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ABSTRACT

In competitive search settings as the Web, there is an ongoing rank-
ing competition between document authors (publishers) for certain
queries. The goal is to have documents highly ranked, and the
means is document manipulation applied in response to rankings.
Existing retrieval models, and their theoretical underpinnings (e.g.,
the probability ranking principle), do not account for post-ranking
corpus dynamics driven by this strategic behavior of publishers.
However, the dynamics has major effect on retrieval effectiveness
since it affects content availability in the corpus. Furthermore, while
manipulation strategies observed over the Web were reported in
past literature, they were not analyzed as ongoing, and changing,
post-ranking response strategies, nor were they connected to the
foundations of classical ad hoc retrieval models (e.g., content-based
document-query surface level similarities and document relevance
priors). We present a novel theoretical and empirical analysis of the
strategic behavior of publishers using these foundations. Empiri-
cal analysis of controlled ranking competitions that we organized
reveals a key strategy of publishers: making their documents (grad-
ually) become similar to documents ranked the highest in previous
rankings. Our theoretical analysis of the ranking competition as a
repeated game, and its minmax regret equilibrium, yields a result that
supports the merits of this publishing strategy. We further show
that it can be predicted with high accuracy, and without explicit
knowledge of the ranking function, whether documents will be
promoted to the highest rank in our competitions. The prediction
utilizes very few features which quantify changes of documents,
specifically with respect to those previously ranked the highest.
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1 INTRODUCTION

Ad hoc document retrieval models are often based on the assump-
tion of a fixed document corpus — i.e., corpus dynamics is not
accounted for. The core challenge is estimating the relevance of a
document to the query. The probability ranking principle (PRP) [25]
is the theoretical foundation of this practice: to maximize user util-
ity, documents should be ranked by their relevance probabilities.

In practice, document corpora are not static as documents are
changed, created or removed. Some of the corpus dynamics, specif-
ically, in competitive search settings (e.g., the Web), results from
ranking incentives of document authors, henceforth referred to as
publishers. That is, publishers might modify documents to promote
them in rankings induced for queries of interest. These modifi-
cations are referred to as search engine optimization (SEO) [16].
Spam filtering, and more generally, using document quality mea-
sures as features in learning-to-rank methods [4], are examples of
approaches for rank-penalizing documents that have gone through
unwarranted modifications (a.k.a., black-hat SEO [16]).

However, existing retrieval approaches, and their theoretical
foundations, do not account for future corpus dynamics driven
by rankings. For example, it was recently shown that the PRP is
sub-optimal in competitive retrieval settings [3] as it can lead to
decreased content breadth in the corpus, among other issues.

To estimate post-ranking corpus dynamics, specifically, that
caused by responses of publishers to rankings (i.e., document mod-
ifications), analysis of the strategic behavior of publishers is called
for. While types and techniques of SEO strategies were discussed in
past work [16], these were not studied as response strategies with
respect to rankings induced for specific queries. Rather, they were
presented as general actions observed on the Web (e.g., keyword
stuffing and content copying).

Furthermore, there are no studies, to the best of our knowledge,
that analyze publishers’ strategies with respect to retrieval models
and their foundations; namely, the effect, over time, on features used
for ranking. Such analysis is important for incorporating strategy
predictions (estimates) in, and addressing their effects on, retrieval
approaches. A case in point, it was shown that if the actual writing
quality of publishers for topics is known, then this information can
be used in non-deterministic retrieval models to promote content
breadth in the corpus, and therefore improve search effectiveness
along time [3]. More generally, analysis of the strategic behavior of
publishers is crucial for setting theoretical foundations for handling
post-ranking corpus dynamics. The same way user modeling is
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important for interactive information retrieval models [30], mod-
eling the strategic behavior of publishers in response to induced
rankings is important for addressing post-ranking corpus dynamics
in retrieval models.

We present a novel initial theoretical and empirical analysis of
the (temporal) strategic behavior of publishers in terms of changes
they introduce to documents in response to induced rankings. The
analysis is performed in the context of classical ad hoc retrieval
models in two respects. First, we focus on content-based retrieval
and accordingly content manipulation. Analyzing post-ranking
strategies of changing hypertext, hyperlinks and affecting clicks
or any additional signal that can be used for relevance estimation
is outside the scope of this paper. Nevertheless, we note that (i)
content-based relevance estimates (e.g., Okapi BM25 and language-
model-based estimates) are among the most important ones used
in learning-to-rank approaches applied over Web data [20]; (ii)
content manipulation techniques are quite pervasive, specifically,
over the Web [16]; and, (iii) for experiments we use a state-of-the-art
learning-to-rank approach applied with content-based estimates.
Second, we empirically study content manipulation in terms of
the building blocks of classical, content-based, retrieval methods.
These include document-query surface-level similarities [14] and
query-independent document relevance priors [4].

Performing empirical analysis of the “ranking competition” be-
tween publishers whose incentive is to have their documents ranked
high, even if assuming the availability of a large-scale log of a search
engine, is a major challenge due to the numerous dynamic aspects
that affect this competition. Over the Web, pages emerge and dis-
appear, the search engine’s index coverage changes rapidly, the
ranking function, as well as estimates it utilizes, change throughout
time and across sets of users and queries. Furthermore, different
publishers cannot necessarily employ the same document modifica-
tions, and many modifications are not content-based as the ranking
function also considers non content-based relevance signals.

Given that our goal, as described above, is to study the strategic
behavior of publishers in the scope of the foundations of classical
content-based retrieval models, we performed controlled empirical
analysis by organizing ranking competitions between students in a
course. Two basic conditions were set in these competitions. First,
the students were not aware of the ranking function, nor of the
actual features it used. Second, the students were incentivized to
write quality documents that would be ranked high by the ranking
function. As shown below, the dataset allowed to gain interesting
and important observations about potential strategic behavior of
publishers in a ranking competition.

An important observation that emerged in the competition anal-
ysis that we present is that publishers were gradually making their
documents become more similar, in several respects, to those most
highly ranked in previous rankings!. An interesting fundamental
question that follows is whether this competing strategy can be
theoretically justified given the information available to publishers:
observations of past rankings and little to no knowledge of the
ranking function. To address this question, we present a novel
game theoretic analysis of the ranking competition as a repeated

This strategy is conceptually reminiscent of the black-hat weaving and stitching
content-based SEO techniques applied over the Web [6, 16] where content from legiti-
mate pages is copied to spam pages so as to promote them.
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game [1]. Our main theoretical result with respect to the minmax
regret equilibrium of the game [17] provides formal support to the
merits of this publishing (competing) strategy.

In addition to analyzing the ranking competition theoretically
and empirically, we set as a goal to predict whether a document
would be ranked the highest given that this was not the case in the
previous ranking; the predictor does not have explicit knowledge
of the ranking function. Interestingly, relying on very few features
that quantify the extent to which the document was changed and
became similar to a document previously ranked the highest can
yield high accuracy prediction. These features are inspired by the
cluster hypothesis [18], and more specifically, one of the important
operational premises that it gave rise to: “similar documents should
receive similar retrieval scores” [9]. Thus, in lack of knowledge of
the ranking function, the predictor essentially uses inter-document
similarities as proxies for retrieval score similarities.

Our contributions can be summarized as follows.

o We present the first dataset of query-based ranking com-
petitions between publishers. The focus is on content ma-
nipulation.

e We present an empirical analysis of publishers’ strategies
employed in the competitions.

e We present a novel game theoretic analysis of the rank-
ing competition as a repeated game. The main result of
analyzing the minmax equilibrium of the game provides
formal support to the merits of a key strategy employed
by publishers in our games.

e We show that, in our setting, it is possible to predict with
high accuracy whether a document will be promoted to
the highest rank in the next ranking. The prediction is
based on very few features and does not rely on explicit
knowledge of the ranking function.

2 RELATED WORK

There is much work on identifying, characterizing and addressing
unwarranted (a.k.a. black-hat SEO [16]) actions of publishers [6].
In contrast, we focus on the strategic behavior of publishers when
applying legitimate content-based manipulations.

Studies of the dynamic aspects of interactive retrieval focus
on changes of queries and the ranking function (e.g., [15, 27, 30,
31]). Changes of clickthrough patterns were also studied [27]. The
dynamics of the collection as a result of the ranking competition,
which is our focus, was not addressed.

There has been work on studying and predicting the dynamics
of the Web collection (e.g., [23, 26]), where the main operational
goals were improving crawling policies and personalizing content
delivery. Past versions of a Web page were used to improve its
representation for ranking [13]. However, in contrast to our work,
the dynamics has not been studied with respect to the ranking
competition between publishers.

Recently, the publishers’ ranking competition was analyzed us-
ing a game theoretic approach [3]. In contrast to our work, the
assumption was that publishers have full knowledge of the ranking
function, the competition was not analyzed as a repeated game,
and no empirical analysis was presented.
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The merits of non-deterministic ranking functions from [3] were
argued using a simulation of a ranking competition between pub-
lishers who stuff query terms in documents [2]. In contrast with
our work, publishers were assumed to know the basic (Okapi BM25)
ranking function, there was no theoretical analysis of the competi-
tion and no analysis of non-simulated (real) ranking competitions.

A game theoretic approach was used to devise query-based
ranking mechanisms that (i) maximize social welfare for ambigu-
ous queries, by diversifying search results that are assumed to
be scanned using random sequential search [12]; and (ii) balance
relevance and monetization [11]. In contrast to our work, the com-
petition between documents’ authors (publishers) was not studied.

Game theoretical analysis has also been applied for adversarial
classification [8, 10] and for optimizing learning-to-rank functions
in non-adversarial retrieval settings [28]. We address the competi-
tive (adversarial) ad hoc retrieval setting using different theoretical
and empirical analyses.

3 GAME THEORETIC ANALYSIS

We analyze the ranking competition as a repeated game [1]. Ana-
lyzing the minmax regret equilibrium of the game yields a formal
result that helps to explain a key strategy employed by publishers
in the ranking competitions we organized as described in Section 5.

In what follows we assume that a query g, and some docu-
ment ranking function (details below), have been fixed. Let N =
{1,2,...,n} be a set of n publishers (documents’ authors) that
would like to have their documents ranked high for g. Let D; be
a finite set of documents that publisher i can (or might) write to
convey the information she wants to share. For ease of presentation,
and to avoid technical tie-breaking issues, assume D; N D; = ( for
anyi,je€ N,i#j. LetD = U;’:1Di be the set of all documents that
can be written by the publishers.

We assume a complete linear ordering over D, denoted <. Such
ordering can be based, for example, on a single (numeric) feature
in a document representation?. Alternatively, the distance, under
some representation, to a document which serves as a reference
point (e.g., a document ranked the highest at some point) can serve
to induce the ordering. Thus, for ease of exposition we can associate
D with elements in the interval [0, 1]. A document ranking function
for g is a mapping r : D — R.. For simplicity (and avoiding tie-
breaking), we assume r(d;) # r(d;) for any d;, d; € D.

Definition 3.1. RSP(D1,...,Dp) = RSP(D) denotes the single
peak ranking functions. These are functions r defined over D, such
that for no d € D, there are d;,dj € D, d; < d < dj such that
r(di) > r(d) and r(d;j) > r(d).

For example, linear learning-to-rank functions [20] are single
peak with respect to each feature. The negative KL divergence used
in the language modeling framework [19] is a single peak function
over the multinomial distributions in the simplex by the virtue
of being a concave function. However, the most effective ranking
functions (e.g., those utilizing non-linear learning-to-rank methods)
are not single peak. Nevertheless, it is important to keep in mind
that we analyze the dynamics from the point of view of publishers

?In this case, the analysis below applies to each feature in a document representation
assuming that the values of others were fixed.
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who have no information about the ranking function except for
that inferred by observing induced rankings. That is, publishers
may assume, and act based on the belief, that the ranking function
is single peak. Indeed, as shown in Section 5, the participants
(publishers) in our ranking competitions can be viewed as searching
for the structure of a single-peak ranking function for various
features, although the ranking function is not single-peak.

Below we care only about the relative ranking of documents in
D; thereby, we consider the possible total ordering induced by the
ranking function over D; there are finitely many such orderings.
With a slight abuse of notation we will therefore refer to RSP(D)
as the set of possible single-peak orderings of documents in D.

Let DO = {d%...,d%} be an initial set of documents where
d? € D; is the initial document published by publisher i. We
assume that each i € N possess no information at the beginning
about the function » € RSP(D), beyond knowing it is a single-peak
ordering. Consider ¢ rounds, [ = 1,2,. .., t, in each of which each
player i chooses a document d; € D;, and obtains a utility of 1 if d;
is ranked first and 0 otherwise. Herein, a publisher or her document
is called “winner” if the document was the highest ranked; all other
publishers and their documents are called “losers”. Let TO(D) be
the set of possible total ordering over D. Notice that selecting
di € D; for every i € N determines an ordering over the selected
documents by the single-peak function r € RSP(D). The strategy of
i at round [ is defined as a function from the history of previously
selected actions and outcomes (i.e., orderings) of all publishers, to
the document selected by publisher i. The outcome at each round
can be associated with a subset R C RSP(D) of the possible single
peak functions, as it rules out particular orderings. Henceforth, R is
referred to as the knowledge state, as it captures the set of currently
possible single peak orderings based on the observations received.

The publishers ranking game just described is a repeated game [1].
In a repeated game, the same game is repeatedly played in rounds
(iterations). Specifically, at each round a publisher publishes a
document, but a strategy in each round may relate to all information
observed so far; e.g., the documents published and rankings induced
in previous iterations. Accordingly, given the initial document set
D, and the total number of rounds ¢, the set of possible strategies
for player i is denoted S;(t, d?).3 The utility U;(t, d?,sl, ey Sn),
where s; € Sj(t, d;.)) for every j € N, is the sum of utilities of player
iinrounds 1,2,...,t given the corresponding strategies.

We now introduce a slight modification to the utility obtained by
player i in a round to capture the cost of modifying documents. This
cost reflects both the actual effort involved in changing a document
and the “penalty” incurred by potentially drifting from the actual
document i planned to publish. Assume there is some negligible cost
C,ie., C|D| < 1, where eC > 0 is the cost for changing document d
to document d’ in distance e (assume standard distance on [0, 1]) in
a single round. Formally, the utility of publisher i in round [ will be
based on its ranking (either first or not) minus the cost of changing
the document written in round [ — 1.

Given the game described above, a major challenge is to define an
appropriate solution concept which predicts behavior in the game.
The classical solution concept in game theory is the celebrated Nash

3S,(t, d°) encodes all possible documents published by i at any round of the game
given the previous potential orderings.
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equilibrium, which is a strategy profile, one for each player, for
which unilateral deviations are not beneficial (i.e., any single player
cannot gain by deviating from her strategy assuming the others
stick to their strategies). This solution concept always exists in
finite games with complete information if players are allowed to
use mixed strategies, and has been also extended to games with in-
complete information where there are Bayesian assumptions about
the actual game being played. However, our setting does not exhibit
such stylized assumptions, and we need to appeal to other solution
concepts. In particular, in a minmax regret equilibrium [17], we
consider strategy profiles such that each player (publisher) mini-
mizes her regret when compared to the best response she could
have played had she known the exact environment state (e.g., the
exact ranking function) assuming others stick to their strategies;
and this holds for all players simultaneously.

Given a strategy profile s = (sg, . .., s,) the regret of i is
maxxUj(t, d?, x,s-i) — Ui(t, d?, s); s—; denotes the strategy profile
applied by all players except for i. A strategy profile s = (sq,...,Sn)
is minmax regret equilibrium if for every i, s; minimizes regret given
s—i [17]. Given the defined publishers game we can now show that:

THEOREM 3.2. Any publishers game has a minmax regret equilib-
rium.

Proor. We construct the following equilibrium. Let R be the
knowledge state at the beginning of a given round I. At the begin-
ning of round 1 all ranking functions in RSP(D) are possible, while
at each following round the knowledge state can only shrink in
terms of the number of ranking functions it contains. Let V; C [0, 1]
be the set of documents which correspond to possible peaks of the
functions in the knowledge state R; let dl{_l be the most recent
document published by i. Let vf € D; NV such that |Z)ll- - df_1|
is minimal; if two documents have this minimal distance one is
arbitrarily selected. The document published by i in round ! would
be vf. (In the first round it is d?.) We now prove that this strategy
of i minimizes its regret.

Let V; be the knowledge state at the beginning of the last round
t; V; may result from arbitrary publishers’ behavior in rounds 1, 2,
...,t = 1. No publisher j # i will publish a document not in V; as
otherwise she cannot win (i.e., this strategy would be dominated).
Hence, i’s publishing a document out of V; is dominated by publish-
ing the previous document. (This has no cost, and publishing out
of V; cannot result in a win.) On the other hand, since any v € V;
can be a winner, the worst regret would be for not publishing vit
as defined above. This is because vl.t might be the winner from this
point on, by the virtue of being in V;, but it incurs minimal cost.
Thus, minimizing regret in the last round is achieved by selecting
l.t as prescribed. By induction, using the argument from above
results in i’s strategy minimizing regret in every round. O

(%

Two corollaries follow the proof:

COROLLARY 3.3. The above constructed equilibrium is also a sub-
game perfect equilibrium.

Namely, if an arbitrary sequence of documents has been selected
up to round [ < t, then in the remaining game, given the informa-
tion provided so far on the potential peaks, following each player’s
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strategy in the remaining rounds is still a minmax regret equilib-
rium.

COROLLARY 3.4. Losers at round I — 1 will publish in round |
documents that become closer to (i.e., more similar) to that of the
winner from round | — 1.

ProoF. Assume wlog that a publisher who lost round I — 1 pub-
lished d; € [0, 1] that satisfies dj < d,, where d,, € [0, 1] was the
winning document. As selecting any dj» < d; is dominated given the
knowledge state gathered, and the regret for publishing dj» > d,,
is higher than that of publishing dj» such that d, > dj» > d;, we
get the corresponding phenomenon. Notice that this will also imply
that current winners will not change their documents. O

Thus, Corollary 3.4 helps to explain a key strategy employed by
publishers in the competitions we organized as we show below;
namely, mimicking the winners.

4 DATA

As discussed in Section 1, our goal is to analyze content-based
ranking competitions so as to shed light on the strategic behavior of
publishers. Since there are no publicly available datasets that can be
used to that end, we organized repeated ranking competitions. The
resulting dataset is available at https://github.com/asrcdataset/asrc.
(See details in Appendix A.) We next describe the essentials of the
competition.

Fifty two senior-undergrad and grad students in an information
retrieval course were the publishers. The competition included 31
different repeated matches, each of which was with respect to a
different TREC’s ClueWeb09 query. Each student participated in
three matches. Five students competed against each other in all
matches except for one in which six students competed.

The competition was run for eight rounds; i.e., there were eight
matches per query. Before the first round, an example of a relevant
document was provided for each match (query). Students were
incentivized by course-grade rewards to edit their documents along
the rounds so as to have them ranked as high as possible.* As from
the second round, students participating in a match were presented
with the ranking of documents submitted in the previous round by
all competitors in the same match.

All documents were unstructured plain text of up to 150 terms.
The document ranking model was based on the state-of-the-art
LambdaMART [29] learning-to-rank approach integrating three
classes of features. The first are query-dependent features, such as
QueryTermsRatio (ratio of query terms appearing in a document)
and LMIR.DIR (language-model-based similarity of a document
to the query). The second class of features are query-independent
document quality measures [4, 21], including Entropy (entropy of
the term distribution in a document) and StopwordsRatio (stop-
words to non-stopwords ratio in a document). Increased entropy
and occurrence of stopwords attest to content breadth and hence
to high prior probability of relevance [4].

The feature in the third class, SimInit, was used to incentivize
students to write documents that drift from the initial relevant doc-
ument shared by all students competing in the same match: it is

4Students were assigned with unique IDs and all data was anonymized.
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Figure 1: The number of (consecutive) matches won (x-axis)
by a given number of publishers (y-axis).

based on the language-model similarity of a document to the initial
relevant document. We note that in practical scenarios, publishers
would rarely change their documents so they will not include the
information originally intended for sharing. Indeed, in the theoret-
ical analysis presented in Section 3, a cost was assigned to changes
of documents. Yet, as we show below, the conclusions we draw
about strategies are aligned with our theoretical results.

Documents (manually) classified as keyword stuffed were pe-
nalized in the ranking. Information about the ranking function
and the features it utilizes was not disclosed to students. The re-
sulting collection contains (i) 1279 documents: 31 initial relevant
documents and 1248 documents created by students, 897 of which
are unique’; (i) keyword stuffing annotations; and (iii) exhaustive
relevance judgments. Appendix A provides additional details of the
collection and ranking model.

5 EMPIRICAL ANALYSIS

In the following analysis, winner (loser) is a document (or publisher
thereof) which was (not) ranked first in a match.

5.1 Analysis of wins

Figure 1 (left) presents the number of matches won by a given
number of publishers (students). The competition included 248
distinct matches (8 rounds X 31 matches per round). Each student
was assigned with exactly 3 queries; hence, the maximum number
of matches a student could win is 24. We see that only two of the
students did not win even a single match, attesting to the students’
engagement in the competition. The maximum number of matches
won was 11, less than half of the maximal possible number of wins,
indicating that the competition was dynamic.

Figure 1 (right) presents the number of consecutive matches
won by a given number of students; the maximum is the number of
rounds (eight). We see that most students could retain the first rank
for at most three rounds. Only a small number of students retained
the first rank in more than four rounds. This finding further attests
to the strong competition held between the students.

5.2 Analysis of strategies

By Corollary 3.4, to win matches, losers in previous rounds will
publish documents that become similar to that of the winner from
the preceding round. Accordingly, we next analyze the similarity

5Several students submitted the same document over a few rounds; e.g., if the document
was the highest ranked in a previous round.
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of documents that did not win a match (losers) to the winner over
a series of rounds in which these documents remained losers. The
similarity to the winner is estimated with respect to some of the
features used to rank documents which were presented in Section 4.

The QueryTermsRatio and LMIR.DIR features quantify the query-
document match; LMIR.DIR is a representative query-document
surface-level similarity estimate [14]. The Entropy and Stopword-
sRatio features are among the most effective query independent
content-based document relevance priors reported in the litera-
ture [4]. Hence, the analysis of the strategic behavior of publishers
we present next relies on estimates that constitute the foundations
of classical content-based ad hoc retrieval approaches.

Figure 2 depicts the average values of the features for documents
that were losers in at least four consecutive rounds before winning
a match®. We distinguish between documents whose feature value
four rounds before winning a match was lower than or equal to that
of the winner (L<W) and those whose feature value was higher
than that of the winner (L>W). We also present the average feature
values of winners (W).

We see in Figure 2 that the average feature values of winners
remain relatively stable along the competition; thus, winner docu-
ments, often written by different publishers, tend to be quite similar
along a few dimensions (features).

Figure 2 also shows that, in general, Entropy often decreases
along rounds and QueryTermsRatio increases. This attests to high
content repetition in winner documents that might result from high
occurrence of query terms. SimInit decreases which is potentially
due to our rewarding diversification with respect to the initial
relevant document.

More generally, we observe a clear trend throughout the compe-
tition: feature values of loser documents which became winners
were becoming closer, often gradually converging, to those of win-
ners from previous rounds regardless of their initial values. That
is, in lack of knowledge of features used for document ranking,
losers were mimicking winners and thereby indirectly affecting
these features. This finding is in accordance with Corollary 3.4.

6 PREDICTING WINNERS

Given that loser publishers apply the strategy of mimicking the
winners, an interesting challenge rises: leveraging aspects of this
strategy to predict, without using explicit knowledge of the ranking
function, which loser publisher in round I — 1 will win round [
assuming that a previous loser indeed wins this round.”

For prediction, we represent each document as a feature vector
and define two sets of features (details below) that quantify the
extent to which the document becomes more similar to the winner
of the previous round. The features in the first set are estimates of
this similarity on a macro level, where documents are treated as

®Similar trends were observed for other features used by the ranking model and for
losers that lost in at least three or five consecutive rounds. These results are omitted
as they convey no further insight.

"Predicting which publisher will win round ! regardless if it won round [ — 1 is a
challenge for future work. As stated in the proof of Corollary 3.4, and as observed in the
competitions, winners did not tend to change their documents. This is a fundamental
difference with the dynamics of loser documents which makes this prediction task
challenging. For example, many of the dynamics-based features defined below for
predicting whether a loser will turn to a winner are degenerated for winner documents
which do not change.
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Figure 2: Averaged feature values of documents that were losers in at least four consecutive rounds before becoming winners,
and whose feature values four rounds before winning were either lower or equal (‘L<W’) or higher (‘L>W’) than those of the
winner. “W’: averaged feature value of the corresponding winners. x-axis: (minus) number of rounds before a document won

a match. The values of LMIR.DIR are scaled by 100.

whole units. The features in the second set are micro level similar-
ity estimates that allow to analyze the potential actions taken by
publishers to make their documents similar to the winner.

6.1 Features

The features in the first set, henceforth Macro features, are esti-
mates of the bag-of-terms textual similarities (denoted SIM) be-
tween the document in round [ (D), the document written by the
same publisher in the previous round [ — 1 (PD) and the winner
of the previous round [ — 1 (PW). The Cosine between tf.idf vec-
tor representations of documents is the similarity estimate. Three
estimates are used: SIM(D,PD), SIM(D,PW) and SIM(PD,PW).

Using these inter-document similarity measures is inspired by
the cluster hypothesis [18] which states that “closely associated doc-
uments tend to be relevant to the same requests”. More specifically,
an important operational manifestation of the cluster hypothesis is
the premise that effective retrieval methods should assign similar
documents with similar retrieval scores [9]. Based on the premise,
given that the predictor we devise has no explicit knowledge of the
ranking method used, inter-document similarities can potentially
serve as proxies for similarities between retrieval scores.

The features in the second set, henceforth Micro features, focus
on potential actions of publishers to make their documents similar
to PW, the winner of the previous round. A document becomes sim-
ilar to the winner, based on a bag-of-terms representation, if terms
from the winner are added and terms not in the winner are removed.
Accordingly, given a set S of terms, ADD(PW) and RMV(PW) are
the number of unique terms ¢ € S used in PW that were added to, or
removed from, the document, respectively. Similarly, ADD("PW)
and RMV("PW) are the number of unique terms ¢ € S not used in
PW that were added to or removed from the document, respectively.
We define three term sets S: (i) query terms (Query), (ii) frequent
terms, specifically, stopwords (Stopwords), and (iii) non-frequent
terms not in the query ("Query 'Stopwords).2

Overall, we use 15 features: 3 Macro (SIM(D,PD), SIM(D,PW),
SIM(PD,PW)) and 12 Micro ({ADD(PW), RMV(PW), ADD(PW),
RMV("PW) } X {Query, Stopwords, "Query'Stopwords}).

The Macro features, which quantify temporal inter-document
similarity changes, are ranking-model agnostic. The Micro features

8 A term is considered a stopword if it is among the 100 most frequent alphanumeric
terms in the ClueWeb09 Category B corpus.
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are based on temporal changes of addition/deletion of terms. While
term-based information (e.g., query-terms occurrence) would be
used by any reasonable ranker, the prediction model uses no explicit
knowledge about how this information is used by the non-linear
ranker applied in the competition, nor about other features used
for ranking.

6.2 Prediction setup

In each round of the competition, queries for which the winner of
the previous round remained the winner were discarded, as our
goal is to predict which loser publisher in a previous round will win
the current round. Thus, the number of queries considered in each
round ranges from 6 to 26 (out of all 31 queries).

We used the features® from Section 6.1 for binary classification
with logistic regression (LReg), linear SVM (LSVM), polynomial
SVM (PSVM) and random forests (RForest) via the scikit-learn
library [22]; the two classes are winner and loser. To train the clas-
sifiers and set hyper-parameter values, we used leave-one-out cross
validation over rounds. The documents submitted by students with
respect to all considered queries in a round served for testing; those
submitted in the remaining six rounds, excluding the first, served
for training. Prediction was performed per query: the document in
the current round which was written by a loser publisher from the
previous round and which was assigned the highest classification
score was predicted the winner; all other documents were predicted
to be losers.

Prediction effectiveness is measured using Accuracy: the per-
centage of documents correctly predicted as winners or losers, and
F1: harmonic mean of Precision and Recall.!® Values are averaged
over queries and test folds. Statistically significant effectiveness
differences are determined using the two-tailed paired t-test with
p < 0.05 applied over queries.

The hyper-parameter values of the classifiers were selected to
optimize Accuracy over the train set. For LReg, LSVM and PSVM,
the value of the regularization parameter is in {1, 10, 50, 100}.11
The degree of the polynomial SVM (PSVM) was in {2, 3,4, 5}. The
number of trees and leaves for RForest were selected from {10, 50,

9Feature values were min-max normalized per query.

10 precision is the fraction of correctly predicted winners out of all documents predicted
to be winners. Recall is the fraction of winners correctly predicted as winners.

1T Reg, LSVM and PSVM were trained with L1 regularization.
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Table 1: Prediction effectiveness of the four classifiers (LReg, LSVM, PSVM, RForest) and the baselines. The performance
differences between each of the classifiers and each of the baselines are statistically significant. All the differences with
RForest are statistically significant. Bold: the best result in a row. Note: F1 of AllLosers is 0 due to zero Recall.

Random Majority AllWinners AllLosers LReg LSVM PSVM RForest
Accuracy 0.627 0.685 0.247 0.753 0.849 0.859 0.867 0.878
F1 0.242 0.363 0.396 0.000 0.695 0.712  0.730 0.752

100,500} and {10, 20, 30}, respectively. All other hyper-parameters
were set to their default values [22].

6.3 Prediction effectiveness

Main result. We compare the prediction effectiveness of the afore-
mentioned classifiers with that of four baselines. All prediction
algorithms predict as winner(s) documents whose publishers lost
the previous round. (i) Random: a single winner is randomly
selected; (ii) Majority: the document whose publisher won the ma-
jority of past rounds for the query is predicted the winner (ties are
broken arbitrarily); (iii) AllWinners: all documents are predicted
winners, in which case only one document per query is correctly
predicted; and, (iv) AllLosers: all documents are predicted losers,
in which case all but one of the documents are correctly predicted
as losers. The results are presented in Table 1. Although the four
classifiers (LReg, LSVM, PSVM and RForest) utilize no knowledge
of the ranking model, they predict with high effectiveness the win-
ner of the current round. Moreover, the differences in prediction
effectiveness between each of the classifiers and each of the four
baselines are substantial and statistically significant. These findings
attest to the ability to predict winners from previous losers in our
competitions based on macro-level and micro-level manipulation
strategies of publishers.

Among the four classifiers, the lowest performance is posted by
LReg, while the highest is posted by RForest. Hence, in the analysis
to follow we focus on RForest.

Feature analysis. We next study the relative effectiveness of the
sets of features used in RForest. Recall that the 15 features belong
to two sets: Macro and Micro. The Micro features belong to three
subsets: Query, Stopwords and "Query 'Stopwords. In Table 2
we compare the prediction effectiveness of training RForest using
different combinations of these (sub)sets of features. We present
for reference the effectiveness of the Majority, AllWinners and
AllLosers baselines. We see that using even a single (sub)set of fea-
tures yields prediction effectiveness that statistically significantly
surpasses that of the baselines. Among the three subsets of Micro
features, the query-term-based features (Query) are the most effec-
tive. Integrating all three subsets leads to prediction effectiveness
that always statistically significantly surpasses that of using either
one or two of the subsets. We also see that using Micro features
alone leads to slightly higher effectiveness than using only Macro
features; the difference is not statistically significant. Yet, com-
bining both sets yields the highest prediction effectiveness. These
findings suggest that the Micro and Macro features, as well as the
three subsets of Micro features, are complementary to some extent.
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Table 2: Using subsets of features for prediction. All differ-
ences with respect to Majority, AllWinners, AllLosers and
Macro+Micro are statistically significant. Bold: best result
in a column.

Accuracy F1
Majority 0.685  0.363
AllWinners 0.247 0.396
AllLosers 0.753 0.000
Query 0.821  0.635
Stopwords 0.809 0.594
TQuery 'Stopwords 0.796 0.587
Query+Stopwords 0.826 0.650
Query+"Query 'Stopwords 0.825 0.648
Stopwords+"Query'Stopwords 0.813 0.617
Micro = Query+ Stopwords+"Query 'Stopwords 0.837 0.673
Macro 0.836 0.671
Macro+Query 0.851 0.702
Macro+Stopwords 0.849 0.694
Macro+"Query 'Stopwords 0.847 0.692
Macro+Micro (all features) 0.878 0.752

We next study the effectiveness of individual features. Table 3
presents the Accuracy of ablation tests performed upon RForest.!?
We also report AMRR: the mean difference between the reciprocal
ranks of the actual winner when documents are ranked in descend-
ing and ascending order of individual feature values. We first see
that removing any single feature statistically significantly hurts
Accuracy. This attests to the complementary nature of the features.

The negative AMRR of SIM(D,PD) indicates, as expected, that to
win a match, a loser publisher should change her document with re-
spect to the previous round. The positive AMRR of SIM(PD,PW) and
SIM(D,PW) suggest that the document should be similar to the win-
ner (from the previous round) in the previous and current rounds
so as to win the match. This finding is aligned with Corollary 3.4.

The AMRR of features in the Query and Stopwords subsets in-
dicate that adding (removing) query terms is always good (bad)
practice for becoming the winner, regardless of whether these terms
were used by the winner. This finding is further supported by the
observations about QueryTermsRatio in Section 5.2. In contrast,
removing (adding) frequent terms, i.e., stopwords, is always good
(bad) practice, regardless of the use of stopwords by the winner. The
AMRR of features in the "Query 'Stopwords subset, which refers
to terms that are neither query terms nor stopwords, imply that to

128imilar patterns were observed for F1. These results are omitted as they convey no
additional insight.
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Table 3: Ablation tests: Accuracy of RForest when trained without one feature. RForest’s Accuracy with all features is 0.878.
All differences with RForest are statistically significant. AMRR: the mean reciprocal ranks difference of the winner when
ranking documents in descending and ascending order of feature values.

Macro Features

Micro Features

Query Stopwords TQuery 'Stopwords

Feature Ablation AMRR Feature Ablation AMRR Ablation AMRR Ablation = AMRR
SIM(D,PD) 0.829 -0.136  ADD(PW) 0.844 0.130 0.840 -0.219 0.841 0.183
SIM(D,PW) 0.837 0.168 RMV(PW) 0.851 —0.043 0.843 0.043 0.857 —0.081
SIM(PD,PW) 0.820 0.1834 ADD('PW) 0.840 0.104 0.856 -0.023 0.849 —0.053
RMV('PW) 0.834 —0.620 0.847 0.060 0.837 0.029

win a match a document should become more similar to the winner
by adding and not removing terms that were used by the winner
(positive AMRR of ADD(PW) and negative AMRR of RMV(PW)),
as well as removing and not adding terms that were not used by
the winner (positive AMRR of RMV("PW) and negative AMRR of
ADD("'PW)). These manipulations which do not directly affect the
query-document similarity estimates affect other features used by
the ranking model (e.g., Entropy).

7 CONCLUSIONS

We presented an initial theoretical and empirical study of the strate-
gic behavior of publishers (documents’ authors) in query-based
ranking competitions. The publishers’ goal is promoting their doc-
uments in rankings using little available information, mainly about
past rankings. Analysis of ranking competitions that we organized
revealed that to achieve their goal, publishers were making their
documents similar to those ranked the highest in previous rounds.
A game theoretic analysis of the competition yielded a result that
provides formal support to the merits of this strategy. We also
showed that high accuracy prediction of whether a document will
be promoted to the first rank in our competitions can be achieved
using very few features which quantify document changes.

Acknowledgments We thank the reviewers for their comments.
This work was supported in part by a Google Faculty Research
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A THE RANKING COMPETITIONS

We next discuss the competition guidelines provided to students
(Section A.1), the incentives for participating in the competition
(Section A.2), the queries and examples of relevant documents
(Section A.3) and the ranking function used (Section A.4).

A.1 Guidelines

To alleviate the task for students, and to increase their engagement
in the competition, the length of all documents was limited to 150
terms. Students were instructed to write unstructured plain text
documents.

Duplication of other documents (determined based on a bag-
of-terms comparison) resulted in the duplicate document being
ranked last. The students were permitted to copy parts of other
documents from the competition or the Web. Students were guided
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to write documents of the highest quality avoiding slang and in-
formal language. The use of black hat SEO techniques [16], such
as keyword stuffing, was discouraged by telling the students that
the ranking function will penalize low quality documents, partly
based on human annotations. We informed the students that they
could use the provided examples of relevant documents, but that
the documents they create need not necessarily be relevant.

A.2 Incentives

The incentive for participating in the competition was earning extra
credit points for the exam. For each query, a student earned two
thirds of a point if her document was ranked first for a query in a
match. A third of a point was given to all other students competing
with respect to the same query (i.e., the same match).

In the first half of the competition many students did not (sig-
nificantly) update their documents even if these were not ranked
first. Therefore, we further incentivized the students by changing
the reward mechanism as from the fifth round. The student whose
document was ranked first for a query was reworded one point.
Students whose documents were ranked second and third were
rewarded two thirds and third of a point, respectively. Students
whose documents were ranked lower did not receive any credit.

A.3 Queries and initial relevant documents

We used the titles of 31 topics selected from 1-200 from TREC 2009-
2012 as queries. The preference was selecting queries with clear
commercial intent, since they were more likely to stir up competi-
tion as is the case on the Web. That is, having a document ranked
high (first) with respect to these queries should lead to increased
(monetary) profits to the document’s publisher on the Web. The
selected queries focused mostly on topics related to products or
services. Examples include “used car parts”, “cheap internet” and
“gmat prep classes”. The queries were randomly assigned to stu-
dents ensuring that two students will not compete against each
other in more than two different matches; the assignments were
not changed throughout the competition.

As already noted, for each query we provided a single example
of a relevant document. The goal was to provide the students
with information regarding the underlying information need as the
queries are very short. To produce these relevant documents, we
first used the TREC topic description as a query in a commercial
search engine. We extracted from the highly ranked documents
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Figure 3: The percentage of documents annotated as key-
word stuffed (left) and relevant (right) by at least 3, 4 or 5
annotators, averaged over queries per each of the eight com-
petition rounds.

candidate window passages of up to 150 terms. The passages were
annotated for relevance by four annotators. We kept extracting
passages for each query until a passage was judged relevant by
at least three annotators. This passage then served as the initial
relevant document example for all students competing for the query.

A.4 Ranking model

We next describe the ranking model used for all queries in each
round of every match in the competition.

A.4.1 Learning-to-rank. We used a learning-to-rank (LTR) ap-
proach with 25 features to rank the documents. Most of the features
(22) were all those used in Microsoft’s learning-to-rank datasets!3
for the “whole document” except for the Boolean Model, Vector
Space Model and LMIR.ABS features. As noted above, the docu-
ments in our competition are unstructured plain text. Thus, all
the features are computed only for the entire document. Since
documents in our competitive setting are prone to manipulation,
we used three additional features which were shown to be highly
effective for spam classification [21] and Web retrieval [4]: (i) the
ratio between the number of stopwords and non-stopwords in a
document, (ii) the percentage of stopwords in a stopword list that
appear in the document, and (iii) the entropy of the term distribu-
tion in a document [4]. For the two stopword-based features, the list
of stopwords was composed of the 100 most frequent alphanumeric
terms in the ClueWeb09 Category B corpus [21].

The ClueWeb09 category B dataset with queries 1-200 was used
to learn the LTR model. Specifically, the model was applied upon
the 1000 documents most highly ranked by using LMIR.DIR, i.e.,
the negative cross entropy between the unsmoothed and Dirichlet-
smoothed (with p = 1000) unigram language models induced
from the query and documents, respectively!4. We used Lamb-
daMART [29] via the RankLib library!® to integrate the differ-
ent features. The number of trees and leaves were selected from
{100, 250, 500, 750, 1000} and {10, 25, 50}, respectively. NDCG@5
served for optimization when learning the model. In each round
of the competition, we added the (unjudged) documents submitted
by students in all matches to the ClueWeb09 Category B corpus to

13www.research.microsoft.com/en-us/projects/mslr

14We deliberately did not remove suspected spam documents from the initial document
ranking, e.g., using Waterloo’s spam classifier [7]. This practice allows learning a model
using low quality (e.g., spam) documents.

5 www.lemurproject.org/ranklib.ph
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have more updated values of corpus statistics, e.g., inverse docu-
ment frequency (idf). Yet, we did not re-train the ranker. The Indri
toolkit was used for indexing and retrieval’®. We applied Krovetz
stemming upon queries and documents and removed stopwords
on the INQUERY list only from queries. The LMIR.JM feature was
used with A = 0.1; for BM25, we set k1 = 1.2 and b = 0.75.

A.4.2  Results diversification. To encourage students to consider-
ably change their documents rather than introduce minor modifica-
tions to the initially provided relevant document, starting from the
second round, they were advised to diversify their documents with
respect to the relevant document. To further encourage diversifi-
cation, we applied the MMR method [5] with respect to the initial
relevant document djnj;. Accordingly, the score assigned to docu-

ment d with respect to query q is score(q, d) def Arank(d, LTR) —
(1 = Mrank(d, dinit), where A = 0.5, rank(d, LTR) is the rank of d
in a ranking of all the documents in a match induced by the LTR
method and rank(d, diyit) is the rank of d in a ranking created based
on the similarity with djnit; here, the rank of the lowest ranked doc-
ument is 1. The similarity with dj,j; was computed using LMIR.DIR
treating d as the query.

A.4.3 Keyword stuffing. Keyword stuffing [16], specifically of
query terms, is one of the most applicable manipulation approaches
the students could employ to promote their unstructured plain text
documents in rankings. To avoid rewarding excessive keyword
stuffing, and to encourage writing of high quality documents, each
document was manually classified as keyword stuffed or not!’.
The annotation was performed via CrowdFlower!8; each document
was judged by five annotators from English speaking countries!®.
The inter-annotator agreement for keyword stuffing, computed
using the free-marginal multi-rater kappa measure [24], is 0.88. A
document classified as keyword stuffed by at least four annotators
was rank-penalized: with probability 0.5 it was swapped with the
next document in the ranking. If several consecutively ranked
documents were keyword stuffed, then only the lowest ranked
document was penalized.

In Figure 3 (left) we present for each round the percentage of
documents classified as keyword stuffed by at least three, four or
five annotators averaged over queries. We can see a mostly down-
ward trend until the fifth round. In the fifth round we observe the
lowest percentage of keyword stuffed documents. Starting from the
fifth round the percentage of keyword stuffed documents gradually
increases. We hypothesis that in the first half of the competition
students’ engagement gradually decreased. In the second half, as
from the fifth round in which the rewards for having a document
ranked high substantially increased, students started using manip-
ulated texts even more so as to have their documents ranked high.
In the fifth round, there might have been some confusion due to
the introduction of a new reward mechanism.

163y ww.lemurproject.org/indri

17 A document was annotated as keyword stuffed if it contained excessive repetition
of words which seemed unnatural or artificially introduced.
Bwww.crowdflower.com

19 Annotators were also instructed to classify documents as spam if they were hard to
understand, non-cohesive, did not make any sense or were useless to anyone seeking
information. Yet, none of the documents was classified as spam.
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Figure 4: The MAP@5 (left) and NDCG@5 (right) perfor-
mance of the ranking induced by the retrieval method in
each round. Binary relevance judgments were induced for
computing MAP@5 by considering a document relevant if
its relevance grade was at least 1, 2 or 3.

A.5 Ranking effectiveness

All documents in the collection were judged for relevance. Anno-
tators were presented with both the title and description of each
TREC topic, and were asked to classify a document as relevant if it
satisfied the information need stated in the description. As was the
case with keyword stuffing annotation, each document was judged
by five annotators from English speaking countries via Crowd-
Flower. The inter-annotator agreement rate, computed using the
free-marginal multi-rater kappa measure [24], was 0.67. Four-scale
graded relevance judgments were generated using the annotations
as follows. A document judged relevant by less than three annota-
tors was labeled as non-relevant (0). Documents judged relevant
by at least three, four or five annotators were labeled as marginally
relevant (1), fairly relevant (2) and highly relevant (3), respectively.

As noted above, to address the potential manipulation of docu-
ments by students, the retrieval method used in the competition (i)
was based on a learning-to-rank approach with multiple features,
(ii) incorporated highly effective document-quality measures and
(iil) penalized keyword stuffed documents. Figure 3 (right) presents
the percentage of documents classified relevant by at least three,
four or five annotators per round averaged over queries. We see
that, in general, the percentage of relevant documents decreased
over the course of the competition. While many of the documents
were judged relevant by at least three annotators, far fewer docu-
ments were judged relevant by at least four or five annotators. This
finding attests to the negative effects of SEO.

In Figure 4 we present the MAP@5 and NDCG@5 effectiveness
of the document ranking induced by the retrieval method in each
of the eight competition rounds. We see that the effectiveness of
the ranking has gradually decreased over rounds, which can be
partially attributed to the fact that fewer relevant documents were
generated by students as seen in Figure 3. We also see that in the
first two rounds the effectiveness of the ranking was much higher
than that in the rounds to follow. We found that in the first two
rounds students used the initially provided relevant documents
without significantly changing them. After the second round, in
which the retrieval method was changed by applying diversification
with respect to the given relevant document (see Section A.4.2),
students started diversifying their documents by introducing noise,
using non-relevant information and applying content manipulation.
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