
experiments.

4.1 Experimental setup
In our experiments, we use a collection of 12 million web-

pages crawled by Sogou Labs1. The experiments are per-
formed by replaying real queries from the Sogou search en-
gine. The query log contains 2M queries. The first half is
used as the training set to “warm” the cache and the second
half is used as the test set. We deploy a Lucene2 based search
engine, in which we implement fragment caching. The server
is a Intel Xeon E5645 (2.4GHz) machine, with 12GB of main
memory and Windows 7 SP1. We carry out experiments on
a 120GB OCZ Vertex-3 SSD.

4.2 Experimental results
In our experiments, we find the average snippet size is 937

bytes while the average fragment size is only 61 bytes, which
implies an average increase in the number of items cached
by factor of approximately 15.

The total snippet generation time is given by Csnip+Cdoc,
where Cdoc denotes the overhead of document retrieval, and
Csnip denotes the remaining time (i.e., the snippet calcula-
tion time for snippet caching (A in Figure 2), and the sum
of the fragment calculation time and snippet recovering time
for fragment caching (B and C in Figure 2)).

Figures 3 and 4 compare the average snippet generation
time for snippet caching and fragment caching using both
static and dynamic cache strategies (split into Csnip and
Cdoc). Tables 1 and 2 list the hit ratios of snippet caching
and fragment caching with different cache sizes under MFU
and LRU, respectively. In Figures 3 and 4 and Tables 1
and 2, by “Snippet/fragment cache size” of size X, we mean,
of the total memory (shared by SC/FC and DC), the por-

1http://www.sogou.com/labs/resources.html?v=1
2http://lucene.apache.org

tion reserved for snippet caching or fragment caching is ap-
proximately equal to the memory required to store 1000X
snippets.

0

2

4

6

8

10

12

20 50 100 150 200

A
v
g.

 s
n
ip

p
et

 g
en

er
at

io
n

ti
m

e
(m

s)

Snippet/fragment cache size

SC-MFU Csnip
SC-MFU Cdoc

FC-MFU Csnip
FC-MFU Cdoc

Figure 3: The latency of snippet processing and
fragment processing under static caching (MFU).

0

1

2

3

4

5

6

7

8

20 50 100 150 200

A
vg

.
sn

ip
p

et
 g

en
er

at
io

n
ti

m
e

(m
s)

Snippet/fragment cache size

SC-LRU Csnip
SC-LRU Cdoc

FC-LRU Csnip
FC-LRU Cdoc

Figure 4: The latency of snippet processing and
fragment processing under dynamic caching (LRU).

Table 1: The cache hit ratio for snippet caching and
fragment caching under static caching (MFU).

Snippet/fragment
20 50 100 150 200

cache size
Snippet (%) 24.8 29.9 33.8 35.9 37.4

Fragment (%) 39.9 45.5 51.3 68.2 77.7

4.3 Discussion
In static caching, we fill the caches in the document server

using MFU according to the training set. As snippets can
not be cached if the cache space is already filled during the
training phase, the constrained cache size restricts the per-
formance of snippet caching. The use of fragment caching
decreases the probability of a cache miss substantially (see
Table 1), which leads to a reduction of Csnip. And due to
the fast read of SSD, the increase of Cdoc is not substantial.
As a result, we see better performance by fragment process-
ing than snippet processing, particularly for larger memory
sizes. E.g., when we allocate a snippet/fragment cache size
of 200, fragment processing is 25% faster than snippet pro-
cessing (see Figure 3).

We observe that fragment caching can also perform better
than snippet caching with dynamic caching (see Figure 4).
Using fragment caching, we only need a fragment cache size
of 20 to get the similar snippet generation time as snippet

1017

Table 2: The cache hit ratio for snippet caching and
fragment caching under dynamic caching (LRU).

Snippet/fragment
20 50 100 150 200 550

cache size
Snippet (%) 38.5 52.8 59.8 62.9 64.8 70.7

Fragment (%) 67.5 72.2 75.9 77.5 77.7 77.7

0

10

20

30

40

50

60

70

80

SSD HDD

A
v
g
. s

n
ip

pe
t

ge
n

er
at

io
n

ti
m

e
(m

s) SC Csnip
SC Cdoc

FC Csnip
FC Cdoc

Figure 5: The latency of snippet processing and
fragment processing under dynamic caching (LRU)
on HDD-based and SSD-based search engine (cache
size is 100).

caching with a snippet cache size of 200, i.e., 10 times as
large. For snippet caching, snippet generation latency de-
creases when more memory is used to cache snippets. How-
ever the situation changes if fragment caching is used. The
cached fragments occupy so much less memory space that
even a substantially smaller fragment cache can cache most
of the popular fragments. Consequently, allocating more
memory to the fragment cache does not decrease Csnip sig-
nificantly, but results in more document cache misses (due
to document cache memory being reallocated as fragment
cache memory) which results in an increased Cdoc. There-
fore, when the fragment cache size exceeds 100, we see the
snippet generation latency increasing slightly as the frag-
ment cache size increases. We conclude that when the query
stream contains many distinct snippets that can not be held
completely by the snippet/fragment cache, fragment caching
will show its performance advantage.

Table 2 lists the cache hit ratios for snippet caching and
fragment caching under dynamic caching with different sni-
ppet/fragment cache sizes. The hit ratio for snippet caching
increases rapidly as more memory space is allocated to the
snippet cache, whereas fragment caching achieves a high hit
ratio even for substantially smaller cache sizes (a factor of
10 smaller). After the popular fragments have been cached
in the fragment cache, increasing the cache size further does
not improve its hit ratio substantially. With a fragment
cache size of 200, fragment caching achieves the highest pos-
sible hit ratio, which indicates all the fragments except the
unique ones have been cached. By contrast, snippet caching
does not achieve this hit ratio even when the snippet cache
size is 550. We conclude that fragment caching can achieve
a high hit ratio while using a greatly smaller space than
snippet caching.

We also briefly test these caching strategies on a 500GB
WDC HDD (5400rpm). As expected, (a) regardless of the
caching method used, we found a drastic reduction in la-
tency in SSDs vs. HDDs, and (b) fragment caching results

in far more document accessing than snippet caching, and
performs worse (see Figure 5).

5. CONCLUSION
Many search engines servers are moving from hard disk

drives (HDDs) to solid state drives (SSDs) to store masses
of documents, largely due to SSDs massive advantage in
I/O speed. In this work, we present a simple, yet effective
caching method for compactly caching snippets, called frag-
ment caching, which takes advantage of SSD-based hard-
ware. Instead of caching whole snippets in memory, we in-
stead cache snippet metadata which are used to retrieve the
snippets from documents when required. This greatly re-
duces the memory required for caching, while the increased
I/O is not a major concern on SSDs (as it is for HDDs).

6. ACKNOWLEDGEMENTS
This work is partially supported by NSF of China (61373018,

11301288, 11450110409), Program for New Century Excel-
lent Talents in University (NCET130301) and the Funda-
mental Research Funds for the Central Universities (65141021).

7. REFERENCES
[1] R. A. Baeza-Yates, A. Gionis, F. Junqueira,

V. Murdock, V. Plachouras, and F. Silvestri. The
impact of caching on search engines. In Proc. SIGIR,
pages 183–190, 2007.

[2] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[3] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and
F. Silvestri. Caching query-biased snippets for efficient
retrieval. In Proc. EDBT, pages 93–104, 2011.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In Proc.
SIGMETRICS, pages 181–192, 2009.

[5] J. Dean. Challenges in building large-scale information
retrieval systems: invited talk. In Proc. WSDM,
page 1, 2009.

[6] C. Hoobin, S. J. Puglisi, and J. Zobel. Relative
Lempel-Ziv factorization for efficient storage and
retrieval of web collections. Proc. VLDB Endowment,
5(3):265–273, 2011.

[7] D. Liu, R. Li, X. Gu, K. Wen, H. He, and G. Gao.
Fast snippet generation based on CPU-GPU hybrid
system. In Proc. ICPADS, pages 252–259, 2011.

[8] J. Tong, G. Wang, and X. Liu. Latency-aware strategy
for static list caching in flash-based web search
engines. In Proc. CIKM, pages 1209–1212, 2013.

[9] Y. Tsegay, S. J. Puglisi, A. Turpin, and J. Zobel.
Document compaction for efficient query biased
snippet generation. In Advances in Information
Retrieval, ECIR, pages 509–520, 2009.

[10] A. Turpin, Y. Tsegay, D. Hawking, and H. E.
Williams. Fast generation of result snippets in web
search. In Proc. SIGIR, pages 127–134, 2007.

[11] J. Wang, E. Lo, M. L. Yiu, J. Tong, G. Wang, and
X. Liu. The impact of solid state drive on search
engine cache management. In Proc. SIGIR, pages
693–702, 2013.

1018

