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ABSTRACT
In information retrieval, we are interested in the information that
is not only relevant but also novel. In this paper, we study how
to boost novelty for biomedical information retrieval through prob-
abilistic latent semantic analysis. We conduct the study based on
TREC Genomics Track data. In TREC Genomics Track, each topic
is considered to have an arbitrary number of aspects, and the nov-
elty of a piece of information retrieved, called a passage, is assessed
based on the amount of new aspects it contains. In particular, the
aspect performance of a ranked list is rewarded by the number of
new aspects reached at each rank and penalized by the amount of
irrelevant passages that are rated higher than the novel ones. There-
fore, to improve aspect performance, we should reach as many as-
pects as possible and as early as possible. In this paper, we make a
preliminary study on how probabilistic latent semantic analysis can
help capture different aspects of a ranked list, and improve its per-
formance by re-ranking. Experiments indicate that the proposed
approach can greatly improve the aspect-level performance over
baseline algorithm Okapi BM25.
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1. INTRODUCTION
Information retrieval (IR) in the context of biomedical databases

is characterized by the frequent use of abundant acronyms, homonyms
and synonyms. How to deal with the tremendous variants of the
same term has been a challenging task in biomedical IR. The Ge-
nomics track of Text REtrieval Conference (TREC) provided a com-
mon platform to evaluate the methods and techniques proposed by
various research groups for biomedical IR. In its last two years
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(2006 & 2007), the Genomics track focused on the passage re-
trieval for question answering, where a passage is a piece of contin-
uous text ranging from a phrase up to a paragraph of a document.
One of the performances concerned for passage retrieval was the
aspect-based mean average precision (MAP) [8]. To evaluate the
performance of a ranked list, in 2006, the judges of the competition
first identified all relevant passages for each topic from all submis-
sions, and then, based on the content of such relevant passages,
assigned a set of Medical Subject Headings (MeSH) terms to each
topic as their representative “aspects”. In 2007, instead of MeSH
terms, the judges picked and assigned terms from the pool of nom-
inated passages deemed relevant to each topic as their “aspects”.
That is, the “aspects” of a topic in Genomics Track are represented
by a set of terms. A passage for a topic is novel if it contains as-
pect terms assigned to the topic which has not appeared in the pas-
sages ranked higher. The novelty of a ranked list is rewarded by the
amount of relevant aspects reached at each rank and penalized by
the amount of irrelevant passages ranked higher than novel ones.
The aspect-based MAP is an average reflection of novelty retrieval
performance on all topics.

For the aspect-level evaluation, the search should reach as many
relevant aspects as possible and rank their containing passages as
high as possible. “Aspects” are assigned to each topic by the judges
only after the submission by all groups, and such aspects are picked
only from the nominated passages. At competition, nobody knows
how many aspects there exist for each topic in the literature, and
what they are. Therefore, “aspects” of each topic in this problem
are latent, and it is also not an easy problem to figure out the as-
pects covered by a passage from its “bag-of-words” representation.
However, it is well known that a topic model can represent a doc-
ument as a mixture of latent aspects. That is, a topic model can
convert a document from its “bag-of-words” space to its latent se-
mantic space of a reduced dimensionality. In this paper, we study
whether the latent semantic representation would help capture dif-
ferent “aspects” of a passage and further improve the performance
of a ranked list by re-ranking. There exist a list of topic models such
as Latent Semantic Analysis (LSA)[5], Probabilistic Latent Seman-
tic Analysis (PLSA) [9], and Latent Dirichlet Allocation (LDA)
[2]. In this preliminary study, we focus on PLSA. In the future, we
would study the problem with both LSA and LDA included.

To the best of our knowledge, this is the first investigation about
how well a topic model such as PLSA can help capture hidden as-
pects in novelty information retrieval. In the investigation, we also
examine the hyperparameter settings for PLSA such as initial con-
ditional probabilities and zero estimate smoothing in the context of
our problem. Besides standard PLSA model [9], we also examine
its variants, e.g. instead of word frequencies, tf-idf weighting is
used.
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2. RELATED WORK
In information retrieval, ranking based on pure relevance may

not be sufficient when the potential relevant documents are huge
and highly redundant with each other. In [3, 16, 14, 15, 18], differ-
ent ways representing and optimizing novelty and diversity of the
retrieved documents are studied. The objective is to find the docu-
ments that cover as many different aspects (subtopics) as possible
while maintaining minimal redundancy. One problem with the nov-
elty (diversity, aspect, subtopic)-based retrieval is how to evaluate
the ranking quality. In [14], 3 metrics are introduced: the subtopic
recall measures the percentage of subtopics covered as a function
of rank, the subtopic precision measures the precision of the re-
trieved documents as a function of the minimal rank for a certain
subtopic recall, and the weighted subtopic precision measures the
precision with redundancy penalized based on ranking cost. In [4],
a cumulative gain-based metric is proposed to measure the novelty
and redundancy, which is also a function of rank.

Most existing methods [3, 16, 14, 15] improve novelty in IR by
penalizing redundancy, but they seem not to work well in Genomics
aspect search. In the 2006 TREC Genomics track, University of
Wisconsin at Madison failed to promote novelty by penalizing re-
dundancy based on a clustering-based approach [7]. In the 2007
TREC Genomics track, most teams simply submitted their relevant
passage retrieval results for aspect evaluation such as National Li-
brary of Medicine (NLM) [6] and University of Illinois at Chicago
[17]. In [10] and [12], a Bayesian learning approach is proposed
to find potential aspects for different topics. In [13], a survival
model approach is applied to biomedical search diversification with
Wikipedia.

3. HIDDEN ASPECT-BASED RE-RANKING
It is well known that PLSA can help to reveal semantic rela-

tions between entities of interest in a principled way [9]. In this
paper, we consider each retrieved passage di (1 ≤ i ≤ N ) in
D = {d1, ..., dN} as being generated under the influence of a num-
ber of hidden aspect factors Z = {z1, ..., zK} with words from a
vocabulary W = {w1, ..., wM}. Therefore, all passages retrieved
initially can be described as an N ×M matrix T = ((c(di, wj))ij ,
where c(di, wj) is the number of times wj appears in passage di.
Each row in D is then a frequency vector that corresponds to a
passage. Assume given a hidden aspect factor z, a passage d is in-
dependent of the wordw. Then by Bayes’ rule, the joint probability
P (d,w) can be obtained as follows:

P (d, w) =
∑

z∈Z

P (z)P (d|z)P (w|z).

To explain the observed frequencies in matrix T , we need to find
P (z), P (d|z), and P (w|z) that maximize the following likelihood
function:

L(D,W ) =
∑

d∈D

∑

w∈W

c(d, w)logP (d,w).

It can be shown that the solution can be achieved by EM algorithm
iteratively through the following two alternating steps.

1. By E-step, we calculate the posterior probabilities of the hid-
den aspect factors:

P (z|d, w) =
P (z)P (d|z)P (w|z)
P (z′)P (d|z′)P (w|z′) .

2. By M-step, we update parameters to maximize the complete
data likelihood:

P (w|z) =
∑

d∈D c(d, w)P (z|d, w)∑
d∈D

∑
w′∈W c(d, w′)P (z|d, w′)

,

P (d|z) =
∑

w∈W c(d, w)P (z|d, w)∑
d′∈D

∑
w∈W c(d′, w)P (z|d′, w)

,

P (z) =

∑
d∈D

∑
w∈W c(d, w)P (z|d, w)∑

d∈D

∑
w∈W c(d, w)

.

After its convergence, we can calculate the probability of hidden
aspect factor z given passage d by

P (z|d) = P (d|z)P (z)∑
z∈Z P (d|z)P (z)

∝ P (d|z)P (z) = P (d, z).

Hence, we can summarize the aspect trend of each passage d by
a normalized factor vector (P (zi|d))Ki=1. By this way, we trans-
form the passage representation from the “bag-of-words" space to
a lower latent semantic space. We expect this representation would
capture the aspect trend of each passage in a better way. All pas-
sages can then be clustered based on this vector representation or
simply based on their most probable hidden aspect factor

zd = argmax
zi∈Z

P (zi|d).

With latter, we may sort all passages in each group based on the
probability P (zd|d) in descending order. By either way, we can al-
ways re-rank retrieved passages by repetitively picking one passage
from the top of each group until none is left.

4. EXPERIMENTAL RESULTS
We test our method on a set of runs obtained by the improved

Okapi retrieval system [11] for TREC Genomics Track 2007 topics.
The set of runs are acquired under different conditions as shown in
Tables 1 to 4, where k1 and b are tuning constants of the weighting
function BM25. Indexing on database could be paragraph-based
(where each piece of indexed information is a paragraph from doc-
uments) or word-based (where each piece of indexed information
has a limited number of words), and topic expansion is applied once
based on unified medical language system (UMLS). To enhance the
performance of these runs, feedback analysis is performed by the
Okapi retrieval system. In feedback analysis, the system retrieves
ten passages that are deemed most relevant for a particular topic,
and forms a list of the most recurring words from those passages.
Each topic is expanded by these words, and then relevant passages
for the extended topic is retrieved. Each feedback term is assigned
a weight by Okapi. In our experiments, feedback weight is set to
0.25.

To get their vector representation, we apply both Porter stem-
ming and a stoplist with general stopwords to passages. After
Porter stemming and stoplist application, around 4000 words are
left for each topic. All passages nominated for each topic are then
represented with these words weighted by tf-idf (Better performance
is observed with tf-idf instead of frequency used in the standard
PLSA model as described in Section 3). We try to use princi-
pal component analysis (PCA) to reduce vector dimensionality. It
seems PCA is not very helpful in reducing vector dimensionality
without hurting performance in this problem. It might be because
of the sparsity of data, no obvious dimensions are much more im-
portant than others, and every word has some contribution in rep-
resenting passages nominated for a topic.

Topic models like PLSA typically operate in extremely high di-
mensional spaces. As a consequence, the “curse of dimensionality”
is lurking around the corner, and thus the hyperparameters (such
as initial conditional probabilities and smoothing parameters) set-
tings have the potential to significantly affect the results [1]. In
the experiments, we find that we cannot start PLSA model with a
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Table 1: Run1: k1=1.4, b=0.55, word-based indexing, no topic expansion, aspect-level MAP 0.1017.
# of aspects (K) 1 2 3 4 5 6 7 8 9 10
Rerank 0.1017 0.1124 0.1157 0.1430 0.1263 0.1295 0.1243 0.1355 0.1373 0.1279
Improvement 0.00% 10.48% 13.78% 40.67% 24.18% 27.38% 22.24% 33.25% 35.02% 25.75%

Table 2: Run2: k1=1.4, b=0.55, word-based indexing, with topic expansion, aspect-level MAP 0.0611.
# of aspects (K) 1 2 3 4 5 6 7 8 9 10
Rerank 0.0611 0.0639 0.0721 0.0779 0.0886 0.0627 0.0726 0.0739 0.0815 0.0852
Improvement 0.00% 4.50% 17.91% 27.45% 44.90% 2.62% 18.72% 20.92% 33.41% 39.32%

Table 3: Run3: k1=2.0, b=0.4, paragraph-based indexing, no topic expansion, aspect-level MAP 0.0596.
# of aspects (K) 1 2 3 4 5 6 7 8 9 10
Rerank 0.0596 0.0672 0.0650 0.0875 0.0774 0.0832 0.0726 0.0616 0.0660 0.0723
Improvement 0.00% 12.74% 9.10% 46.97% 30.05% 39.76% 21.83% 3.43% 10.88% 21.46%

Table 4: Run4: k1=2.0, b=0.4, word-based indexing, no topic expansion, aspect-level MAP 0.08237957.
# of aspects (K) 1 2 3 4 5 6 7 8 9 10
Rerank 0.0824 0.0886 0.0942 0.0919 0.0846 0.0888 0.0836 0.0930 0.0953 0.0902
Improvement 0.00% 7.54% 14.34% 11.56% 2.57% 7.83% 1.47% 12.85% 15.68% 9.45%

uniform distribution for P (z), P (d|z), and P (w|z); otherwise, the
convergence will happen immediately in the first iteration due to
the sparsity of data. Instead, we start with a normalized random
distribution for all these conditional probabilities (the results re-
ported in this paper are the average of a few runs). Due to the large
dimensionality, there are a lot of zero probabilities in each passage
vector representation. Zero estimates could cause significant prob-
lems such as zeroing-out the impact of some other useful parame-
ters in multiplication. Zero estimates could also cause computation
problems such as “division by zero”. In our experiments, we apply
Laplace smoothing to avoid zero probability estimates. We add a
small value 2−52 to all probabilities before normalization. In the
future, more smoothing techniques would be studied.
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Figure 1: Performance improvement for run1.

In the experiment, we examine two ways of clustering passages
in latent semantic space: one is centroid-based clustering with dif-
ferent distance functions (squared Euclidean, cosine, and cityblock)
and the other is based on their most probable aspect factor. It is
found that our problem is not so sensitive to either way of cluster-
ing, and for the former, not so much sensitive to the change of dis-
tance functions. We believe that this is also caused by the sparsity

of data. Our experiment results reported here are from centroid-
based clustering with cityblock distance function. In the future,
we would explore other clustering algorithms that might be more
suitable to our problem such as hierarchical clustering and density-
based clustering.
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Figure 2: Performance improvement for run2.

In the experiments, we change the number of hidden aspects K
from 1 to 10 continuously for all runs. When the number of hid-
den aspects is set to 1, there is no re-ranking and hence the perfor-
mances are the same as the original runs. It turns out for all other 9
different hidden aspect numbers, all runs get positive performance
improvements by re-ranking as shown in Tables 1 to 4. To illustrate
the re-ranking performance graphically, we plot the data in Figures
1 to 4, respectively, where y-axis stands for the aspect-level per-
formance MAP. It can be observed that on all 9 different number
of hidden factors, the re-ranked results are all better than the orig-
inal ones. Over all runs, the maximum improvement is 46.97%
when K = 5 for run2, the minimum improvement is 1.47% when
K = 7 for run4, and the average improvement is 20.06%. This is
illustrated in Figure 5.

It should be noted that the hidden aspect factors in PLSA mod-
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els are not necessarily the same as the aspects of Genomics Track.
In PLSA models, the number of hidden aspect factors is a tuning
variable, while the aspects of Genomics Track topics are constants
once the corpus and topics are determined. The hidden aspect fac-
tors in PLSA models are statistically identified from data while the
aspects of Genomics Track topics are assigned by the judges but
not results of statistical analyses. Since PLSA models are good
in semantic analysis and synonym and concept recognition [9], we
use the hidden aspect factors identified by PLSA models to clas-
sify passages and then use this classification information to re-rank
ranked lists in the hope that the hidden aspect factors do have some
correlation with topic aspects in some way. Our experiment results
highly support the hope.
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Figure 3: Performance improvement for run3.
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Figure 4: Performance improvement for run4.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we conducted a preliminary study on using PLSA

models to capture hidden aspects of retrieved passages. The hidden
aspects caught are used to improve the performance of a ranked
list by re-ranking. It turned out all runs on all 9 continuous hidden
aspect numbers got positive improvements. This indicates PLSA
models are very promising in finding diverse aspects in retrieved
passages. By contrast, it was indicated [7] a clustering-based method
always failed to improve the aspect performance over baseline al-
gorithms.

In the future, more experiments will be conducted to further in-
vestigate the proposed method. We will extend the method to more
runs, and will study whether there exist a range of hidden aspect
numbers that can always be safely used in re-ranking to improve

performance. In addition, we will investigate how to set different
hidden aspect numbers for different topics. We will also examine
other topic models such as LDA and LSA on this matter.
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Figure 5: Performance improvement summary.
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