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Abstract: 

Bitmaps are data structures occurring oilen in information retrieval. They are useful; they are 
abo large and expensive to store. For this reason, considerable effort has been devoted to finding 
techniques for compressing them. These techniques are most effective for sparse bitmaps. We propose 
a preprocessing stage, in which bitmaps are first clustered and the clusters used to transform their 
member bitmaps into sparser ones, that can be more effectively compressed. The clustering method 
efficiently generates a graph structure on the bitmaps. The results ofapplying our algorithm to the 
Bible is presented: for some sets of bitmaps, our method almost doubled the compression savings. 

1. Introduction 

Textual Information Retrieval Systems (IRS) are voracious consumers of computer 
storage resources. Most conspicuous, of course, is the text itself, which constitutes 
tLe content of the database. But, to efficiently use the database, auxiliary structures 

must be created that themselves require a substantial ammount of space. Thus, 

mecanisms for compressing a wide range of data structures must be sought for the 
efficient operation of such systems [S]. To date, most attention has hen given to, and 
progress made in, the area of text compression ([l], [ll], [14]). In this paper, we shall 

describe and examine the possibilities of compressing bitmaps, a data structure often 
proposed for improving the performance of retrieval systems ([5], [16]). 

Bitmaps occur often in information retrieval. They can represent the occurrences 
of a word in the sentences or paragraphs making up a text; they can indicate the 
documents associated with an index term; they appear as bit slices of a matrix of 
signatures; they might represent pixels in rows of a raster graphics display. They are 
useful; they are also large and expensive to store. Much work has been carried out on 
the compression of bitmaps, and this has been especially successful for those that are 
very sparse. But not all bitmaps are sparse, and even sparse bitmaps could benefit 
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from further compression. This paper describes a method that complements existing 

compression techniques and improves their performance, at least for certain categories 
of bitmaps. 

We concentrate here on sets of bitmaps such as are generally found in an IRS. 
How such bitmaps can be used to enhance the system is discussed in 121 and [4]. Each 
bit-position corresponds to a specified sub-unit of the database, henceforth referred 
to as a segment; below, a segment will refer to a paragraph of text, though, in other 
contexts, a full document (or even a set of documents) may be the preferred unit. For 
each different word (or index term) W in the database, there is a map B(W), such 
that the i-th bit of B(W) is 1 if and only if W appears in (or is assigned to) segment 
i. Such bitmaps can be compressed very efficiently. In part this is because they tend 
to be very sparse. That bitmaps compress better as they become sparser is expected 
theoretically. For suppose a bitmap can be considered as having been produced by a 
random bit generator, with the probability of a one bit being p (the theory can easily 
be extended to encompass more complex models of bitmap generation). Then the 
information content of a bit is given by: 

H= -plogp - (1 - P) logO - P>> 

and, for a bitmap of JZ bits, the quantity 8H forms a lower bound on the number of 
bits needed to represent the bitmap. As is well known, N increases monotonically as 
y increases from 0 to .5, and then decreases monotonically as p continues growing. 
Since almost all of our bitmaps have p less than .5, we expect compression to improve 

as p decreases, that is, as the map becomes sparser. (For p > .5, we could complement 
the bitmap before proceding.) Thus we wish to be alert to opportunities for reducing 

the density of our bitmaps; this is the essence of the approach described in this paper. 

Other factors also contribute to our ability to compress bitmaps effectively, as 

evidenced by the fact that actual IR bitmaps are more compressible than randomly 
generated bitmaps with the same density of l-bits [3]. The reason for the better results 
is a cluster-efiect: since the segment positions in the bitmaps are usually ordered 

by topic or chronologically, adjacent bits often correspond to segments treating the 
same or related subjects. Thus the appearance of a word in a given segment often 

implies that it also appears in. neighboring segments. This effect is exploited by many 

compression methods, resulting in excellent reduction in storage requirements. 

There is, however, another clustering possibility that has hitherto been overlooked, 
one involving sets of bitmaps (words), rather than sets of bits (segments) within a 

single bitmap. The occurrences of certain words, especially those taking part in well 

known phrases like Security Council or Curriculum vita, are sometimes strongly 
correlated accross segments in the sense that if one word appears in a certain segment, 
the other is also very likely to do so. Such pairs of bitmaps are likely to be quite 
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Silllih-. But identifying clusters of such highly associated words is not as direct as 

it LVU for bit clusters within a bitmap, because words and their associated bitmaps 

are generally arranged in lexicographical order, not in order of logical proximity. In 

this; respect, IR bitmaps differ from self-clustered graphic bitmaps, in which adjacent 

(raster) roM’s are often similar. The objective of this paper is to show how to usefully 

identify clusters of correlated words, and then take advantage of these associations to 

squeeze out some additional compression. 

In Section 2, we briefly review some known bitmap compression techniques and 

propose a new one that is simple and easy to implement; it will then be used as the 

compression component of a two-stage compression process described in Section 3. 

The first stage of the two stage process is to partition the bitmaps of our IR system 

into clusters of correlated bitmaps; the resulting clusters are then used to transform 

the original bitmaps into another set of bitmaps that are sparser and more effectiveljf 

compressed in stage 2 of the process. In Section 4 we report on experiments testing 

the new method; the database we chose to study was the Hebrew Bible. 

2. Bit-vector compression techxk~ues 

2.1 Overview of some known methods 

Suppose we are given a bitmap v of length P bits, of which .s are ones and I? - s 

are zeros. In our applications, the maps are usually sparse, i.e., s << 1. The simplest 

way to store u compactly for very small n is to enumerate the positions of the 

I-bits. As one needs d = [log, k’] bits to identify any position, this method would 

need sd bits for each map, which may well be much smaller than the P bits required 

for the uncompressed original map. Alternatively, one could record the distances 

between successive l-bits, that is, give the position of a l-bit relative to the preceding 

I-bit position rather than relative to the beginning of the vector. This is known as 

run-length coding (Schuegraf [12]). In its simplest form, the length of every run is 

encoded by a fixed length codeword; since this codeword must be large enough to 

accommodate the theoretical maximum run length, this is equivalent to the previous 

~1lCLhOLi. 

Sirlce, irl simple run length coding, the space allocated for each run must be 

adequate for the largest possible run, such codes can be ineficient if many of the 

runs are of small or moderate length. The following variant, due to Teuhola [15], 

irnpro\ves on simple run length coding by having a variable length representation of 

a run length. A run of f zeros is first broken up into successive blocks of zeros of 

exponentially increasing size; the first block is of size Zk (for k a parameter selected to 

optimize tllis procedure), the second of size 2”‘l, etc., until a block is produced that 

extends beyond the run, i.e., is partially filled. The length of the run, T, can then be 

rel>resentetl a.5 follows: (a) each block in the sequence that is completely filed with 
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zeros is represented in turn by a one, and (b) a zero is appended to the string of ones 

as delimiter. If t ones are present, then we know 2” + 2”+l + . . . + 2k+t-1 < T < 
2” + . . . + 2”+f--’ + $+t, that is: the first t blocks are filled with zeros, but the last 

potential block of 2’E’L zeros is either empty or partially filled. So, finally, (c) we can 

explicitly represent the number of zeros in the last block as a binary integer with k + t 
bits. Thus a run of length r is encoded by Oflogr) b t i s instead of O(log(max length)). 

Jakobsson [7] suggests the use of Huffman coding for bitmaps. The bit-vector 
is partitioned into blocks of fixed size rG, and statistics are collected on the frequency 
of occurrence of the Zk bit patterns. Based on these statistics; the set of blocks is 

Huffman encoded, and the bitmap itself is encoded aa a sequence of such codewords. 
For sparse vectors, the k-bit block consisting of zerus only, and blocks with only a 

single l-bit, have much higher probabilities than the other blocks, so the average 
codeword length of the Huffman code will be smaller than k. 

Fraenkel & Klein [6] combine HufFman coding with run-length coding. Once 

again, a parameter IC is chosen as a block size. However, since for very sparse vectors 

the probability of a block of k zeros is high, runs of blocks of k zeros receive special 
treatmer1t. D’e first represent the succession of k-bit blocks comprising a bitmap 

as a sequence of two categories of symbols: beginning with the first block, if a k-bit 
b1oc.k includes l-bits, then we represent it by its own special symbol, as in the previous 
method. If it is a zero-block, then instead of representing the block itself, we represent 
tlltx entire run of zero blocks which it starts by a string of integers as follows: suppose 

tllrh run consists of T zero-blocks, with r represented in binary form as r = xi>0 ai2’, 

for ui zero or orle. Then the run is represented in the symbol sequence by the string of 
irltcgers 910, 721,. . ., where each ni is a power of 2 in the representation of T for which 

a71 * = 1; this in effect encodes the run lengths. Next, the frequency of occurrence 
throughout the bitmap fiie of each special and integer symbol is recorded, permitting 
a Huffman tree to be constructed for the 2’ - 1 special symbols together with the 

integer symbols. Finally, the bitmap is Huffman encoded using this tree. 

A hierarchical method for compressing a sparse bitmap was proposed by Wede- 
kind & Harder (171. Th e original bit-vector vo of length 40 bits is partitioned into 

~-0 equal blocks of ko bits each (Q . ko = lo), and the blocks consisting only of zeros 
are dropped. The resulting sequence of non-zero blocks does not by itself allow the 
reconstruction of ~0; we can, however, append a list of the indices indicating where 

these non-zero blocks occur in the original vector. This list of up to ‘0 indices is itself 
kept as a bit-vector VI of PI = T-O bits; there is a 1 in position i of ~1 if and only if 
the i-th biock of vo is not all zeros. Now ~1 can be further compressed by the same 
method. In other words, a sequence of bit-vectors vj is constructed, each bit in 21j 
being the result of OKing the bits in the corresponding block in “j-1. The procedure 
is repeated recursively until a level is reached where the vector length reduces to a 
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few bytes. The compressed form of vg is then obtained by concatenating, in order of 
decreasing i, all the nonzero blocks of the various v;. The same method appears in 
Vallarino [16], who used it for two-dimensional bitmaps, but with only one level of 
compression. 

The hierarchical method is refined by Choueka & al. [33, by adding a pruning 

algorithm that removes from the hierarchy-tree, branches pointing to very few seg- 

ments. The algorithm partitions the set of l-bits in vg into two subsets: the class of 
l-bits which are efficiently handled by the hierarchical method; and the complemen- 

tary class, consisting-of more or less isolated l-bits whose inclusion in the hierarchical 

tree structure would have been more expensive than their enumeration in an appended 
list. Either of these two classes may be empty. If the list is long enough, it is fur- 

ther compressed by a variant of prefix omission, to be decribed in more detail in the 

following sub-section. 

It should be noted that since, for each map, the number of runs of zeros is equal 

to the number of l-bits plus 1, the size of the compressed file obtained by the first few 
methods is clearly linearly related to the number of l-bits in the original file, For the 

hierarchical and Huffman coding methods this relation is less evident, but has been 
empirically established. T h is observation is consistent with the theoretical argument 

presented in the introduction, and reinforces our intention to design a preprocessing 
stage that reduces the number of bits in a bitmap. 

2.2 A simple new method 

The following technique is a simple generalization of the prefix omission method 

suggested in $31 for the secondary compression of the list of l-bits which were pruned 

from the tree. It can also be viewed as a variant of the hierarchical method, using 
only a single level of compression, 

Choose an integer parameter k and partition the original vector ug of length 40 
into blocks of Zk bits. We shall assume that the number of l-bits in the bitmap is s. 
As in the hierarchical method, construct a new vector WI of length F&/2”], in which 
bit i is zero if and only if block i of vg contains only zeros. However, now, instead of 

storing the non-zero blocks of uo themselves, we substitute for each block the string 
of indices of the l-bits within that block. A priori k bits are sufficient for storing such 
a relative index; however we need an additional bit per index to serve as a flag, which 
identifies the boundary of each block. Therefore, in addition to the fixed overhead of 
storing the vector ~1, I; + 1 bits are needed for representing each of the l-bits of wg. 

When a block has a small number of l-bits, a significant saving in space could result. 

We would now like to find k that optimizes the size of the block to be chosen, 
that is, the integer x7* that minimizes f(k) = r&2-“] + (k + l)s, the size in bits of 
the compressed bitmap. Because of the appearance of the ceiling function in f(k), 
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finding the minimum value directly is difficult. Instead we shall search for an integer 

kr that minimizes the related continuous function fl(k) = &2-k + (k + 1)s. Since fl 
is a convex function, /z; is an integer which satisfies 

flW < flvq + 1) and fl(ki) I fl(kf - 11. 

Examining the left hand inequality, we find 

bZsx‘i + (I;; + 1)s < Po2-ki+1 +(k;r +z)~, 

or, 2-“i+l c s/f!‘o. Thus kr > log2(4o/s) - 1. Similarly, the right hand inequality is 
equivalent to+ E,T < log2(&/s). C ombining the two, we find that “i must satisfy 

eo 
log2 y 

e. - 1 < k; 5 log, -, 
S 

so k; = pog2(eo/s)]. 
If we have a file of m bitmaps, we want to use the same method for encoding each 

of them, so the optimal k will be determined by the average 3 of I-bits per map. The 
total number of bits in the compressed file is thus 

m ~,2-Llog2(~o/~)I 
1 1 + s wg2(~o/~)J + 1) > (1) 

for S = rns, the total number of I-bits in the bitmap set. 

A priori, kT need not equal k*; however, it is easy to see that the cost of using 
k;r is identical to the cost of using k*. To show this,L first note that by the definition 
of the ceiling function, f(lcf) < 1 + fl( kr). S ince “r minimizes fl, fl(liT) ( fl(k*). 
But fl cannot exceed f for any k, and in particular fl(k*) 5 f(k*). Combining these 
resuIts with the fact than X;* minimizes f, we get 

f(k*) I f(k;) +c 1+ f(k*). 

We conclude that using k; for the true optimum, Ic*, results in an excess of less than 
one bit in storage for each bitmap. But f(k) t a k es only integer values at integer k, 
so if the difference f(kT) - f(k*) is smaller than 1, then it must actually equal zero: 
either ‘;T = k*, or, at least, the storage implications are the Same for both values 

Lf(q> = m*>>- 

For example, suppose 4?o = 180 and the indices -of the I-bits in vg are 36, 50, 53, 
105 and 126. Thus s = 5, so we get that the optimal k is llog2(180/5)J = 5. There 

are [180/25j = 6 bits in VI, each (except the last) corresponding to a block of 32 bits 
in ~0. There are three I-bits in the second block, with relative indices 4, 18 and 21, 
and there are two l-bits in the fourth block, with relative indices 9 and 30; the four 
other blocks are empty. Thus the following information would be kept: 



t t indicates the end of the sequence 

The number of bits necessary to store this map is thus 6 + 5 x (5 + 1) = 36. With 
Ic = 4 we would need 12 + 5 x (4 + 1) = 37 bits and with k = 6 we would need 
3 + 5 x (6 + 1) = 38 bits. Note that if we list the relative indices of each sub-range 
in increasing order, the flag identifying the last index of each range is not always 
needed. In our example, for instance, the list of stored relative indices is 4, 18, 21, 9, 
30, so clearly the sublist corresponding to the second l-bit in VI consists of the last 

two elements. If, however, there were no l-bit in position 105 of ~0, the list of stored 

relative indices would have been 4, 18, 21, 30, and the partition of this list into two 
increasing sub-lists is not uniquely determined. 

3. Bitmap Clustering 

3.1 Motivation 

We have remarked several times above that sparser bitmaps are more effectively 
compressed. We will now describe a method for reducing the number of l-bits by 
making use of a natural clustering of bitmaps. To do this, we take advantage of the 
fact that many bitmaps are associated in the sense that the presence of a l-bit in one 
map increases the likelihood of a l-bit occurring in the same position in the other. 
If two bitmaps X1 and X2 are strongIy associated in this sense, then the bitmap 
X3 = X1 XOR X2 will very possibly have fewer l-bits than, say, X2. If we store X1 
and X3, we can reconstruct X2. The advantage of doing this is that we may be able 
to compress X1 and X3 more effectively than the original vectors. Since our intention 
when XORing two vectors is to reduce the number of l-bits, it is useful to take as 
a measure of association between two vectors, the number of l-bits in the XORed 
vector. But this quantity is the familiar Hamming distance between the two vectors. 
If the maps Xi and Xj are “close” in the Hamming distance sense, we would want 
to keep 8j and the pair (~i,j) instead of 8j and Xi; here xi = Xi XOR Xj, and a 
bar indicates that the maps have been compressed, say by the method presented in 
Section 2.2. Given the retained information, the original bitmap can then be recovered 
by first decompressing Zi and Xj, which yields xi and Xj, and finally XORing again, 
since Xi = X; XOR Xi. 

As described above, the unchanged map Xj is compressed directly. However, Xi 
may itself be quite close to a third map, Xk, and therefore profitably XORed with 
that third map, producing the pair (%j, k). Continuing in this manner we impose a 
structure on the bitmaps that can be represented as a directed graph, G = (V, E), 
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where the vertices V = {Xl,. . . , X,} correspond to the bitmaps and (Xi,Xj), the 
directed edge from Xi to Xj, beIongs to E if and only if Xi is compressed as (Zi, j). 

To be workable, the following restrictions must be’imposed on G. (1) Any map 
can be compressed by XORing with at most one other map, so the outdegree of every 
vertex is at most 1. (2) In a general graph satisfying condition (I), it might be 
possibIe to form a chain of bitmaps X1, X2,. . . , Xk, X1, denoting that Xi is stored as 
(Zj,i+l) for i = 1 )“*> E- 1, and Xk is stored as (Z), 1). However, this situation 
must be prohibited, if we want to be able to recover the original bitmaps: starting 
with an arbitrary node, the chain must terminate with an untransformed bitmap, that 
is, with a node with outdegree zero. In other words, u legitimate graph must be cycle 
free. 

These conditions impose a strong structure on a legitimate graph. Let R = 
( r1,-**, rn) bethes e of vertices with outdegree zero, and define 7(ri) as the set of t 
vertices from which there is a directed path to ri; 7(ri) also includes ri (connected 
to itself by the empty path). Since there are no cycles in G, a directed path starting 
at any vertex X E V must eventually terminate, reaching one of the vertices ri E R. 
Thus every X E V is in one of the 7(ri)- If X E 7(ri) n 7(rj) for i # j, then some 
vertex in the chain starting at X must have outdegree > 2. Since this is impossible, 
the components 7(r;) are disjoint and { 7(ri)) is a partition of V into connected 
dusters of bitmaps. Further, there is no linkage between any pair 7(ri) and 7(rj): 
for suppose X1 f 7(Ti) and an edge (X1,X2) exists with X2 E 7(rj). But then, 
since a path exists connecting X2 to rj, a path exists (through X2) connecting X1 to 

rj- Such a node X1 is a member of both 7(ri) and 7(rj), which is impossible. The 
7(ri) are thus isolated connected components in G; because of conditions (1) and (2), 
each 7(ri) is an oriented tree, as defined by Knuth 19, Section 2.3.4.21. 

Any forest of bitmaps can serve as the basis of our precompression operations. To 
maximize compressibility, however, we want to choose that forest among all possible 
forests that minimizes the total number of ones in the resulting bitmaps. (There 
could conceivably exist some maps which, because of their special internal structure, 
yield better compression than others which are sparser. But until a quantitative 
relationship can be derived between detailed bitmap characteristics and compression, 
sparseness is the best measure we have for bitmap compressibility.) We define the 
quantity to be minimized, that is, the total number of l-bits in the roots plus the 
total number of l-bits in the XORed bitmaps, as the cost C of the forest. Note 
that adopting this criterion prevents our XORing two vectors when the result would 
increase the number of l-bits - for example, in the extreme case, the set of original 
bitmaps, with no XORed maps, is forest and thus a legitimate graph. 

An exhaustive search generating all the possible graphs satisfying our constraints 
and checking for each the cost for the forest, must be ruled out on the grounds of 
computational expense, even if we have only a moderately large number m of bitmaps. 
Fortunately, such a search is unnecessary, as the problem is equivalent to another for 
which there are well known polynomial algorithms. To see this, we first recall that, 
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except for the roots, the number of 1 ‘s in a XORed bitmap is just the Hamming 
distance between it and its successor in the directed graph. Thus, if we assign this 
distance as a weight to each edge, the cost of a forest is simply the sum of the weights 
of all edges in the graph plus the sum of the number of ones in each root. But we can 
further simplify the statement of the problem by noting that the number of ones in a 
map is its Hamming distance to the zero bitmap (the bitmap, all of whose values are 
zero), denoted by X0. Thus, given any forest, if we introduce the zero bitmap and 
include the weighted edge between each root and X0 (thereby transforming the forest 
into a tree), then the cost of the original forest is just equal to the sum of edge-weights 
over all the edges of the resulting tree in the enhanced graph. The latter sum will 
be called the cost of the tree. Since only the weights are significant when computing 
the cost, we can consider the tree as being non-directed. Such a simplification is well 
defined since the weight on an edge does not depend on its orientation (the Hamming 
distance is a symetric measure). Thus given any directed forest over the set of nodes 
V, we can define a non-directed tree over V* = V u (X0) having the same cost. 

The converse is also true. First note that given the set of vertices V*, any (undi- 
rected) spanning tree on V* defines a directed tree on V*: the root of the directed tree 
in x’o; the directed edge (Xi, Xi) is in the directed tree if a path (Xi, Xi,. . . , X0) 
exists in the undirected tree. Next, by removing X0 and the edges incident on it 
from the directed tree, we obtain a directed forest G, on V. Furthermore, if the edge 
weights are as defined above, the cost of the forest is equal to the cost of the tree 
that induced it. Because of this equivalence, an optimal forest is associated with an 
optimal (lowest cost) tree. Thus our problem is equivalent to the following one: given 
a’complete non-directed graph whose vertex set is the union of our bitmaps with X0, 
and for which the weight on edge (;,j) is the Hamming distance between vertices i 
and j, find the tree for which the total edge weight is minimum. The directed forest 
induced by this tree is the solution to our problem. 

More formally: we are looking for a graph G, which is a forest of oriented trees 
spanning the vertex set V, optimizing our problem. To find the graph G, we consider 
the weighted undirected graph G* = (V', E*), where the set of vertices V* is obtained 
by adjoining a new vertex, the zero vector X0, to the set V of bitmaps; E* = V* x 
V* - ((Xi, Xi) 1 Xi E V') (ignoring order), that is, G* is a complete graph 
from which self-loops are removed; and the weight w(i,j) associated with the edge 
(Xi, Xi) E E* is the Hamming distance between Xi and Xj. We then define as a 
legitimate sub-graph of G* a non-directed tree T connecting all the vertices in V*. 
Our task-is to find the legitimate sub-graph for which the sum of all the weights of 
the edges in T is minimized - in fact, a minimum spanning tree (MST) of G*. The 
MST in G* now induces the optimal directed forest, G, on the original set of bitmaps, 
as described above. The vertices that were adjacent to vertex X0 in T are the roots 
of the oriented trees in G. G is the optimal forest we were seeking. 

Many algorithms for finding a MST for a non-directed graph appear in the lit- 
erature, ranging from Kruskal’s simple greedy algorithm [lo], which has in our caSe 

335 



complexity O(m* logm), to Yao’s more involved technique [18], which would need 
O(m* log log n.4) operations for our application. 

3.2 Algorithm statement 

Summarizing, we suggest the folowing procedure as the first stage for compress- 
ing a set of m bitmaps Xl,. . . , X,. This method in principle improves any given 
compression algorithm C for individual bitmaps, provided our assumption of strong 
correlation between some of the maps holds. As output, we get a table B of com- 
pressed bitmaps, the compressed form of Xi being stored in B(i), 1 5 i 5 nz. In 
addition, the algorithm produces a small table F of size m, defined by F(i) = j if the 
map Xi is compressed as (Si, j) (i.e., if Xi is the father of Xi in the oriented rooted 
tree T), or by F(i) = 0, if Xi is the root of one of the trees. 

1. Choose a compression method C for an individual map: given a bitmap X, 
C(X) is the result of C applied to X. 

2. Extend the set of bitmaps by adjoining X0, the zero-vector. 

3. (a) Using the Hamming distances as weights on the complete graph without 
self-loops having (X0, Xl, . . . , X,) as set of vertices, compute a minimum 
spanning tree T. 

(b) Consider T as an oriented tree rooted at X0. 

(c) The subtrees of X0 in T partition the original set of bitmaps. 

4. (a) If Xi is a vertex adjacent to X0 in T, then it is the root of one of the 
oriented trees: these bitmaps (one per tree) are compressed directly using C, 

B(i) f- C(X;) 

F(i) c- 0 

(b) A bitmap Xi, which is not the root of a tree, has a directed edge to 
another bitmap Xj in the same tree; Xi is compressed by first computing 
Xi = Xi XOR Xj and then compressing zi using C. 

B(i) + C(Xj) 

F(i) 6 j 

In the case of a set of bitmaps of an IR system+ the problems of compression and 
decompression are not exactly symetric. Compression is performed only once, during 
the construction of the system, and is applied to the entire set. Decompression, on 
the other hand, is practicalIy never needed simultaaeousIy for the entire set, but only 
for those maps associated with the keywords of a submitted query. We thus present 
the procedure decompress(i) which returns the original n-rap Xi. It uses the function 
C-l as the inverse of the compression function C -’ that is C-l decompresses bitmaps 
which have been compressed by C. 
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decompress(i) 

if i=o return( C--1(23(i)) ) 

else return( C-l(B(i)) XOR decompress(F(i)) ) 

We see that the savings in storage space gained by our clustering procedure come 
at the expense of increased processing time+ In order to recover the bitmap x’i, we 
need decompress all the maps forming the path from Xi to the root of the cluster x’; 
belongs to. 

4. &ample 

The database we chose for testing our algorithm is the Hebrew Bible, consisting 
of 305514 words which are partitioned into 929 chapters. The number of different 
words is 39647. Following the suggestion in 143 that bitmaps should be constructed 
only for words which appear more often than some fixed frequency threshold, we 
restricted ourselves to the 1478 words which appeared in at least 20 chapters. As a 
text segment, we defined a set of four consecutive chapters. The resulting bitmaps 
were [929/4] = 233 bits long. The total number of l-bits in the 1478 maps was 65734, 
or S = 44.47 l-bits per map. 

We first used the compression technique of Section 2.2 by itself. The optimal 
parameter k was [log2(233/44.47)] = 2. From equation (1) we thus get that the total 
number of bits needed t.o store the set of bitmaps in compressed form is 284404. For 
the uncompressed file we would need 1478 x 233 = 344374 bits, so that the simple 
met hod yields 17.470 compression. This k is indeed optimal for this method, since 
with k = 1 we get 11.6% compression, and with k = 3 we get 10.8%. 

W’e then applied Kruskal’s MST algorithm, which partitioned the set of bitmaps 
into 716 clusters. Of these, 530 were singletons, i.e., maps which couldn’t effect i vel y 
be XORed with some other map and which were therefore compressed without trans- 
formation. The other 948 bitmaps were partitioned into 186 clusters, each containing 
at least two elements. Since in each cluster, the root is compressed directly, the num- 
ber of bitmaps which were XORed before compression was 948 - 186 = 762. For 
these, the total number of l-bits decreased from 48590 to 33538, that is, by 31%. 

Considering the entire file of bitmaps, the overall number of l-bits decreased from 
65734 to 50658, or to S = 34.27 l-bits per bitmap. The optimal parameter k was thus 
[logz( 233/34.27) J = 2, as before. Substituting the values for m, S and 3 in equation 
(l), we find that the total number of bits needed to store the set of bitmaps if we use 
the clustering method of Section 3 is 239176. Relative to the noncompressed file this 
is a 30.5% reduction, and relative to using only the method of Section 2.2 without 
clustering, this is a 15.9% improvement. 

It is interesting to compare this to the information theoretic estimate of com- 
presibility. mentioned in the introduction. The probability of a l-bit in the original 
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Figure 1: Sample cluster produced by the MST algorithm 
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file is 0.19, yielding an entropy per bit of H = 0.703. This means that if the l-bits 
appear with the given frequency but independently from each other, the best possi- 
ble compression would be 29.7%. Indeed, we got only 17.4% when the bitmaps were 
compressed individually. Introducing the clustering, we exploit the dependencies be- 
tween different bitmaps, yielding compression savings of 30.5%, which is beyond those 
possible for independently generated maps. 

While most of the generated clusters were small (two to four elements), some 
formed deep trees with tens of bitmaps, and the largest consisted of a tree of depth 
15 with 112 vertices. A closer look at some of the larger clusters revealed interesting 
associations. Fig&e 1 shows a typical example. For each node in the tree, the Hebrew 
word is first given in English translitteration, using (ABGDHWZXtYKLMNSaPCQRST} 

respectively for (aleph, beth, . . . , tav}, as well as the translation of the word into 
English. 

In this cluster, 18 out of 28 words are numerals; these are clearly connected, as the 
Bible tends to give exact dimensions (note the words length and cubit) in certain 
detailed descriptions. See, for instance, Exodus 2’7:9-19, where a description of the 
court, the root of this cluster, is given. The depth of this tree is 5, which is therefore 
the maximal depth of the recursion for the decompression algorithm. Note also that 
the root of this cluster has a high in-degree. This was not always the case, as can be 
seen in the following example. 

To present the second example, we use a more compact representation, based on 
pre-order traversal of a tree. A tree can be represented recursively by its root, followed 
by the list of its subtrees enclosed in parenthesis. To improve readability, the level 
of the root of a subtree in the full tree appears as subscripts to the parentheses. We 
now give only the English translation of the word at each node (many Hebrew words 
must be translated into several English words). 

and they camped (1 night, and they saw, and they went out (2 the 

men (3 and they came (4 from before, and he sent (5 and they 
said, and he sat (6 and he, his people, and he went out )6, and 
he called (6 and he came (7 and now (8 please )s 17, and he gave 
(7 in the hand of )7, and he took (7 bread, and he did (6 two )8 

)7 )6 15n and they sat )4, and they went )3 )2 )I 

The 25 elements in this cluster form a tree of depth 8, but no node has higher 
in-degree than 3. Note that most of the words are verbs reIated to motion, all in the 
past tense, and in third person singular or plural. 

We also tried to apply the algorithm to sparser bitmaps, by defining a segment to 
be one, instead of four, chapters. The 1478 bitmaps then had a total of 95472 l-bits, 
so they were compressed with k = 3 and gave 59.9% compression. The clustering 
algorithm however produced only 300 bitmaps that were XORed; for these, the re- 
duction in the number of l-bits was about 21%, but nonetheless, the total number 
of l-bits remained quite large at 85195 bits. The optimal Ic now shifted to be 4, and 
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compression was improved by 7.5%; measured relative to the full file, a 62.9% reduc- 
tion was achieved. In this case, the theoretical optimum for independently generateh 
bitmaps with this I-bit density is 63.8%. 

In order to check the influence of the language of the database on the algorithm, 
we repeated the experiments with the King James Bible, again with a segment equal 
to one chapter. The improvement of the clustering method in this case was only 5.7%, 
again because only a small number of bitmaps (377 of 1454) were XORed, There were 
nevertheless some interesting clusters. For example: ‘Asher (1 Ephraim, Joseph, 
Manasseh, Simeon (2 Levi, Reuben (3 Gad )3 )2, Zebulun (2 Naphtali 

)29 Issachar (2 Benjamin, Dan )2 )I. This cluster contains the names of all 
the tribes, except Judah. The latter appears in another cluster, together with words 
like Jerusalem, reign, reigned, kings, etc. Clearly, Judah differs from the other 
tribes, as his name often refers to the kingdom or land of Judah. 

Summarizing our experiments, we see that the clustering algorithm works better 
when the bitmaps are not so sparse: very sparse vectors tend to have very few over- 
lapping l-bits, so that there is often no gain to be achieved by XORing. However, for 
the very sparse vectors, many of the known techniques already yield excellent results. 
Thus the clustering algorithm helps especially for those maps that are most difficult 
to compress. 

5. Conclusion and Future Work 

We have presented a new algorithm for transforming a set of bitmaps, which 
in principle may improve any previous compression method that does not take into 
account possible interrelationships among the different bitmaps. The experimental 
results suggest that the new method is particularly effective for bitmaps which are 
not extremely sparse, This may have several applications. 

For example, bit-slices of signature methods are often chosen so that the density 
of l-bits is $ [13]. Such vectors are almost impossible to compress individually. There 
may however be a possible gain by using clustering. Also, the possibility of compres- 
sion would permit us to increase the size of the signature, resulting in more efficient 
retrieval, whitout affecting the space requirements [2]+ Another application would be 
to IR bitmaps which have already been slightly compacted, such as the maps obtained 
by applying one iteration of the hierarchical bit-vector compression technique referred 
to in Section 2.1. Finally, there might be applications to areas outside of IR, such as 
image compression, where adjacent raster rows may be similar, or processing of genetic 
information, where different DNA strings often share long identical substrings. 
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