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ABSTRACT
In competitive search se�ings as the Web, there is an ongoing rank-
ing competition between document authors (publishers) for certain

queries. �e goal is to have documents highly ranked, and the

means is document manipulation applied in response to rankings.

Existing retrieval models, and their theoretical underpinnings (e.g.,

the probability ranking principle), do not account for post-ranking

corpus dynamics driven by this strategic behavior of publishers.

However, the dynamics has major e�ect on retrieval e�ectiveness

since it a�ects content availability in the corpus. Furthermore, while

manipulation strategies observed over the Web were reported in

past literature, they were not analyzed as ongoing, and changing,

post-ranking response strategies, nor were they connected to the

foundations of classical ad hoc retrieval models (e.g., content-based

document-query surface level similarities and document relevance

priors). We present a novel theoretical and empirical analysis of the

strategic behavior of publishers using these foundations. Empiri-

cal analysis of controlled ranking competitions that we organized

reveals a key strategy of publishers: making their documents (grad-

ually) become similar to documents ranked the highest in previous

rankings. Our theoretical analysis of the ranking competition as a

repeated game, and itsminmax regret equilibrium, yields a result that

supports the merits of this publishing strategy. We further show

that it can be predicted with high accuracy, and without explicit

knowledge of the ranking function, whether documents will be

promoted to the highest rank in our competitions. �e prediction

utilizes very few features which quantify changes of documents,

speci�cally with respect to those previously ranked the highest.
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1 INTRODUCTION
Ad hoc document retrieval models are o�en based on the assump-

tion of a �xed document corpus — i.e., corpus dynamics is not

accounted for. �e core challenge is estimating the relevance of a

document to the query. �e probability ranking principle (PRP) [25]

is the theoretical foundation of this practice: to maximize user util-

ity, documents should be ranked by their relevance probabilities.

In practice, document corpora are not static as documents are

changed, created or removed. Some of the corpus dynamics, specif-

ically, in competitive search se�ings (e.g., the Web), results from

ranking incentives of document authors, henceforth referred to as

publishers. �at is, publishers might modify documents to promote

them in rankings induced for queries of interest. �ese modi�-

cations are referred to as search engine optimization (SEO) [16].

Spam �ltering, and more generally, using document quality mea-

sures as features in learning-to-rank methods [4], are examples of

approaches for rank-penalizing documents that have gone through

unwarranted modi�cations (a.k.a., black-hat SEO [16]).

However, existing retrieval approaches, and their theoretical

foundations, do not account for future corpus dynamics driven

by rankings. For example, it was recently shown that the PRP is

sub-optimal in competitive retrieval se�ings [3] as it can lead to

decreased content breadth in the corpus, among other issues.

To estimate post-ranking corpus dynamics, speci�cally, that

caused by responses of publishers to rankings (i.e., document mod-

i�cations), analysis of the strategic behavior of publishers is called

for. While types and techniques of SEO strategies were discussed in

past work [16], these were not studied as response strategies with

respect to rankings induced for speci�c queries. Rather, they were

presented as general actions observed on the Web (e.g., keyword

stu�ng and content copying).

Furthermore, there are no studies, to the best of our knowledge,

that analyze publishers’ strategies with respect to retrieval models

and their foundations; namely, the e�ect, over time, on features used

for ranking. Such analysis is important for incorporating strategy

predictions (estimates) in, and addressing their e�ects on, retrieval

approaches. A case in point, it was shown that if the actual writing

quality of publishers for topics is known, then this information can

be used in non-deterministic retrieval models to promote content

breadth in the corpus, and therefore improve search e�ectiveness

along time [3]. More generally, analysis of the strategic behavior of

publishers is crucial for se�ing theoretical foundations for handling

post-ranking corpus dynamics. �e same way user modeling is
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important for interactive information retrieval models [30], mod-

eling the strategic behavior of publishers in response to induced

rankings is important for addressing post-ranking corpus dynamics

in retrieval models.

We present a novel initial theoretical and empirical analysis of

the (temporal) strategic behavior of publishers in terms of changes

they introduce to documents in response to induced rankings. �e

analysis is performed in the context of classical ad hoc retrieval

models in two respects. First, we focus on content-based retrieval

and accordingly content manipulation. Analyzing post-ranking

strategies of changing hypertext, hyperlinks and a�ecting clicks

or any additional signal that can be used for relevance estimation

is outside the scope of this paper. Nevertheless, we note that (i)

content-based relevance estimates (e.g., Okapi BM25 and language-

model-based estimates) are among the most important ones used

in learning-to-rank approaches applied over Web data [20]; (ii)

content manipulation techniques are quite pervasive, speci�cally,

over the Web [16]; and, (iii) for experiments we use a state-of-the-art

learning-to-rank approach applied with content-based estimates.

Second, we empirically study content manipulation in terms of

the building blocks of classical, content-based, retrieval methods.

�ese include document-query surface-level similarities [14] and

query-independent document relevance priors [4].

Performing empirical analysis of the “ranking competition” be-

tween publishers whose incentive is to have their documents ranked

high, even if assuming the availability of a large-scale log of a search

engine, is a major challenge due to the numerous dynamic aspects

that a�ect this competition. Over the Web, pages emerge and dis-

appear, the search engine’s index coverage changes rapidly, the

ranking function, as well as estimates it utilizes, change throughout

time and across sets of users and queries. Furthermore, di�erent

publishers cannot necessarily employ the same document modi�ca-

tions, and many modi�cations are not content-based as the ranking

function also considers non content-based relevance signals.

Given that our goal, as described above, is to study the strategic

behavior of publishers in the scope of the foundations of classical

content-based retrieval models, we performed controlled empirical

analysis by organizing ranking competitions between students in a

course. Two basic conditions were set in these competitions. First,

the students were not aware of the ranking function, nor of the

actual features it used. Second, the students were incentivized to

write quality documents that would be ranked high by the ranking

function. As shown below, the dataset allowed to gain interesting

and important observations about potential strategic behavior of

publishers in a ranking competition.

An important observation that emerged in the competition anal-

ysis that we present is that publishers were gradually making their

documents become more similar, in several respects, to those most

highly ranked in previous rankings
1
. An interesting fundamental

question that follows is whether this competing strategy can be

theoretically justi�ed given the information available to publishers:

observations of past rankings and li�le to no knowledge of the

ranking function. To address this question, we present a novel

game theoretic analysis of the ranking competition as a repeated

1
�is strategy is conceptually reminiscent of the black-hat weaving and stitching

content-based SEO techniques applied over the Web [6, 16] where content from legiti-

mate pages is copied to spam pages so as to promote them.

game [1]. Our main theoretical result with respect to the minmax

regret equilibrium of the game [17] provides formal support to the

merits of this publishing (competing) strategy.

In addition to analyzing the ranking competition theoretically

and empirically, we set as a goal to predict whether a document

would be ranked the highest given that this was not the case in the

previous ranking; the predictor does not have explicit knowledge

of the ranking function. Interestingly, relying on very few features

that quantify the extent to which the document was changed and

became similar to a document previously ranked the highest can

yield high accuracy prediction. �ese features are inspired by the

cluster hypothesis [18], and more speci�cally, one of the important

operational premises that it gave rise to: “similar documents should

receive similar retrieval scores” [9]. �us, in lack of knowledge of

the ranking function, the predictor essentially uses inter-document

similarities as proxies for retrieval score similarities.

Our contributions can be summarized as follows.

• We present the �rst dataset of query-based ranking com-

petitions between publishers. �e focus is on content ma-

nipulation.

• We present an empirical analysis of publishers’ strategies

employed in the competitions.

• We present a novel game theoretic analysis of the rank-

ing competition as a repeated game. �e main result of

analyzing the minmax equilibrium of the game provides

formal support to the merits of a key strategy employed

by publishers in our games.

• We show that, in our se�ing, it is possible to predict with

high accuracy whether a document will be promoted to

the highest rank in the next ranking. �e prediction is

based on very few features and does not rely on explicit

knowledge of the ranking function.

2 RELATEDWORK
�ere is much work on identifying, characterizing and addressing

unwarranted (a.k.a. black-hat SEO [16]) actions of publishers [6].

In contrast, we focus on the strategic behavior of publishers when

applying legitimate content-based manipulations.

Studies of the dynamic aspects of interactive retrieval focus

on changes of queries and the ranking function (e.g., [15, 27, 30,

31]). Changes of clickthrough pa�erns were also studied [27]. �e

dynamics of the collection as a result of the ranking competition,

which is our focus, was not addressed.

�ere has been work on studying and predicting the dynamics

of the Web collection (e.g., [23, 26]), where the main operational

goals were improving crawling policies and personalizing content

delivery. Past versions of a Web page were used to improve its

representation for ranking [13]. However, in contrast to our work,

the dynamics has not been studied with respect to the ranking

competition between publishers.

Recently, the publishers’ ranking competition was analyzed us-

ing a game theoretic approach [3]. In contrast to our work, the

assumption was that publishers have full knowledge of the ranking

function, the competition was not analyzed as a repeated game,

and no empirical analysis was presented.
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�e merits of non-deterministic ranking functions from [3] were

argued using a simulation of a ranking competition between pub-

lishers who stu� query terms in documents [2]. In contrast with

our work, publishers were assumed to know the basic (Okapi BM25)

ranking function, there was no theoretical analysis of the competi-

tion and no analysis of non-simulated (real) ranking competitions.

A game theoretic approach was used to devise query-based

ranking mechanisms that (i) maximize social welfare for ambigu-

ous queries, by diversifying search results that are assumed to

be scanned using random sequential search [12]; and (ii) balance

relevance and monetization [11]. In contrast to our work, the com-

petition between documents’ authors (publishers) was not studied.

Game theoretical analysis has also been applied for adversarial

classi�cation [8, 10] and for optimizing learning-to-rank functions

in non-adversarial retrieval se�ings [28]. We address the competi-

tive (adversarial) ad hoc retrieval se�ing using di�erent theoretical

and empirical analyses.

3 GAME THEORETIC ANALYSIS
We analyze the ranking competition as a repeated game [1]. Ana-

lyzing the minmax regret equilibrium of the game yields a formal

result that helps to explain a key strategy employed by publishers

in the ranking competitions we organized as described in Section 5.

In what follows we assume that a query q, and some docu-

ment ranking function (details below), have been �xed. Let N =
{1, 2, . . . ,n} be a set of n publishers (documents’ authors) that

would like to have their documents ranked high for q. Let Di be

a �nite set of documents that publisher i can (or might) write to

convey the information she wants to share. For ease of presentation,

and to avoid technical tie-breaking issues, assume Di ∩ D j = ∅ for

any i, j ∈ N , i , j. Let D = ∪ni=1
Di be the set of all documents that

can be wri�en by the publishers.

We assume a complete linear ordering over D, denoted <. Such

ordering can be based, for example, on a single (numeric) feature

in a document representation
2
. Alternatively, the distance, under

some representation, to a document which serves as a reference

point (e.g., a document ranked the highest at some point) can serve

to induce the ordering. �us, for ease of exposition we can associate

D with elements in the interval [0, 1]. A document ranking function

for q is a mapping r : D → <+. For simplicity (and avoiding tie-

breaking), we assume r (di ) , r (dj ) for any di ,dj ∈ D.

De�nition 3.1. RSP(D1, . . . ,Dn ) = RSP(D) denotes the single

peak ranking functions. �ese are functions r de�ned over D, such

that for no d ∈ D, there are di ,dj ∈ D, di < d < dj such that

r (di ) > r (d) and r (dj ) > r (d).

For example, linear learning-to-rank functions [20] are single

peak with respect to each feature. �e negative KL divergence used

in the language modeling framework [19] is a single peak function

over the multinomial distributions in the simplex by the virtue

of being a concave function. However, the most e�ective ranking

functions (e.g., those utilizing non-linear learning-to-rank methods)

are not single peak. Nevertheless, it is important to keep in mind

that we analyze the dynamics from the point of view of publishers

2
In this case, the analysis below applies to each feature in a document representation

assuming that the values of others were �xed.

who have no information about the ranking function except for

that inferred by observing induced rankings. �at is, publishers

may assume, and act based on the belief, that the ranking function

is single peak. Indeed, as shown in Section 5, the participants

(publishers) in our ranking competitions can be viewed as searching

for the structure of a single-peak ranking function for various

features, although the ranking function is not single-peak.

Below we care only about the relative ranking of documents in

D; thereby, we consider the possible total ordering induced by the

ranking function over D; there are �nitely many such orderings.

With a slight abuse of notation we will therefore refer to RSP(D)
as the set of possible single-peak orderings of documents in D.

Let D0 = {d0

1
, . . . ,d0

n } be an initial set of documents where

d0

i ∈ Di is the initial document published by publisher i . We

assume that each i ∈ N possess no information at the beginning

about the function r ∈ RSP(D), beyond knowing it is a single-peak

ordering. Consider t rounds, l = 1, 2, . . . , t , in each of which each

player i chooses a document di ∈ Di , and obtains a utility of 1 if di
is ranked �rst and 0 otherwise. Herein, a publisher or her document

is called “winner” if the document was the highest ranked; all other

publishers and their documents are called “losers”. Let TO(D) be

the set of possible total ordering over D. Notice that selecting

di ∈ Di for every i ∈ N determines an ordering over the selected

documents by the single-peak function r ∈ RSP(D). �e strategy of

i at round l is de�ned as a function from the history of previously

selected actions and outcomes (i.e., orderings) of all publishers, to

the document selected by publisher i . �e outcome at each round

can be associated with a subset R ⊆ RSP(D) of the possible single

peak functions, as it rules out particular orderings. Henceforth, R is

referred to as the knowledge state, as it captures the set of currently

possible single peak orderings based on the observations received.

�e publishers ranking game just described is a repeated game [1].

In a repeated game, the same game is repeatedly played in rounds

(iterations). Speci�cally, at each round a publisher publishes a

document, but a strategy in each round may relate to all information

observed so far; e.g., the documents published and rankings induced

in previous iterations. Accordingly, given the initial document set

D0
, and the total number of rounds t , the set of possible strategies

for player i is denoted Si (t ,d0

i ).
3

�e utility Ui (t ,d0

i , s1, . . . , sn ),
where sj ∈ Sj (t ,d0

j ) for every j ∈ N , is the sum of utilities of player

i in rounds 1, 2, . . . , t given the corresponding strategies.

We now introduce a slight modi�cation to the utility obtained by

player i in a round to capture the cost of modifying documents. �is

cost re�ects both the actual e�ort involved in changing a document

and the “penalty” incurred by potentially dri�ing from the actual

document i planned to publish. Assume there is some negligible cost

C , i.e.,C |D | < 1, where eC > 0 is the cost for changing document d
to document d ′ in distance e (assume standard distance on [0, 1]) in

a single round. Formally, the utility of publisher i in round l will be

based on its ranking (either �rst or not) minus the cost of changing

the document wri�en in round l − 1.

Given the game described above, a major challenge is to de�ne an

appropriate solution concept which predicts behavior in the game.

�e classical solution concept in game theory is the celebrated Nash

3Si (t, d0) encodes all possible documents published by i at any round of the game

given the previous potential orderings.

Session 4B: Retrieval Models and Ranking 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

467



equilibrium, which is a strategy pro�le, one for each player, for

which unilateral deviations are not bene�cial (i.e., any single player

cannot gain by deviating from her strategy assuming the others

stick to their strategies). �is solution concept always exists in

�nite games with complete information if players are allowed to

use mixed strategies, and has been also extended to games with in-

complete information where there are Bayesian assumptions about

the actual game being played. However, our se�ing does not exhibit

such stylized assumptions, and we need to appeal to other solution

concepts. In particular, in a minmax regret equilibrium [17], we

consider strategy pro�les such that each player (publisher) mini-

mizes her regret when compared to the best response she could

have played had she known the exact environment state (e.g., the

exact ranking function) assuming others stick to their strategies;

and this holds for all players simultaneously.

Given a strategy pro�le s = (s1, . . . , sn ) the regret of i is

maxxUi (t ,d0

i ,x , s−i ) −Ui (t ,d
0

i , s); s−i denotes the strategy pro�le

applied by all players except for i . A strategy pro�le s = (s1, . . . , sn )

is minmax regret equilibrium if for every i , si minimizes regret given

s−i [17]. Given the de�ned publishers game we can now show that:

Theorem 3.2. Any publishers game has a minmax regret equilib-
rium.

Proof. We construct the following equilibrium. Let R be the

knowledge state at the beginning of a given round l . At the begin-

ning of round 1 all ranking functions in RSP(D) are possible, while

at each following round the knowledge state can only shrink in

terms of the number of ranking functions it contains. LetVl ⊆ [0, 1]
be the set of documents which correspond to possible peaks of the

functions in the knowledge state R; let dl−1

i be the most recent

document published by i . Let vli ∈ Di ∩ Vl such that |vli − d
l−1

i |
is minimal; if two documents have this minimal distance one is

arbitrarily selected. �e document published by i in round l would

be vli . (In the �rst round it is d0

i .) We now prove that this strategy

of i minimizes its regret.

Let Vt be the knowledge state at the beginning of the last round

t ; Vt may result from arbitrary publishers’ behavior in rounds 1, 2,

. . . , t − 1. No publisher j , i will publish a document not in Vt as

otherwise she cannot win (i.e., this strategy would be dominated).

Hence, i’s publishing a document out ofVt is dominated by publish-

ing the previous document. (�is has no cost, and publishing out

of Vt cannot result in a win.) On the other hand, since any v ∈ Vt
can be a winner, the worst regret would be for not publishing vti
as de�ned above. �is is because vti might be the winner from this

point on, by the virtue of being in Vt , but it incurs minimal cost.

�us, minimizing regret in the last round is achieved by selecting

vti as prescribed. By induction, using the argument from above

results in i’s strategy minimizing regret in every round. �

Two corollaries follow the proof:

Corollary 3.3. �e above constructed equilibrium is also a sub-
game perfect equilibrium.

Namely, if an arbitrary sequence of documents has been selected

up to round l < t , then in the remaining game, given the informa-

tion provided so far on the potential peaks, following each player’s

strategy in the remaining rounds is still a minmax regret equilib-

rium.

Corollary 3.4. Losers at round l − 1 will publish in round l
documents that become closer to (i.e., more similar) to that of the
winner from round l − 1.

Proof. Assume wlog that a publisher who lost round l − 1 pub-

lished dj ∈ [0, 1] that satis�es dj < dw where dw ∈ [0, 1] was the

winning document. As selecting anydj′ < dj is dominated given the

knowledge state gathered, and the regret for publishing dj′′′ > dw
is higher than that of publishing dj′′ such that dw > dj′′ > dj , we

get the corresponding phenomenon. Notice that this will also imply

that current winners will not change their documents. �

�us, Corollary 3.4 helps to explain a key strategy employed by

publishers in the competitions we organized as we show below;

namely, mimicking the winners.

4 DATA
As discussed in Section 1, our goal is to analyze content-based

ranking competitions so as to shed light on the strategic behavior of

publishers. Since there are no publicly available datasets that can be

used to that end, we organized repeated ranking competitions. �e

resulting dataset is available at h�ps://github.com/asrcdataset/asrc.

(See details in Appendix A.) We next describe the essentials of the

competition.

Fi�y two senior-undergrad and grad students in an information

retrieval course were the publishers. �e competition included 31

di�erent repeated matches, each of which was with respect to a

di�erent TREC’s ClueWeb09 query. Each student participated in

three matches. Five students competed against each other in all

matches except for one in which six students competed.

�e competition was run for eight rounds; i.e., there were eight

matches per query. Before the �rst round, an example of a relevant

document was provided for each match (query). Students were

incentivized by course-grade rewards to edit their documents along

the rounds so as to have them ranked as high as possible.
4

As from

the second round, students participating in a match were presented

with the ranking of documents submi�ed in the previous round by

all competitors in the same match.

All documents were unstructured plain text of up to 150 terms.

�e document ranking model was based on the state-of-the-art

LambdaMART [29] learning-to-rank approach integrating three

classes of features. �e �rst are query-dependent features, such as

�eryTermsRatio (ratio of query terms appearing in a document)

and LMIR.DIR (language-model-based similarity of a document

to the query). �e second class of features are query-independent

document quality measures [4, 21], including Entropy (entropy of

the term distribution in a document) and StopwordsRatio (stop-

words to non-stopwords ratio in a document). Increased entropy

and occurrence of stopwords a�est to content breadth and hence

to high prior probability of relevance [4].

�e feature in the third class, SimInit, was used to incentivize

students to write documents that dri� from the initial relevant doc-

ument shared by all students competing in the same match: it is

4
Students were assigned with unique IDs and all data was anonymized.
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Figure 1: �e number of (consecutive) matches won (x-axis)
by a given number of publishers (y-axis).

based on the language-model similarity of a document to the initial

relevant document. We note that in practical scenarios, publishers

would rarely change their documents so they will not include the

information originally intended for sharing. Indeed, in the theoret-

ical analysis presented in Section 3, a cost was assigned to changes

of documents. Yet, as we show below, the conclusions we draw

about strategies are aligned with our theoretical results.

Documents (manually) classi�ed as keyword stu�ed were pe-

nalized in the ranking. Information about the ranking function

and the features it utilizes was not disclosed to students. �e re-

sulting collection contains (i) 1279 documents: 31 initial relevant

documents and 1248 documents created by students, 897 of which

are unique
5
; (ii) keyword stu�ng annotations; and (iii) exhaustive

relevance judgments. Appendix A provides additional details of the

collection and ranking model.

5 EMPIRICAL ANALYSIS
In the following analysis, winner (loser) is a document (or publisher

thereof) which was (not) ranked �rst in a match.

5.1 Analysis of wins
Figure 1 (le�) presents the number of matches won by a given

number of publishers (students). �e competition included 248

distinct matches (8 rounds × 31 matches per round). Each student

was assigned with exactly 3 queries; hence, the maximum number

of matches a student could win is 24. We see that only two of the

students did not win even a single match, a�esting to the students’

engagement in the competition. �e maximum number of matches

won was 11, less than half of the maximal possible number of wins,

indicating that the competition was dynamic.

Figure 1 (right) presents the number of consecutive matches

won by a given number of students; the maximum is the number of

rounds (eight). We see that most students could retain the �rst rank

for at most three rounds. Only a small number of students retained

the �rst rank in more than four rounds. �is �nding further a�ests

to the strong competition held between the students.

5.2 Analysis of strategies
By Corollary 3.4, to win matches, losers in previous rounds will

publish documents that become similar to that of the winner from

the preceding round. Accordingly, we next analyze the similarity

5
Several students submi�ed the same document over a few rounds; e.g., if the document

was the highest ranked in a previous round.

of documents that did not win a match (losers) to the winner over

a series of rounds in which these documents remained losers. �e

similarity to the winner is estimated with respect to some of the

features used to rank documents which were presented in Section 4.

�e �eryTermsRatio and LMIR.DIR features quantify the query-

document match; LMIR.DIR is a representative query-document

surface-level similarity estimate [14]. �e Entropy and Stopword-

sRatio features are among the most e�ective query independent

content-based document relevance priors reported in the litera-

ture [4]. Hence, the analysis of the strategic behavior of publishers

we present next relies on estimates that constitute the foundations

of classical content-based ad hoc retrieval approaches.

Figure 2 depicts the average values of the features for documents

that were losers in at least four consecutive rounds before winning

a match
6
. We distinguish between documents whose feature value

four rounds before winning a match was lower than or equal to that

of the winner (L≤W) and those whose feature value was higher

than that of the winner (L>W). We also present the average feature

values of winners (W).

We see in Figure 2 that the average feature values of winners

remain relatively stable along the competition; thus, winner docu-

ments, o�en wri�en by di�erent publishers, tend to be quite similar

along a few dimensions (features).

Figure 2 also shows that, in general, Entropy o�en decreases

along rounds and �eryTermsRatio increases. �is a�ests to high

content repetition in winner documents that might result from high

occurrence of query terms. SimInit decreases which is potentially

due to our rewarding diversi�cation with respect to the initial

relevant document.

More generally, we observe a clear trend throughout the compe-

tition: feature values of loser documents which became winners

were becoming closer, o�en gradually converging, to those of win-

ners from previous rounds regardless of their initial values. �at

is, in lack of knowledge of features used for document ranking,

losers were mimicking winners and thereby indirectly a�ecting

these features. �is �nding is in accordance with Corollary 3.4.

6 PREDICTINGWINNERS
Given that loser publishers apply the strategy of mimicking the

winners, an interesting challenge rises: leveraging aspects of this

strategy to predict, without using explicit knowledge of the ranking

function, which loser publisher in round l − 1 will win round l
assuming that a previous loser indeed wins this round.

7

For prediction, we represent each document as a feature vector

and de�ne two sets of features (details below) that quantify the

extent to which the document becomes more similar to the winner

of the previous round. �e features in the �rst set are estimates of

this similarity on a macro level, where documents are treated as

6
Similar trends were observed for other features used by the ranking model and for

losers that lost in at least three or �ve consecutive rounds. �ese results are omi�ed

as they convey no further insight.

7
Predicting which publisher will win round l regardless if it won round l − 1 is a

challenge for future work. As stated in the proof of Corollary 3.4, and as observed in the

competitions, winners did not tend to change their documents. �is is a fundamental

di�erence with the dynamics of loser documents which makes this prediction task

challenging. For example, many of the dynamics-based features de�ned below for

predicting whether a loser will turn to a winner are degenerated for winner documents

which do not change.
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Figure 2: Averaged feature values of documents that were losers in at least four consecutive rounds before becoming winners,
and whose feature values four rounds before winning were either lower or equal (‘L≤W’) or higher (‘L>W’) than those of the
winner. ‘W’: averaged feature value of the corresponding winners. x-axis: (minus) number of rounds before a document won
a match. �e values of LMIR.DIR are scaled by 100.

whole units. �e features in the second set are micro level similar-

ity estimates that allow to analyze the potential actions taken by

publishers to make their documents similar to the winner.

6.1 Features
�e features in the �rst set, henceforth Macro features, are esti-

mates of the bag-of-terms textual similarities (denoted SIM) be-

tween the document in round l (D), the document wri�en by the

same publisher in the previous round l − 1 (PD) and the winner

of the previous round l − 1 (PW). �e Cosine between tf.idf vec-

tor representations of documents is the similarity estimate. �ree

estimates are used: SIM(D,PD), SIM(D,PW) and SIM(PD,PW).
Using these inter-document similarity measures is inspired by

the cluster hypothesis [18] which states that “closely associated doc-

uments tend to be relevant to the same requests”. More speci�cally,

an important operational manifestation of the cluster hypothesis is

the premise that e�ective retrieval methods should assign similar

documents with similar retrieval scores [9]. Based on the premise,

given that the predictor we devise has no explicit knowledge of the

ranking method used, inter-document similarities can potentially

serve as proxies for similarities between retrieval scores.

�e features in the second set, henceforth Micro features, focus

on potential actions of publishers to make their documents similar

to PW, the winner of the previous round. A document becomes sim-

ilar to the winner, based on a bag-of-terms representation, if terms

from the winner are added and terms not in the winner are removed.

Accordingly, given a set S of terms, ADD(PW) and RMV(PW) are

the number of unique terms t ∈ S used in PW that were added to, or

removed from, the document, respectively. Similarly, ADD(qPW)
and RMV(qPW) are the number of unique terms t ∈ S not used in

PW that were added to or removed from the document, respectively.

We de�ne three term sets S: (i) query terms (�ery), (ii) frequent

terms, speci�cally, stopwords (Stopwords), and (iii) non-frequent

terms not in the query (q�eryqStopwords).8
Overall, we use 15 features: 3 Macro (SIM(D,PD), SIM(D,PW),

SIM(PD,PW)) and 12 Micro ({ADD(PW), RMV(PW), ADD(qPW),

RMV(qPW) } × {�ery, Stopwords, q�eryqStopwords}).

�e Macro features, which quantify temporal inter-document

similarity changes, are ranking-model agnostic. �e Micro features

8
A term is considered a stopword if it is among the 100 most frequent alphanumeric

terms in the ClueWeb09 Category B corpus.

are based on temporal changes of addition/deletion of terms. While

term-based information (e.g., query-terms occurrence) would be

used by any reasonable ranker, the prediction model uses no explicit

knowledge about how this information is used by the non-linear

ranker applied in the competition, nor about other features used

for ranking.

6.2 Prediction setup
In each round of the competition, queries for which the winner of

the previous round remained the winner were discarded, as our

goal is to predict which loser publisher in a previous round will win

the current round. �us, the number of queries considered in each

round ranges from 6 to 26 (out of all 31 queries).

We used the features
9

from Section 6.1 for binary classi�cation

with logistic regression (LReg), linear SVM (LSVM), polynomial

SVM (PSVM) and random forests (RForest) via the scikit-learn

library [22]; the two classes are winner and loser. To train the clas-

si�ers and set hyper-parameter values, we used leave-one-out cross

validation over rounds. �e documents submi�ed by students with

respect to all considered queries in a round served for testing; those

submi�ed in the remaining six rounds, excluding the �rst, served

for training. Prediction was performed per query: the document in

the current round which was wri�en by a loser publisher from the

previous round and which was assigned the highest classi�cation

score was predicted the winner; all other documents were predicted

to be losers.

Prediction e�ectiveness is measured using Accuracy: the per-

centage of documents correctly predicted as winners or losers, and

F1: harmonic mean of Precision and Recall.
10

Values are averaged

over queries and test folds. Statistically signi�cant e�ectiveness

di�erences are determined using the two-tailed paired t-test with

p ≤ 0.05 applied over queries.

�e hyper-parameter values of the classi�ers were selected to

optimize Accuracy over the train set. For LReg, LSVM and PSVM,

the value of the regularization parameter is in {1, 10, 50, 100}.11

�e degree of the polynomial SVM (PSVM) was in {2, 3, 4, 5}. �e

number of trees and leaves for RForest were selected from {10, 50,

9
Feature values were min-max normalized per query.

10
Precision is the fraction of correctly predicted winners out of all documents predicted

to be winners. Recall is the fraction of winners correctly predicted as winners.

11
LReg, LSVM and PSVM were trained with L1 regularization.

Session 4B: Retrieval Models and Ranking 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

470



Table 1: Prediction e�ectiveness of the four classi�ers (LReg, LSVM, PSVM, RForest) and the baselines. �e performance
di�erences between each of the classi�ers and each of the baselines are statistically signi�cant. All the di�erences with
RForest are statistically signi�cant. Bold: the best result in a row. Note: F1 of AllLosers is 0 due to zero Recall.

Random Majority AllWinners AllLosers LReg LSVM PSVM RForest

Accuracy 0.627 0.685 0.247 0.753 0.849 0.859 0.867 0.878
F1 0.242 0.363 0.396 0.000 0.695 0.712 0.730 0.752

100, 500} and {10, 20, 30}, respectively. All other hyper-parameters

were set to their default values [22].

6.3 Prediction e�ectiveness
Main result. We compare the prediction e�ectiveness of the afore-

mentioned classi�ers with that of four baselines. All prediction

algorithms predict as winner(s) documents whose publishers lost

the previous round. (i) Random: a single winner is randomly

selected; (ii) Majority: the document whose publisher won the ma-

jority of past rounds for the query is predicted the winner (ties are

broken arbitrarily); (iii) AllWinners: all documents are predicted

winners, in which case only one document per query is correctly

predicted; and, (iv) AllLosers: all documents are predicted losers,

in which case all but one of the documents are correctly predicted

as losers. �e results are presented in Table 1. Although the four

classi�ers (LReg, LSVM, PSVM and RForest) utilize no knowledge

of the ranking model, they predict with high e�ectiveness the win-

ner of the current round. Moreover, the di�erences in prediction

e�ectiveness between each of the classi�ers and each of the four

baselines are substantial and statistically signi�cant. �ese �ndings

a�est to the ability to predict winners from previous losers in our

competitions based on macro-level and micro-level manipulation

strategies of publishers.

Among the four classi�ers, the lowest performance is posted by

LReg, while the highest is posted by RForest. Hence, in the analysis

to follow we focus on RForest.

Feature analysis. We next study the relative e�ectiveness of the

sets of features used in RForest. Recall that the 15 features belong

to two sets: Macro and Micro. �e Micro features belong to three

subsets: �ery, Stopwords and q�eryqStopwords. In Table 2

we compare the prediction e�ectiveness of training RForest using

di�erent combinations of these (sub)sets of features. We present

for reference the e�ectiveness of the Majority, AllWinners and

AllLosers baselines. We see that using even a single (sub)set of fea-

tures yields prediction e�ectiveness that statistically signi�cantly

surpasses that of the baselines. Among the three subsets of Micro

features, the query-term-based features (�ery) are the most e�ec-

tive. Integrating all three subsets leads to prediction e�ectiveness

that always statistically signi�cantly surpasses that of using either

one or two of the subsets. We also see that using Micro features

alone leads to slightly higher e�ectiveness than using only Macro

features; the di�erence is not statistically signi�cant. Yet, com-

bining both sets yields the highest prediction e�ectiveness. �ese

�ndings suggest that the Micro and Macro features, as well as the

three subsets of Micro features, are complementary to some extent.

Table 2: Using subsets of features for prediction. All di�er-
ences with respect to Majority, AllWinners, AllLosers and
Macro+Micro are statistically signi�cant. Bold: best result
in a column.

Accuracy F1

Majority 0.685 0.363

AllWinners 0.247 0.396

AllLosers 0.753 0.000

�ery 0.821 0.635

Stopwords 0.809 0.594

q�eryqStopwords 0.796 0.587

�ery+Stopwords 0.826 0.650

�ery+q�eryqStopwords 0.825 0.648

Stopwords+q�eryqStopwords 0.813 0.617

Micro = �ery+ Stopwords+q�eryqStopwords 0.837 0.673

Macro 0.836 0.671

Macro+�ery 0.851 0.702

Macro+Stopwords 0.849 0.694

Macro+q�eryqStopwords 0.847 0.692

Macro+Micro (all features) 0.878 0.752

We next study the e�ectiveness of individual features. Table 3

presents the Accuracy of ablation tests performed upon RForest.
12

We also report ∆MRR: the mean di�erence between the reciprocal

ranks of the actual winner when documents are ranked in descend-

ing and ascending order of individual feature values. We �rst see

that removing any single feature statistically signi�cantly hurts

Accuracy. �is a�ests to the complementary nature of the features.

�e negative ∆MRR of SIM(D,PD) indicates, as expected, that to

win a match, a loser publisher should change her document with re-

spect to the previous round. �e positive ∆MRR of SIM(PD,PW) and

SIM(D,PW) suggest that the document should be similar to the win-

ner (from the previous round) in the previous and current rounds

so as to win the match. �is �nding is aligned with Corollary 3.4.

�e ∆MRR of features in the �ery and Stopwords subsets in-

dicate that adding (removing) query terms is always good (bad)

practice for becoming the winner, regardless of whether these terms

were used by the winner. �is �nding is further supported by the

observations about �eryTermsRatio in Section 5.2. In contrast,

removing (adding) frequent terms, i.e., stopwords, is always good

(bad) practice, regardless of the use of stopwords by the winner. �e

∆MRR of features in the q�eryqStopwords subset, which refers

to terms that are neither query terms nor stopwords, imply that to

12
Similar pa�erns were observed for F1. �ese results are omi�ed as they convey no

additional insight.
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Table 3: Ablation tests: Accuracy of RForest when trained without one feature. RForest’s Accuracy with all features is 0.878.
All di�erences with RForest are statistically signi�cant. ∆MRR: the mean reciprocal ranks di�erence of the winner when
ranking documents in descending and ascending order of feature values.

Macro Features Micro Features

�ery Stopwords q�eryqStopwords

Feature Ablation ∆MRR Feature Ablation ∆MRR Ablation ∆MRR Ablation ∆MRR

SIM(D,PD) 0.829 −0.136 ADD(PW) 0.844 0.130 0.840 −0.219 0.841 0.183

SIM(D,PW) 0.837 0.168 RMV(PW) 0.851 −0.043 0.843 0.043 0.857 −0.081

SIM(PD,PW) 0.820 0.184 ADD(qPW) 0.840 0.104 0.856 −0.023 0.849 −0.053

RMV(qPW) 0.834 −0.620 0.847 0.060 0.837 0.029

win a match a document should become more similar to the winner

by adding and not removing terms that were used by the winner

(positive ∆MRR of ADD(PW) and negative ∆MRR of RMV(PW)),

as well as removing and not adding terms that were not used by

the winner (positive ∆MRR of RMV(qPW) and negative ∆MRR of

ADD(qPW)). �ese manipulations which do not directly a�ect the

query-document similarity estimates a�ect other features used by

the ranking model (e.g., Entropy).

7 CONCLUSIONS
We presented an initial theoretical and empirical study of the strate-

gic behavior of publishers (documents’ authors) in query-based

ranking competitions. �e publishers’ goal is promoting their doc-

uments in rankings using li�le available information, mainly about

past rankings. Analysis of ranking competitions that we organized

revealed that to achieve their goal, publishers were making their

documents similar to those ranked the highest in previous rounds.

A game theoretic analysis of the competition yielded a result that

provides formal support to the merits of this strategy. We also

showed that high accuracy prediction of whether a document will

be promoted to the �rst rank in our competitions can be achieved

using very few features which quantify document changes.
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A THE RANKING COMPETITIONS
We next discuss the competition guidelines provided to students

(Section A.1), the incentives for participating in the competition

(Section A.2), the queries and examples of relevant documents

(Section A.3) and the ranking function used (Section A.4).

A.1 Guidelines
To alleviate the task for students, and to increase their engagement

in the competition, the length of all documents was limited to 150

terms. Students were instructed to write unstructured plain text

documents.

Duplication of other documents (determined based on a bag-

of-terms comparison) resulted in the duplicate document being

ranked last. �e students were permi�ed to copy parts of other

documents from the competition or the Web. Students were guided

to write documents of the highest quality avoiding slang and in-

formal language. �e use of black hat SEO techniques [16], such

as keyword stu�ng, was discouraged by telling the students that

the ranking function will penalize low quality documents, partly

based on human annotations. We informed the students that they

could use the provided examples of relevant documents, but that

the documents they create need not necessarily be relevant.

A.2 Incentives
�e incentive for participating in the competition was earning extra

credit points for the exam. For each query, a student earned two

thirds of a point if her document was ranked �rst for a query in a

match. A third of a point was given to all other students competing

with respect to the same query (i.e., the same match).

In the �rst half of the competition many students did not (sig-

ni�cantly) update their documents even if these were not ranked

�rst. �erefore, we further incentivized the students by changing

the reward mechanism as from the ��h round. �e student whose

document was ranked �rst for a query was reworded one point.

Students whose documents were ranked second and third were

rewarded two thirds and third of a point, respectively. Students

whose documents were ranked lower did not receive any credit.

A.3 �eries and initial relevant documents
We used the titles of 31 topics selected from 1-200 from TREC 2009-

2012 as queries. �e preference was selecting queries with clear

commercial intent, since they were more likely to stir up competi-

tion as is the case on the Web. �at is, having a document ranked

high (�rst) with respect to these queries should lead to increased

(monetary) pro�ts to the document’s publisher on the Web. �e

selected queries focused mostly on topics related to products or

services. Examples include “used car parts”, “cheap internet” and

“gmat prep classes”. �e queries were randomly assigned to stu-

dents ensuring that two students will not compete against each

other in more than two di�erent matches; the assignments were

not changed throughout the competition.

As already noted, for each query we provided a single example

of a relevant document. �e goal was to provide the students

with information regarding the underlying information need as the

queries are very short. To produce these relevant documents, we

�rst used the TREC topic description as a query in a commercial

search engine. We extracted from the highly ranked documents
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Figure 3: �e percentage of documents annotated as key-
word stu�ed (le�) and relevant (right) by at least 3, 4 or 5

annotators, averaged over queries per each of the eight com-
petition rounds.

candidate window passages of up to 150 terms. �e passages were

annotated for relevance by four annotators. We kept extracting

passages for each query until a passage was judged relevant by

at least three annotators. �is passage then served as the initial

relevant document example for all students competing for the query.

A.4 Ranking model
We next describe the ranking model used for all queries in each

round of every match in the competition.

A.4.1 Learning-to-rank. We used a learning-to-rank (LTR) ap-

proach with 25 features to rank the documents. Most of the features

(22) were all those used in Microso�’s learning-to-rank datasets
13

for the “whole document” except for the Boolean Model, Vector

Space Model and LMIR.ABS features. As noted above, the docu-

ments in our competition are unstructured plain text. �us, all

the features are computed only for the entire document. Since

documents in our competitive se�ing are prone to manipulation,

we used three additional features which were shown to be highly

e�ective for spam classi�cation [21] and Web retrieval [4]: (i) the

ratio between the number of stopwords and non-stopwords in a

document, (ii) the percentage of stopwords in a stopword list that

appear in the document, and (iii) the entropy of the term distribu-

tion in a document [4]. For the two stopword-based features, the list

of stopwords was composed of the 100 most frequent alphanumeric

terms in the ClueWeb09 Category B corpus [21].

�e ClueWeb09 category B dataset with queries 1-200 was used

to learn the LTR model. Speci�cally, the model was applied upon

the 1000 documents most highly ranked by using LMIR.DIR, i.e.,

the negative cross entropy between the unsmoothed and Dirichlet-

smoothed (with µ = 1000) unigram language models induced

from the query and documents, respectively
14

. We used Lamb-

daMART [29] via the RankLib library
15

to integrate the di�er-

ent features. �e number of trees and leaves were selected from

{100, 250, 500, 750, 1000} and {10, 25, 50}, respectively. NDCG@5

served for optimization when learning the model. In each round

of the competition, we added the (unjudged) documents submi�ed

by students in all matches to the ClueWeb09 Category B corpus to

13
www.research.microso�.com/en-us/projects/mslr

14
We deliberately did not remove suspected spam documents from the initial document

ranking, e.g., using Waterloo’s spam classi�er [7]. �is practice allows learning a model

using low quality (e.g., spam) documents.

15
www.lemurproject.org/ranklib.ph

have more updated values of corpus statistics, e.g., inverse docu-

ment frequency (idf). Yet, we did not re-train the ranker. �e Indri

toolkit was used for indexing and retrieval
16

. We applied Krovetz

stemming upon queries and documents and removed stopwords

on the INQUERY list only from queries. �e LMIR.JM feature was

used with λ = 0.1; for BM25, we set k1 = 1.2 and b = 0.75.

A.4.2 Results diversification. To encourage students to consider-

ably change their documents rather than introduce minor modi�ca-

tions to the initially provided relevant document, starting from the

second round, they were advised to diversify their documents with

respect to the relevant document. To further encourage diversi�-

cation, we applied the MMR method [5] with respect to the initial

relevant document dinit. Accordingly, the score assigned to docu-

ment d with respect to query q is score(q,d) def= λrank(d,LTR) −
(1 − λ)rank(d,dinit), where λ = 0.5, rank(d,LTR) is the rank of d
in a ranking of all the documents in a match induced by the LTR

method and rank(d,dinit) is the rank of d in a ranking created based

on the similarity with dinit; here, the rank of the lowest ranked doc-

ument is 1. �e similarity with dinit was computed using LMIR.DIR

treating d as the query.

A.4.3 Keyword stu�ing. Keyword stu�ng [16], speci�cally of

query terms, is one of the most applicable manipulation approaches

the students could employ to promote their unstructured plain text

documents in rankings. To avoid rewarding excessive keyword

stu�ng, and to encourage writing of high quality documents, each

document was manually classi�ed as keyword stu�ed or not
17

.

�e annotation was performed via CrowdFlower
18

; each document

was judged by �ve annotators from English speaking countries
19

.

�e inter-annotator agreement for keyword stu�ng, computed

using the free-marginal multi-rater kappa measure [24], is 0.88. A

document classi�ed as keyword stu�ed by at least four annotators

was rank-penalized: with probability 0.5 it was swapped with the

next document in the ranking. If several consecutively ranked

documents were keyword stu�ed, then only the lowest ranked

document was penalized.

In Figure 3 (le�) we present for each round the percentage of

documents classi�ed as keyword stu�ed by at least three, four or

�ve annotators averaged over queries. We can see a mostly down-

ward trend until the ��h round. In the ��h round we observe the

lowest percentage of keyword stu�ed documents. Starting from the

��h round the percentage of keyword stu�ed documents gradually

increases. We hypothesis that in the �rst half of the competition

students’ engagement gradually decreased. In the second half, as

from the ��h round in which the rewards for having a document

ranked high substantially increased, students started using manip-

ulated texts even more so as to have their documents ranked high.

In the ��h round, there might have been some confusion due to

the introduction of a new reward mechanism.

16
www.lemurproject.org/indri

17
A document was annotated as keyword stu�ed if it contained excessive repetition

of words which seemed unnatural or arti�cially introduced.

18
www.crowd�ower.com

19
Annotators were also instructed to classify documents as spam if they were hard to

understand, non-cohesive, did not make any sense or were useless to anyone seeking

information. Yet, none of the documents was classi�ed as spam.

Session 4B: Retrieval Models and Ranking 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

473

www.research.microsoft.com/en-us/projects/mslr
www.lemurproject.org/ranklib.ph 
www.lemurproject.org/indri
www.crowdflower.com


1

2

3

4

10

16

22

1 2 3 4 5 6 7 8

M
A
P
@
5

round

50

65

80

95

1 2 3 4 5 6 7 8

N
D
C
G
@
5

round

Figure 4: �e MAP@5 (le�) and NDCG@5 (right) perfor-
mance of the ranking induced by the retrieval method in
each round. Binary relevance judgments were induced for
computing MAP@5 by considering a document relevant if
its relevance grade was at least 1, 2 or 3.

A.5 Ranking e�ectiveness
All documents in the collection were judged for relevance. Anno-

tators were presented with both the title and description of each

TREC topic, and were asked to classify a document as relevant if it

satis�ed the information need stated in the description. As was the

case with keyword stu�ng annotation, each document was judged

by �ve annotators from English speaking countries via Crowd-

Flower. �e inter-annotator agreement rate, computed using the

free-marginal multi-rater kappa measure [24], was 0.67. Four-scale

graded relevance judgments were generated using the annotations

as follows. A document judged relevant by less than three annota-

tors was labeled as non-relevant (0). Documents judged relevant

by at least three, four or �ve annotators were labeled as marginally

relevant (1), fairly relevant (2) and highly relevant (3), respectively.

As noted above, to address the potential manipulation of docu-

ments by students, the retrieval method used in the competition (i)

was based on a learning-to-rank approach with multiple features,

(ii) incorporated highly e�ective document-quality measures and

(iii) penalized keyword stu�ed documents. Figure 3 (right) presents

the percentage of documents classi�ed relevant by at least three,

four or �ve annotators per round averaged over queries. We see

that, in general, the percentage of relevant documents decreased

over the course of the competition. While many of the documents

were judged relevant by at least three annotators, far fewer docu-

ments were judged relevant by at least four or �ve annotators. �is

�nding a�ests to the negative e�ects of SEO.

In Figure 4 we present the MAP@5 and NDCG@5 e�ectiveness

of the document ranking induced by the retrieval method in each

of the eight competition rounds. We see that the e�ectiveness of

the ranking has gradually decreased over rounds, which can be

partially a�ributed to the fact that fewer relevant documents were

generated by students as seen in Figure 3. We also see that in the

�rst two rounds the e�ectiveness of the ranking was much higher

than that in the rounds to follow. We found that in the �rst two

rounds students used the initially provided relevant documents

without signi�cantly changing them. A�er the second round, in

which the retrieval method was changed by applying diversi�cation

with respect to the given relevant document (see Section A.4.2),

students started diversifying their documents by introducing noise,

using non-relevant information and applying content manipulation.
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