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ABSTRACT
We conducted a systematic review of 840 SIGIR full papers and
215 TOIS papers published between 2006 and 2015. The origi-
nal objective of the study was to identify IR effectiveness experi-
ments that are seriously underpowered (i.e., the sample size is far
too small so that the probability of missing a real difference is ex-
tremely high) or overpowered (i.e., the sample size is so large that
a difference will be considered statistically significant even if the
actual effect size is extremely small). However, it quickly became
clear to us that many IR effectiveness papers either lack signifi-
cance testing or fail to report p-values and/or test statistics, which
prevents us from conducting power analysis. Hence we first report
on how IR researchers (fail to) report on significance test results,
what types of tests they use, and how the reporting practices may
have changed over the last decade. From those papers that reported
enough information for us to conduct power analysis, we identify
extremely overpowered and underpowered experiments, as well as
appropriate sample sizes for future experiments. The raw results of
our systematic survey of 1,055 papers and our R scripts for power
analysis are available online. Our hope is that this study will help
improve the reporting practices and experimental designs of future
IR effectiveness studies.
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1. INTRODUCTION
In experiments for retrieval effectiveness evaluation, the de facto

standard is the practice of comparing the mean evaluation mea-
sure scores across topics by means of statistical significance tests
such as the (paired and unpaired) t-test and Analysis of Variance
(ANOVA). While alternative approaches to these standard tests ex-
ist (e.g., Carterette’s Baysian inference [3], Robertson and Kanoula’s
view of documents as the source of variance [12], and Killeen’s
probability of replication for experiments in psychology [10]), so
far they have not yet enjoyed the same popularity as the classical
significance tests in the IR community.
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In standard signifiance testing, the test statistic (e.g., the t statis-
tic for the t-test and the F statistic for ANOVA) is a function of
the effect size (i.e., the actual magnitude of the difference between
systems) and the sample size (i.e., the number of topics, users etc.),
even though what we are usually interested in is the effect size:
is the difference “substantial”? However, due to the above rela-
tionship, increasing the sample size increases the value of the test
statistic, which in turn decreases the p-value (i.e., the probability
of observing the obtained result or something more extreme under
the null hypothesis). Since we conclude a result to be statistically
significant if, for a predetermined significance level α, we observe
that p-value ≤ α holds, we can make anything statistically signif-
icant by using a large enough sample. Conversely, if the sample
size is too small, we might be missing differences that we really
should be detecting. While α is the predetermined probability of
Type I error (detecting a nonexistent difference), β is the probabil-
ity of Type II error (missing a real difference), and the ability to
detect a real diffrence, given by (1 − β), is the statistical power.
The combination (α, β) = (0.05, 0.20), known as Cohen’s five-
eighty convention (where “eighty” refers to 80% power), is often
used as a standard setting for determining the sample size for an
experiment [5, 15].

Recent statistically motivated studies have suggested that topic
sets used in IR test collections should be substantially larger than
they currently are in order to meet a clear set of statistical require-
ments. For example, Sakai’s topic set size design results show that
if researchers use the paired t-test for ad hoc IR and want to en-
sure Cohen’s five-eighty convention for any system difference of
0.05 (or higher) in mean average precision, about 300 topics are
required [15]1. Urbano, Marrero and Martín conclude that “in most
cases a couple hundred” topics are required for stable system rank-
ings from their study based on the Generalisability Theory [20].
While these studies do not imply that all system comparison exper-
iments based on 50 topics are invalid, they do suggest that some of
the experiments may be underpowered: we may be missing a lot
of real differences due to small sample sizes. On the other hand,
the advent of web search engines brought with it the practice of
using thousands or even millions of queries from their query log
data for averaging; we suspected that some of such studies may
be overpowered: even if the effect size is very small, statistically
significant differences can be obtained due to large sample sizes.
The original objective of this study was to identify IR effectiveness
experiments that are extremely underpowered or overpowered.

We conducted a systematic review of 840 ACM SIGIR full pa-
pers and 215 ACM TOIS papers published between 2006 and 2015.
SIGIR is considered by many to be the premier conference in IR,

1Over 700 topics are required if unstable measures such as ex-
pected reciprocal rank (ERR) is used [15].
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while TOIS enjoys a similar status in the journal domain; this jour-
nal explicitly instructs authors as follows: “When reporting statis-
tics, the name of the statistic, the degrees of freedom, the value
obtained, and the p-value should be reported, e.g., F (3, 65) =
4.83, p < 0.01”2. However, it quickly became clear to us that
many IR effectiveness papers published in SIGIR and TOIS either
lack significance testing or fail to report p-values and/or test statis-
tics, which prevents us from conducting power analysis. Hence we
first report on how IR researchers (fail to) report on significance test
results, what types of tests they use, and how the reporting practices
may have changed over the last decade. From those papers that
reported enough information for us to conduct power analysis, we
identify extremely overpowered and underpowered experiments, as
well as appropriate sample sizes for future experiments. The raw
results of our systematic survey of 1,055 papers are available on-
line. We hope that this study will help improve the reporting prac-
tices and experimental designs of future IR effectiveness studies.

2. PRIOR ART
Two papers directly inspired us to conduct the present systematic

review. The first is the study by Armstrong et al. [1]: they examined
SIGIR papers in the period 1998-2008 and CIKM papers in the pe-
riod 2004-2008 to investigate whether IR systems have improved
over the years. A total of 106 papers, which contained IR effec-
tiveness results using TREC test collections, were analysed in their
survey. One of their main findings was that researchers often claim
statistically significant results but use low baselines for compari-
son. The second is the study by Kelly and Sugimoto [9]: they anal-
ysed 127 journal and conference papers selected from 2,791 papers
in the period 1967-2006 and investigated the evaluation practices in
interactive information retrieval (IIR), including experimental de-
signs, corpora and measures used. In the present study, we tried to
follow Kelly and Sugimoto’s description of systematric reviews to
the best of our ability: “Researchers articulate a plan for gather-
ing and analyzing studies and attempt to be exhaustive with their
coverage of the literature. Researchers also take a neutral position
during analysis and attempt to create generalizations from findings.
Systematic reviews adhere to strict scientific guidelines to minimize
potential selection and interpretation biases to ensure replicability
(and hence reliability).” Like Armstrong et al. [1], we are primarily
interested in system effectiveness studies that typically rely on aver-
aging across a set of topics. However, as we shall see, some of the
findings from the present study partially overlap with one of Kelly
and Sugimoto’s main finding from their systematic review of IIR
studies: “Because of the basic goals and design of these studies,
the majority of researchers used either ANOVA or t-tests to ana-
lyze the results. [...] In some cases, the type of test conducted was
not reported although statistically significant results were claimed
and/or p-values were presented.”

Sanderson and Zobel [16] report on a small-scale survey which
is also relevant to our present study: they examined 26 system ef-
fectiveness papers from SIGIR 2003 and 2004 to see which sig-
nificance tests and evaluation measures were used. Their findings,
which are also in line with ours, are perhaps also worth quoting:
“We found that significance was not explicitly reported in 14 of
the papers. In two it was implied such tests had been tried, but
outcomes were not given. In three or four of these papers, the im-
provements were large and arguably a significance test was unnec-
essary. However, in at least six papers (23% of the sample) the
reported improvements were small, sometimes no more than a few
percent in relative MAP.”; “Among the 12 papers with significance

2https://tois.acm.org/authors.cfm visited April 12, 2016.

Table 1: Statistics of the ACM papers examined in this study.
Year SIGIR TOIS (Volume.Issue) SIGIR+TOIS
2006 74 17 (24.1-24.4) 91
2007 85 23 (25.1-26.1) 108
2008 85 24 (26.2-27.1) 109
2009 78 18 (27.2-27.4) 96
2010 87 28 (28.1-29.1) 115
2011 108 16 (29.2-29.4) 124
2012 98 25 (30.1-30.4) 123
2013 73 22 (31.1-31.4) 95
2014 82 21 (32.1-32.4) 103
2015 70 21 (33.1-33.4) 91
Total 840 215 1,055

tests, one used both ANOVA and the t-test, five each used either the
t-test or Wilcoxon’s test, and in one, the test was not identified.”

In the present study, we manually examined 1,055 SIGIR and
TOIS papers, and found that at least 862 of them appear to deserve
statistical significance testing for performance differences; we then
analysed these 862 papers further. This number is substantially
higher compared to the above studies, although the numbers are not
directly comparable due to differences in objectives and methods of
analysis. More importantly, unlike prior art, we conducted power
analysis for 133 papers that reported the p-value and/or the test
statistic, and computed the achieved power as well as appropriate
sample sizes for future experiments.

3. SURVEY METHOD
The primary purpose of this systematic survey is to examine how

IR researchers, especially those working on improving IR effective-
ness, use statistical significance tests, and to conduct power analy-
sis wherever possible. We are interested, for example, in whether
the topic set sizes are appropriate in test collection-based studies,
and whether the number of participants or observations is appropri-
ate in user-based studies. Table 1 shows the number of papers per
year that we examined3. First, we created two lists of DOIs, one for
SIGIR and the other for TOIS, on separate sheets in an Excel file,
and we created columns in the Excel sheets according to a strict
coding scheme as described below. Then, the author of this paper
manually examined each paper at least twice. The coding started
in February 2015, and was completed in October 2015. The pdf
file of each paper was downloaded from the ACM digital library
and was viewed on computer screen; for some papers that required
careful interpretations of significance test results, hard copies were
also used4.

3.1 Coding Scheme
Each paper was coded in an Excel file as follows.

Step 1 Does the paper contain a table or figure of mean effective-
ness, mean user performance, etc. that appears to deserve
significance testing? If YES, select and record the name of
one such table or figure, which we refer to as a representa-
tive table throughout this paper. No representative table was
selected for papers that did not discuss IR effectiveness (e.g.,
those only discussing efficiency or theory). Note that we do
not look at the magnitude of the difference in means here;
Instead, Step 5 quantifies effect sizes wherever possible.

Step 2 Does the paper conduct a significance test? Assign exactly
one category from (A)-(I) shown in Table 2. If multiple test
types are used, pick a primary one, preferably from (A)-(E)

3TOIS published Volume 34 Issue 1 (6 papers) in October 2015.
These papers are outside the scope of this study.
4The pdf files of three SIGIR papers were not searchable by Ctrl-F;
for these cases also, hard copies were used.
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Table 2: Paper categorisation scheme used in this study.
Category

(A) Unpaired t-test
(B) Paired t-test
(C) One-way ANOVA
(D) Two-way ANOVA without replication
(E) Two-way ANOVA
(F) Other tests
(G) Test type not specified
(H) CIs used instead of significance tests
(I) No significance tests

Table 3: Subcategories for papers that compare two systems
(Sub) category significance test type
(A) Unpaired t-test
(B) Paired t-test
(F1) Wilcoxon signed rank test
(F2) Sign test
(F3) Bootstrap test
(F4) Randomisation test
(F5) Wilcoxon rank sum test (Mann-Whitney U test)
(F6) Other tests

to enable power analysis. Specifically, we searched for “sta-
tistical”, “signi”, “test” and “ANOVA” within the pdf file.

Step 3 If categorised as (I) in Step 2, check if the paper claims
“significance” and record the exact expressions in an Excel
popup comment. Section 4.2 provides more details.

Step 4 If categorised as (A)-(G) in Step 2, record whether the p-
value and/or test statistic is reported. If only the p-value is
reported, and if categorised as (A)-(E) in Step 2, compute the
test statistic as described later (Eqs. 1-2).

Step 5 If the test statistic for categories (A)-(E) is obtained in Step 4
and the sample sizes actually used are indicated in the paper,
conduct power analysis using tools described in Section 3.2
under Cohen’s five-eighty convention (α = 0.05, β = 0.20).
If the achieved power is 0.99 or higher, label the paper as
overpowered; else if the achieved power is 0.50 or below, la-
bel the paper as underpowered; otherwise, label it as about
right. Also, record the effect size and the future sample sizes
(i.e., recommended sample sizes for new experiments with
similar purposes and settings) that are output by the tool.
While the above power thresholds are arbitrary, note that the
interested reader can easily apply different thresholds to our
raw Excel file.

Step 6 In addition, copy and paste sentences from the paper that
are relevant to power analysis (e.g., how exactly they re-
port the p-values and test statistics). Save them as an Excel
popup comment. Record the investigator’s (i.e., the present
author’s) own comments in an Excel cell.

In Step 2, if the paper mentioned a t-test but did not indicate
two sample sizes, we assumed that the test is paired (Category (B))
as this is the typical setting in test collection-based studies; if the
paper did not indicate whether the test is two-sided or one-sided,
we interpreted it as the more conservative two-sided test when con-
ducting power analysis. Category (G) was chosen if the paper men-
tioned a significance level (α), a p-value, or just statistical signifi-
cance, but did not specify the significance test used; Category (H)
was chosen if the paper did not mention any significance testing but
used CIs, boxplots, (often unexplained) error bars, or reported stan-
dard errors/deviations. Category (I) was chosen if the paper did not
mention significance testing at all, even if it claimed “significant”
improvements (without using the word “statistical”).

In Step 4, we considered the p-value as “reported in the paper”
if the exact p-value was reported. We did not regard “p < 0.1, p <
0.05, p < 0.01” as exact p-values; rather, we regarded them as
the predetermined significance level α, which may or may not be
substantially larger than the actual p-values. On the other hand,
we count “p < 0.001” and smaller values as “reported in the pa-
per” as such values should be accurate enough for power analysis.
Whenever the test statistic t was not reported but the p-value and
the sample sizes were, we deduced the test statistic as:

t = tinv (φ; p-value) (1)

where tinv(φ;P ) is the critical t value for φ degrees of freedom and
probability P , obtained with Microsoft Excel as T.INV.2T(P, φ)
for two-sided tests, or T.INV(1 − P, φ) for one-sided tests5. For
paired t-tests with sample size n, we let φ = n − 1; for unpaired
t-tests with sample sizes n1 and n2, we let φ = n1 + n2 − 2.
Similarly, for ANOVA results where p-values were reported but
the F values were not, we computed them as follows whereover
possible:

F = Finv (φ1, φ2; p-value) (2)

where Finv(φ1, φ2;P ) is the critical F value for (φ1, φ2) degrees
of freedom and probability P , or F.INV.RT(P, φ1, φ2) with Mi-
crosoft Excel. The degrees of freedom are computed in accordance
with ANOVA.

After coding each paper as described above, we focussed on pa-
pers labelled “(F) Other tests” and assigned a subcategory to each
of them, for the purpose of examining the popularity of different
significance tests for comparing two systems. The subcategories
are shown in Table 3; (A)-(F5) are used in the analysis in Sec-
tion 4.3. Category (F6) includes papers that used nonparametric
tests for more than two systems.

Admittedly, even though our coding scheme is systematic, it is
impossible to completely rule out the possibility that the present
author has misinterpreted some of the papers. To accommodate
correction, we have created a twitter account solely for this pur-
pose6: if an assessment of a paper needs to be corrected, the author
of that paper can point this out by using either TOIS or SIGIR
followed by the last seven digits of the paper’s DOI as the hash-
tag (e.g., #SIGIR1148261). Recall that our intepretation of each
paper is available as a raw Excel file and therefore that it is easy
to correct it. However, it is highly unlikely that these minor “bug
reports” will affect the main conclusions of the present paper.

3.2 Power Analysis Tools
We conducted a power analysis for every paper in Categories

(A)-(E) where the test statistic and actual sample sizes were ob-
tained, based on modified versions of t-test and ANOVA power
analysis tools provided by Toyoda [19]. The original R scripts of
Toyoda, which simply rely on R’s library pwr7, are available at
the publisher’s website8; our own versions, which differ from Toy-
oda’s only in input and output specifications9, are available from
our website10, along with our raw systematic review results. We
provide a function for each significant test type, for computing the
5For one SIGIR 2014 paper, the t statistic was computed by divid-
ing the mean difference by the reported standard error of the mean.
This paper is discussed in Section 4.6 (Table 7 Entry #12).
6http://twitter.com/IRsysrev
7https://cran.r-project.org/web/packages/pwr/pwr.pdf
8http://www.tokyo-tosho.co.jp/download/DL02065.zip
9The present author is solely responsible for the modifications and
any errors introduced thereby.

10http://www.f.waseda.jp/tetsuya/data.html

7



effect size, achieved power and recommended future sample sizes.
In what follows, we adhere to Toyoda’s notations when we refer to
effect sizes (ês for t-tests; f̂ and f̂2 for ANOVA).

3.2.1 Unpaired (i.e., two-sample) t-test
Our R function for unpaired t-tests is called

future.sample.unpairedt, whose arguments are the t statis-
tic (t), two sample sizes (n1, n2), whether the test is two-sided or
one-sided (default: two-sided), α, and power (1− β) (default: Co-
hen’s five-eighty convention). The script computes first the sam-
ple effect size ês = |t|√(n1 + n2)/(n1n2) (which expresses the
between-system difference in standard deviation units) and then the
achieved power and the recommended sample size per group n′ for
future experiments, by calling the function power.t.test (if
n1 = n2) or pwr.t2n.test (if n1 �= n2). If a paper reports
n1 + n2 but not n1 and n2 individually, we assume that n1 = n2.

3.2.2 Paired t-test
Our R function for paired t-tests is called

future.sample.pairedt, whose arguments are the t statistic
(t), the sample size (n), whether the test is two-sided or one-sided
(default: two-sided), α, and power (1 − β) (default: Cohen’s five-
eighty convention). The script computes first the sample effect size
ês = |t|/√n and then the achieved power and the future sample
size n′, by calling power.t.test.

3.2.3 One-way ANOVA
Our R function for one-way ANOVA tests is called

future.sample.1wayanova, whose arguments are theF statis-
tic (F ), number of groups being compared (m), number of obser-
vations per group (n), α, and power (1 − β) (default: Cohen’s
five-eighty convention). The script computes first the sample effect
size f̂ =

√
φAF/φE (where φA = m − 1, φE = m(n − 1))

and then the achieved power and the future sample size per group
n′, by calling pwr.anova.test. Here, f̂ is an estimate of how
large the between-group population standard deviation is compared
to the within-group population standard deviation.

3.2.4 Two-way ANOVA without Replication
Our R function for two-way ANOVA (without replication) tests

is called future.sample.2waynorep, whose arguments are
the same as future.sample.1wayanova. The script first com-
putes the sample effect size f̂2 = φAF/φE (where φA = m −
1, φE = (m − 1)(n − 1)) and then the achieved power and the
future sample size per group n′, by calling pwr.f2.test. Note
that this tool outputs f̂2 rather than f̂ as the effect size, simply be-
cause that is what pwr.f2.test requires as an argument11. An
equivalent way to express f̂2 would be f̂2 = η2

p/(1 − η2
p), where

η2
p expresses how much of the total variance (after removing other

effects) is due to factor A; it can be computed as η2
p = φAF

φAF+φE
.

Also, ηp is known as the partial correlation ratio.

3.2.5 Two-way ANOVA
Our R function for two-way ANOVA tests is called

future.sample.2wayanova, whose arguments are theF statis-
tics (FA, FB , FAB ), number of groups (m), number of cells per
group (n), total number of observations (N ), α, and power (1− β)
(default: Cohen’s five-eighty convention). For example, A,B,AB
could represent the system and topic effects and the interaction be-
tween them, respectively. Let the degrees of freedom for A,B,AB
and the residual E be φA = m − 1, φB = n − 1, φAB = (m −

11http://127.0.0.1:25552/library/pwr/html/pwr.f2.test.html

Figure 1: Number of papers concerning results reported in Sec-
tions 4.1, 4.2, 4.3, and 4.6 (SIGIR+TOIS).

1)(n − 1), φE = N − mn. Then the sample effect size for A is

given by f̂A =
√

η̂2
pA/(1− η̂2

pA), where η̂2
pA = φAFA

φAFA+φE
; f̂B

and f̂AB are computed similarly. The achieved power and the to-
tal sample size for future experiments N ′ are computed by calling
pwr.anova.test.

4. RESULTS
In Step 1 of the coding scheme described in Section 3.1, a rep-

resentative table was selected for 700 out of the 840 SIGIR papers
(83%), and for 162 papers out of the 215 TOIS papers (75%). Thus,
our view is that at least 862 papers out of the 1,055 papers that we
examined may deserve statistical significance testing for comparing
mean effectiveness scores and the like. Hereafter, we focus our at-
tention to these 862 papers. Figure 1 provides an overview of some
of the results reported in this section, in terms of paper counts.

4.1 Paper Distribution over Categories
Figure 2 shows the distributions of the aforementioned 700 SI-

GIR and 162 TOIS papers over the seven categories shown in Ta-
ble 2. Paper counts are shown in addition to percentages. It can
be observed that the distributions for SIGIR and TOIS are similar:
35-37% of the papers use the paired t-test (Category (B)); about
28-30% do not report significance test results even though these pa-
pers have a representative table (Category (I)); and about 18-24%
use tests other than the t-test or ANOVA (Category (F))12. We shall
examine Catgories (I) and (F) more closely in Sections 4.2 and 4.3,
respectively.

Figure 3 shows the distribution of papers over the categories and
across the timeline; the top graph shows the results for SIGIR; the
bottom one shows the results obtained by summing the SIGIR and
TOIS statistics. The number of TOIS papers alone per year is con-
sidered too small for our analysis and are not shown here. For each
year, the number of papers in each category is divided by the total
number of papers with a representative table for that year; the latter
is shown below the x axis for each year. It appears that the the use
of the paired t-test is now more common than a decade ago, and
that we are also seeing fewer papers without statistical significance
tests. In Section 4.4, we shall compare the results for 2006 and
those for 2015 from this viewpoint.

12Recall, however, that we had to select exactly one significance
test type per paper even if both t-tests and ANOVA were used in
the same paper.
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Figure 2: Distributions of papers with a representative table
over categories.

Table 4: Category (I) papers (no significance tests): Column (a)
shows the number of papers that claim “significant” improve-
ments and the like; Column (b) shows the number of papers
that make no such claims. For the SIGIR and SIGIR+TOIS
columns, the percentages are also shown, where the denomina-
tors are the paper counts shown in Figure 3.

SIGIR TOIS SIGIR+TOIS
(a) (b) (a) (b) (a) (b)

2006 14 (23%) 12 (20%) 1 3 15 (21%) 15 (21%)
2007 21 (32%) 6 (9%) 1 1 22 (27%) 7 (9%)
2008 14 (19%) 8 (11%) 0 2 14 (15%) 10 (11%)
2009 15 (22%) 4 (6%) 5 1 20 (25%) 5 (6%)
2010 10 (13%) 6 (8%) 5 3 15 (15%) 9 (9%)
2011 13 (15%) 15 (17%) 3 1 16 (16%) 16 (16%)
2012 19 (25%) 8 (11%) 6 0 25 (26%) 8 (8%)
2013 7 (13%) 7 (13%) 4 1 11 (15%) 8 (11%)
2014 11 (15%) 4 (5%) 4 1 15 (17%) 5 (6%)
2015 10 (16%) 5 (8%) 4 0 14 (18%) 5 (6%)
total 134 (19%) 75 (11%) 33 13 167 (19%) 88 (10%)

4.2 Claiming Significance without Providing
Significance Test Results

Why are there so many papers without significance tests despite
explicit instructions such as the ones from TOIS (Section 1)? Re-
call that all of these Category (I) papers have a representative table
that appears to deserve significance testing. Possible good reasons
include: (i) the authors consider statistical significance testing to
be of limited or no value (e.g. [7, 8]); (ii) the authors judge that
significance testing is unnecessary in their particular situations be-
cause either the sample size and/or the effect size is very large, or
because the difference is not the central point the study. For ex-
ample, one SIGIR 2012 paper (DOI: 10.1145/2348283.2348301)
states: “Since the present study does not aim to prove one retrieval
method better than another, we report the findings without tests on
significance of statistical differences.” [2]. In Category (I), how-
ever, we did find some papers that use expressions such as “signif-
icant improvement” and “significantly outperform” in the context

Figure 3: Distributions of papers with a representative table
over categories across 10 years.

of discussing effectiveness even though statistical significance tests
are never mentioned. Some of these claims are even made in the
paper abstracts and conclusions. We argue that such practices are
quite misleading and that the use of ambiguous expressions such
as those mentioned above should be avoided. Table 4 breaks down
the Category (I) papers from each year into papers that claim “sig-
nificant” improvements and the like, and those that do not. It is
worrying that 167 papers (19%) out of 862 papers with a represen-
tative table say “significant” without conducting significance tests,
even if in some cases it may be clear from the context that the word
is being used in the non-statistical sense.

4.3 Comparing Two Systems: Popular Tests
As was mentioned in Section 3.1, we used the subcategories

shown in Table 3 to examine which significance tests are popu-
lar for comparing two systems. Historically, IR researchers in the
20th century were relatively reluctant to use parametric tests [14],
but nowadays the robustness of the t-test (which is parametric) is
recognised and the test is widely used. Savoy [17] and Sakai [13]
advocated the use of the bootstrap test in 1997 and 2006, respec-
tively, while Smucker, Allan and Carterette [18] advocated the ran-
domisation test in 2007. Are these computer-based, distribution-
free tests used more often now? Figure 4 breaks down 365 SIGIR
papers and 99 TOIS papers that used a significance test for compar-
ing two systems by test type. Again, the overall pictures are very
similar for these two venues: 61-66% of these papers use the paired
t-test; 20-23% use the Wilcoxon signed rank test13; 4-5% use the
randomisation test; 3-4% use the sign test; only 1% use the boot-
strap test. Recall, however, that we picked one primary test from
each paper even if it utilised multiple test types. Figure 5 shows
how the popularity of these tests have changed over the last decade;
note that the bottom graph aggregates the statistics from SIGIR and
TOIS as before. It appears that the paired t-test is now more popu-

13“Wilcoxon test” was always interpreted as the Wilcoxon signed
rank test, not as the Wilcoxon rank sum test.
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Figure 4: Distributions of papers over significance test types for
comparing two systems.

lar than it was 10 years ago, and that the Wilcoxon signed rank test
is less so. In Section 4.4, we shall compare the results for 2006 and
2015 from this viewpoint.

We came across a few papers that explicitly discussed why a
particular test type was chosen, although we did not conduct an ex-
haustive search for such comments. In a TOIS paper from 2012
(10.1145/2382438.2382445), the authors cite Sanderson and Zo-
bel’s SIGIR 2005 paper [16] and state: “We report statistical sig-
nificance test results using the nondirectional paired t-test at a con-
fidence level of 0.01, since this test has been shown to be more reli-
able than the Wilcoxon and signed tests” [6]; A SIGIR 2008 paper
(10.1145/1390334.1390407) provides a similar argument. In a SI-
GIR 2015 paper (10.1145/2766462.2767700), the authors cite the
aforementioned CIKM 2007 paper by Smucker et al. [18] as well
as Sanderson and Zobel [16], and choose the randomisation test.

4.4 Have the Proportions Changed over the
Last Decade?

Figures 3 and 5 suggest the following four clear trends: (1) In
Figure 3, the proportion of Category (I) (no significance tests) pa-
pers is decreasing; (2) Similarly, the proportion of Category (B)
(paired t-test) papers is increasing; (3) In Figure 5, the proportion
of Category (F1) (Wilcoxon signed-rank test) papers is decreasing;
(4) Similarly, the proportion of Category (B) (paired t-test) papers
is increasing. Recall that Figure 3 considers all papers with a rep-
resentative table, while Figure 5 only considers papers that used a
significance test for comparing two systems. Ideally, these obser-
vations deserve a time series analysis, where an observation from a
given year is modelled as a function of an observation from previ-
ous years along with some noise. However, this would not be very
useful with our data with only ten data points. An obvious alterna-
tive is to regard the observation from each year as an independent
sample to conduct standard significance testing, but in practice the
independence assumption is highly unlikely to hold: for example,
if many SIGIR paper authors use the t-test in 2014, those who sub-

Figure 5: Distributions of papers over significance test types for
comparing two systems across 10 years.

mit a paper to SIGIR 2015 are also likely to do so, perhaps after
reading some of the SIGIR 2014 papers. Due to the above consid-
erations, we focus our attention on the comparison between 2006
and 2015, i.e., the leftmost and rightmost results in Figures 3 and 5,
and conduct significance testing for two samples, each from a dif-
ferent population, under an independence assumption. Below, we
describe our (two-sided) significance testing procedure for compar-
ing two proportions (one from 2006 and the other from 2015) [11].

From the first population, we draw a sample of size n1, and find
that x1 of them holds a certain property (e.g., lacks significance
testing); the observed proportion is x1/n1. The observed propor-
tion for the second population is defined similarly as x2/n2. The
null hypothesis H0 is that the true proportions are equal: P1 =
P2 = P . Let P̂ ∗

1 = x1+0.5
n1+1

, P̂ ∗
2 = x2+0.5

n2+1
, P̂ ∗ = x1+x2+0.5

n1+n2+1
,

which are the estimates of the true proportions P1, P2, P with con-
tinuity corrections, respectively. Under H0, it is known that the
distribution of P̂ ∗

1 − P̂ ∗
2 can be approximated by

N(0, P (1−P )( 1
n1

+ 1
n2

)). Hence a z-test can be performed using
the following test statistic:

u0 =
P̂ ∗
1 − P̂ ∗

2√
P̂ ∗
1 (1− P̂ ∗

1 )(
1
n1

+ 1
n2

)
. (3)

The point estimate for the true difference between the two propor-
tions is given by P̂ ∗

1 − P̂ ∗
2 , whereas the margin of error (MOE ) for

computing the 95% CI is given by:

zα/2

√
P̂ ∗
1 (1− P̂ ∗

1 )

n1
+

P̂ ∗
2 (1− P̂ ∗

2 )

n2
, (4)

where zα/2 is the critical z value for probability α/2 = 0.025
(since we want 95% confidence).

Our four null hypotheses, which correspond to the aforemen-
tioned trends (1)-(4), state that the population proportion computed
for 2015 is equal to that for 2006. We denote them as H1

0 ,H
2
0 , H

3
0 ,H

4
0 .

Table 5 summarises the results of the significance tests; Part (a)
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Table 5: Statistical significance test results: comparing the pro-
portions from 2006 and those from 2015.

(a) SIGIR H1
0 H2

0 H3
0 H4

0

n1 (2006) 60 60 27 27
x1 (2006) 26 11 12 11
n2 (2015) 62 62 34 34
x2 (2015) 15 24 5 24
p-value 0.028 0.015 0.013 0.023
P∗

1 − P∗
2 0.188 −0.200 0.289 −0.289

95% CI [0.023, [−0.357, [0.065, [−0.530,
0.353] −0.044] 0.513] −0.048]

(b) SIGIR+TOIS H1 H2 H3 H4

n1 (2006) 71 71 32 32
x1 (2006) 30 14 13 14
n2 (2015) 79 79 46 46
x2 (2015) 19 33 6 33
p-value 0.019 0.004 0.006 0.015
P∗

1 − P∗
2 0.180 −0.217 0.271 −0.273

95% CI [0.031, [−0.361, [0.073, [−0.489,
0.329] −0.074] 0.468] −0.057]

uses data from the SIGIR papers only, while Part (b) uses both SI-
GIR and TOIS papers. It can be observed that all the p-values are
below α = 0.05, and that all of the above null hypotheses are re-
jected. More importantly, the 95% CIs for H1

0 and H3
0 are above

zero, while those for H2
0 and H4

0 are below zero. Hence, we can
conclude, for both Parts (a) and (b), as follows:

1. The proportion of Category (I) (no significance tests) papers
among those with a representative table in 2015 is statisti-
cally significantly smaller compared to 2006;

2. The proportion of Category (B) (paired t-test) papers among
those with a representative table in 2015 is statistically sig-
nificantly larger compared to a 2006;

3. The proportion of Category (F1) (Wilcoxon signed-rank test)
papers among those using a test for comparing two systems
in 2015 is statistically significantly smaller compared to 2006;

4. The proportion of Category (B) (paired t-test) papers among
those using a test for comparing two systems in 2015 is sta-
tistically significantly larger compared to 2006.

4.5 Do Researchers Report p-values and/or test
statistics?

Next, we focused on papers (with a representative table) that did
conduct significant tests, regardless of the test type. For 453 SI-
GIR papers and 112 TOIS papers in Categories (A)-(G), Step 4
described in Section 3.1 further categorised them into four classes:
(i) both exact p-values and test statistics are reported; (ii) only exact
p-values are reported (from which test statistics may be deduced if
the sample sizes are known); (iii) only test statistics are reported;
and (iv) neither is reported. Note that Class (iv) includes papers
that specify a significance level α but does not report the exact
p-values. Researchers (who accept and rely on classical signifi-
cance tests) should report p-values and effect sizes. Saying “sig-
nificant at α = 0.05” leads to dichotomous thinking (“significant
or not?”) [5], and is not very informative for the reasons discussed
in Section 1. Figure 6 visualises the proportion of Classes (i)-(iii)
against Class (iv) papers for each year. It also contains a table of
the actual number of papers. It can be observed that over one half
of the papers with significance tests report neither p-values nor test
statistics, and that the situation does not seem to be improving.

Figure 6: Proportion of papers (with a representative table)
that report either p-values or test statistics (or both).

Table 6: Number of papers (with a representative table) with
(a) an overpowered experiment (power ≥ 0.99); (b) an under-
powered experiment (power ≤ 0.50); (c) “about right” experi-
ment (0.50 < power < 0.99).

SIGIR TOIS SIGIR+TOIS
(a) (b) (c) (a) (b) (c) (a) (b) (c)

(A) Unpaired t-test 3 1 7 0 0 5 3 1 12
(B) Paired t-test 16 4 44 7 2 17 23 6 61
(C) One-way ANOVA 7 1 6 1 0 1 8 1 7
(D) Two-way ANOVA 1 1 4 1 0 0 2 1 4
without replication
(E) Two-way ANOVA 2 0 2 0 0 0 2 0 2
total 29 7 63 9 2 23 38 9 86

4.6 Overpowered? Underpowered?
Among the 200 “good practice” papers indicated in Figure 6, we

were able to conduct a power analysis for 99 SIGIR papers (75 with
t-tests and 24 with ANOVA tests) and 34 TOIS papers (31 with t-
tests and 3 with ANOVA test); the other 67 papers used other signif-
icance test types. Table 6 shows the paper counts for overpowered,
underpowered, and “about right” papers for Categories (A)-(E). It
can be observed that as many as 38 (29%) out of the 133 papers
that went through power analysis are overpowered: the achieved
power is 99% or higher for these papers. Whereas, only 9 (7%)
papers were found to be underpowered: the achieved power is 50%
or lower.

Hereafter, we focus on the power analysis results for SIGIR pa-
pers. Table 6 “SIGIR (a)” column shows that we found a total of
19 “overpowered” and 5 “underpowered” papers with t-tests (Cat-
egories (A) and (B)), as well as 10 “overpowered” and 2 “under-
powered” papers with ANOVA tests (Categories (C)-(E)). Tables 7
and 8 provide complete power analysis results for these papers. Re-
call that n and n′ denote the actual and future sample sizes per
group, while N and N ′ denote the actual and future total sam-
ple sizes (Section 3.2). To quantify the gap between actual and
future sample sizes, let us define sample size ratio as the actual
sample size divided by the future sample size. Figure 7 plots sam-
ple size ratios against the achieved power; the baloons in the figure
indicate which paper in Table 7 or 8 each dot corresponds to. For
example, the top right balloon in Figure 7(a) indicates the third en-
try in Table 7, for which the effect size is ês = 1.864 (a “large”
effect [4]) and the achieved power is 100%; although the actual
sample size was n = 192, in fact n′ = 5 is sufficient. The left-
most balloon in Figure 7(a) indicates the 24th entry in Table 7, for
which ês = 0.180 (a “small” effect [4]) and the achieved power is
only 15.2%; although the actual sample size was n = 28, in fact
n′ = 244 is needed to ensure 80% power. Similar relationships can
be observed between Figure 7(b) and Table 8.
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Table 7: SIGIR papers with overpowered (power ≥ 0.99) and underpowered (power ≤ 0.50) t-tests. Papers are sorted by achieved
power, then by effect size.

# year doi (10.1145/*) test type t actual sample size effect size ês achieved power future sample size
1 2010 1835449.1835485 (B) Paired t-test 10.60 n = 23 2.209 1 n′ = 4
2 2006 1148170.1148249 (B) Paired t-test −25.27 n = 182 1.873 1 n′ = 5
3 2009 1571941.1571991 (B) Paired t-test 25.83 n = 192 1.864 1 n′ = 5
4 2007 1277741.1277784 (B) Paired t-test 5.68 n = 45 0.846 1 n′ = 14
5 2010 1835449.1835518 (A) Unpaired t-test −7.42 n1 = 486, n2 = 114 0.772 1 n′ = 28
6 2014 2600428.2609577 (B) Paired t-test 11.41 n = 234 0.746 1 n′ = 17
7 2008 1390334.1390407 (B) Paired t-test 7.46 n = 100 0.746 1 n′ = 17
8 2010 1835449.1835459 (A) Unpaired t-test 7.40 n1 = n2 = 605 0.425 1 n′ = 88
9 2008 1390334.1390352 (B) Paired t-test 7.51 n = 600 0.307 1 n′ = 86

10 2012 2348283.2348313 (B) Paired t-test 8.26 n = 7341 0.096 1 n′ = 847
11 2014 2600428.2609602 (A) Unpaired t-test 7.07 n1 = n2 = 96762 0.032 1 n′ = 15174
12 2014 2600428.2609617 (B) Paired t-test 16.00 n = 5352460 0.007 1 n′ = 164107
13 2008 1390334.1390412 (B) Paired t-test 5.07 n = 8000 0.057 0.999 n′ = 2441
14 2007 1277741.1277821 (B) Paired t-test 5.03 n = 25 1.006 0.998 n′ = 10
15 2006 1148170.1148214 (B) Paired t-test 4.90 n = 20 1.095 0.996 n′ = 9
16 2011 2009916.2010052 (B) Paired t-test 4.61 n = 11122 0.044 0.996 n′ = 4105
17 2015 2766462.2767712 (B) Paired t-test 4.42 n = 3543978 0.002 0.993 n′ = 1425634
18 2014 2600428.2609586 (B) Paired t-test 4.51 n = 30 0.823 0.992 n′ = 14
19 2008 1390334.1390370 (B) Paired t-test 4.46 n = 60 0.576 0.992 n′ = 26
20 2007 1277741.1277778 (B) Paired t-test (one-sided) 1.55 n′ = 400 0.077 0.461 n′ = 1032
21 2014 2600428.2609632 (A) Unpaired t-test 2.60 n1 = n2 = 100 0.228 0.362 n′ = 303
22 2010 1835449.1835536 (B) Paired t-test 1.56 n′ = 140 0.132 0.342 n′ = 451
23 2009 1571941.1571947 (B) Paired t-test 1.37 n′ = 48 0.198 0.269 n′ = 203
24 2012 2348283.2348343 (B) Paired t-test 0.95 n′ = 28 0.180 0.152 n′ = 244

Table 8: SIGIR papers with overpowered (power ≥ 0.99) and underpowered (power ≤ 0.50) ANOVA tests. Papers are sorted by
achieved power.

# year doi (10.1145/*) test type F actual sample size effect size achieved power future sample size
1 2013 2484028.2484090 (E) Two-way ANOVA FB = 68.01,m = n = 3 N = 82 f̂B = 1.365 1 N ′ = 18

2 2015 2766462.2767746 (C) One-way ANOVA F = 243.42,m = 3 n = 2551 f̂ = 2.252 1 n′ = 52

3 2014 2600428.2609574 (C) One-way ANOVA F = 26.7m = 3 n = 12 f̂ = 1.272 1 n′ = 4

4 2014 2600428.2609596 (C) One-way ANOVA F = 56.52,m = 4 n = 1985 f̂ = 0.146 1 n′ = 129

5 2013 2484028.2484084 (C) One-way ANOVA F = 45.609,m = 2 n = 269 f̂ = 0.292 1 n′ = 48

6 2012 2348283.2348392 (C) One-way ANOVA F = 40,m = 7 n = 400 f̂ = 0.293 1 n′ = 24

7 2010 1835449.1835484 (C) One-way ANOVA F = 66.82,m = 5 n = 1100.2 f̂ = 0.221 1 n′ = 51

8 2010 1835449.1835486 (C) One-way ANOVA F = 31.77,m = 3 n = 173.3 f̂ = 0.351 1 n′ = 28

9 2014 2600428.2609620 (E) Two-way ANOVA FB = 24.89,m = n = 2 N = 964 f̂B = 0.161 0.999 N ′ = 308

10 2009 1571941.1572033 (D) Two-way ANOVA F = 8.01,m = 4 n = 57 f̂2 = 0.143 0.991 n′ = 35
w/o replication

11 2008 1390334.1390362 (C) One-way ANOVA F = 1.28,m = 3 n = 12 f̂ = 0.279 0.279 n′ = 43

12 2015 2766462.2767719 (D) Two-way ANOVA F = 0.63,m = 4 n = 17 f̂2 = 0.039 0.183 n′ = 75
w/o replication

4.6.1 Case Studies: Overpowered Experiments
There are a few extremely large sample sizes in the “overpow-

ered” section of Table 7. The 12th entry in Table 7 (SIGIR 2014,
10.1145/2600428.2609617), a paper on personalisation from a search
engine company, reported the difference in mean average preci-
sion (MAP) together with the standard error of the mean (SEM),
which enabled us to compute the t-statistic by simply dividing the
former with the latter. We chose the result with the largest dif-
ference (MAP = 0.0224, SEM = 0.00140) from one of their
tables, which resulted in t = 16.0. The actual sample size (the
number of impressions for averaging) was n = 5352460, but a
recommended future sample size is n′ = 164107. This situation
is also visualised in Figure 7(a) (third balloon from the top). Note
that the effect size is extremely small: ês = 0.007, although even
such a small effect may possibly translate to a subtantial increase
in profit for search engine businesses. The authors of the 17th en-
try in Table 7 (SIGIR 2015, 10.1145/2766462.2767712) are from
academia, but they utilise commercial search engine logs, one of
which contains 11,813,260 search sessions. As authors indicate
that they used 30% of the above sessions for computing (mean)
click entropy, we assumed that the sample size was n = 3543978
even though this exact number is not indicated in the paper. The
authors report p-value < 10−5, so the t statistic was computed

as t = tinv(n − 1; 10−5) = 4.42, and the future sample size
obtained is n′ = 1425634. Again, the effect size is extremely
small: ês = 0.002. As for the 11th entry in Table 7 (SIGIR 2014,
10.1145/2600428.2609602), one of its authors works for the afore-
mentioned search engine company. The authors use the unpaired
t-test with large sample sizes (n1 + n2 = 193524, from which we
assume that n1 = n2 = 96762) and report a p-value of 1.5∗10−12 .
However, the purpose of employing this test in their study was
to quantify the association between two different user search be-
haviour features rather than to compare retrieval effectiveness: one
feature is used to split the data into two samples, and then the other
is used to compare the two samples in terms of the unpaired t-test.

There were also two SIGIR papers (not included in the aforemen-
tioned 75 papers that went through power analysis) for which the
sample sizes for unpaired t-tests were too large for our power anal-
ysis tool: A SIGIR 2010 paper (10.1145/1835449.1835537) used a
sample of some 95.8M query-URL pairs per group; A SIGIR 2007
(10.1145/1277741.1277771) used two samples where the total sam-
ple size was approximately 60M. These papers are from two differ-
ent search engine companies: the latter paper is from the same com-
pany as the aforementioned 11th and 12th entries in Table 7. All of
the above papers should be commended (not condemned!) for pro-
viding enough information in their papers for post hoc power anal-
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Figure 7: Summary of power analysis results: sample size ratio
vs. achieved power.

ysis; however, recall that reporting p-values from an experiment
with extremely large sample sizes without discussing effect sizes is
generally not very informative, as was discussed in Section 1.

Next, let us examine a few overpowered ANOVA cases, using Ta-
ble 8 and Figure 7(b). More specifically, we examine two papers in-
dicated by the two top right balloons in Figure 7(b): The second and
seventh entries in Table 8 (SIGIR 2015, 10.1145/2766462.2767746
and SIGIR 2010, 10.1145/1835449.1835484). These papers have
a common first author, and the experiments in both papers utilise a
commercial social media application suite for the purpose of item
recommendation. In the second entry, a one-way ANOVA result is
reported, where the number of groups is m = 3 (items rated “very
interesting” vs. “interesting” vs. “not interesting”), the degree of
freedom is φ = 7650 and the F statistic is 243.42. Since our power
analysis tool for one-way ANOVA recommends a per-group future
sample size, we assume uniform group size for the analysis and let
φ = m(n − 1) = 7650, which gives us the average group size
n = 2551. As shown in Table 8 and Figure 7(b), this sample size
is much larger than the required sample size n′ = 52. Similarly, in
the seventh entry, the authors report on a one-way ANOVA result
with m = 5 (five recommendation systems), φ = 5496. Again, if
we assume equal group size for the purpose of power analysis, we
obtain n = 5496/5 + 1 = 1100.2, whereas the future sample size
is n′ = 51. It can be observed in Table 8 that the effect size for
the latter experiment is much smaller (f̂ = 2.252 vs. f̂ = 0.221).
Again, let us emphasise that these are good papers which, unlike
many other SIGIR papers, provide enough information for us to
conduct post hoc power analysis. However, it is probably fair to
say that many highly overpowered experiments come from indus-
try, where data is abundant.

4.6.2 Case Studies: Underpowered Experiments
Arguably, extremely underpowered experiments may be more

problematic than extremely overpowered experiments. Extremely
overpowered experiments may conclude that some very small ef-

fects are statistically significant, and the small effects may or may
not be practically significant. On the other hand, extremely un-
derpowered experiments may hide away very important real differ-
ences forever.

First, let us have a look at two extremely underpowered paired
t-test results indicated by the two leftmost balloons in Figure 7(a):
the 24th and 23rd entries in Table 7. The 24th entry (SIGIR 2012,
10.1145/2348283.2348343) reports on many statistical significance
results including ANOVA, but what we have selected for power
analysis was a statistically insignificant result with a paired t-test,
where n = 28 participants were involved (within-subjects design)
and two systems were compared in terms of a user experience
sub-scale called “focused attention.” As Table 7 shows, the ef-
fect size is “small” (ês = 0.180) and the future number of partic-
ipants is n′ = 244, which is quite demanding for a user study.
For this particular paper, we conducted additional power analy-
ses for the other paired t-test results reported: “felt involvement”
(ês = 0.026, power = 0.052, n′ = 12061), “endurability” (ês =
0.061, power = 0.061, n′ = 2083), “search effectiveness” (ês =
0.111, power = 0.111, n′ = 396)14. It can be observed that the
actual sample size (n = 28) was too small regardless of what user
experience sub-scale is used, as the effect sizes are very small.
The 23rd entry (SIGIR 2009, 10.1145/1571941.1571947) reports
on a user study with 24 participants for comparing two algorithms
(LAIR2 vs. Buckshot), but since each participants performed two
tasks with each algorithm, we assumed that the sample size was
n = 48 when the two algorithms were compared in terms of the
F1 measure. As Table 7 shows, ês = 0.198, power = 0.269, n′ =
203. (Even if n = 24, the experiment is still underpowered: ês =
0.280, power = 0.259, n′ = 103.) We would like to emphasise,
however, that these papers are also examples of good papers, which
provide enough details even for results that did not turn out to be
statistically significant. This is what enables us to conduct post hoc
studies, and the important question is how to design future experi-
ments for similar studies.

Finally, we discuss the 12th and the 11th entry in Table 8, the
two extremely underpowered cases indicated as the two leftmost
balloons in Figure 7(b). The 12th entry (SIGIR 2015,
10.1145/2766462.2767719) reports on a statistically nonsignificant
repeated-measures ANOVA result, where the relationship between
four levels of search latency (m = 4) and Skin Conductance Re-
sponses (SCRs) were examined. This can be regarded as a two-way
ANOVA without replication case, with φE = (m−1)(n−1) = 48
and therefore the number of participants per group is n = 17.
As can be seen at the bottom of Table 8, the effect size is f̂2 =
0.039, power = 0.183, n′ = 75. Thus this experiment would
have required 75 participants. The same paper also reports on
statistically nonsignificant ANOVA results for examining the re-
lationship between search latency and self-reported measures of
engagement: if we apply the same R script to these results with
φE = (m − 1)(n − 1) = 54, m = 4, n = 19, we obtain f̂2 =
0.042, power = 0.215, n′ = 71 for CSUQ (Computer System
Usability Questionnaire), f̂2 = 0.044, power = 0.222, n′ = 68

for FA (Focused Attention), f̂2 = 0.052, power = 0.257, n′ =
59 for post-NAS (Negative Affect), and f̂2 = 0.068, power =
0.332, n′ = 46 for post-PAS (Positive Affect). Thus, regardless
of which ANOVA result we choose, relying on only n = 17 par-
ticipants results in very low power, unfortunately. For the 11th en-
try (SIGIR 2008, 10.1145/1390334.1390362), we selected statis-
tically nonsignificant one-way ANOVA results for comparing the

14For “perceived usability”, the t statistic was zero, which suggests
that there is no effect.
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demographic characteristics of m = 3 participant groups, each
with n = 12 subjects. As Table 8 shows, we would have wanted
n′ = 43 participants per group based on these particular results.
However, these results do not constitute the main part of their study.

All of the “underpowered” papers discussed above are user study
papers. This is not so surprising, as hiring good participants for
experiments can always be difficult. Many such papers use statisti-
cal tests and report the results appropriately, but we argue that we
should learn from past experiments as we have done in this study
so that we can conduct better-designed experiments in the future.

5. CONCLUSIONS
We conducted a systematic review of 840 SIGIR full papers and

215 TOIS papers published between 2006 and 2015. Our main
findings are as follows:

• Of the 862 papers that seem to deserve significance testing
for comparison of means, 301 papers (35%) use the paired
t-test; 255 papers (30%) lack significance testing (Figure 2).

• Of the 255 papers that lack significance testing, 167 papers
(19%) make claims such as “significant improvement” and
“significantly outperform” (Table 4).

• Of the 464 papers that report on a significance test for com-
paring two systems, 301 papers (65%) use the paired t-test;
97 papers (21%) use the Wilcoxon signed rank test (Fig-
ure 4).

• Compared to a decade ago, the proportion of papers that lack
significance testing and the proportion of papers that rely
on the Wilcoxon signed rank test have decreased; whereas,
the proportion of papers that utilise the paired t-test has in-
creased (Table 5). The differences are statistically significant
according to two-proportions z-test.

• Of the 565 papers that report on significance test results, 365
papers (65%) report neither p-values nor test statistics (Fig-
ure 6).

• Of the 133 papers for which power analysis was possible,
38 papers (29%) were extremely overpowered (power ≥
0.99), while 9 papers (7%) were extremely underpowered
(power ≤ 0.50) (Table 6).

• We have observed extremely overpowered experiments in
which proprietary data from industry (typically search engine
companies) are utilised, as well as extremely underpowered
user experiments in which the number of hired participants
is limited.

To recap, p-values alone are not very informative as results of
statistical significance testing, because one can obtain arbitrarily
small p-values for any experiment by using a large enough sam-
ple [5, 14]. Hence, whenever researchers report on statistically
significant differences based on overpowered experiments, it is vi-
tal that they report the effect sizes in addition to p-values. As for
underpowered user experiments, researchers should conduct pilot
studies first, or learn from similar studies in prior art about effect
sizes and appropriate sample sizes.

One original question that is left unanswered in the present study
is: are existing test collections with 50-100 topics good enough?
Statistical requirements for comparing any systems suggest that
test collection require many more topics [15, 20], but are current
test collections actually serving the purpose for comparing existing

systems? The question is left unanswered because, as we have seen
above, many system effectiveness papers do not provide enough
information for post hoc power analysis: recall that either an ex-
act p-value or a test statistic (with a clearly stated sample size) is
required for this. To make matters worse, there is the publication
bias problem: researchers are often tempted not to report on statis-
tically nonsignificant results. We already see some good reporting
practices in interactive IR papers, complete with test statistics and
effect sizes even for statistically nonsignificant results; we believe
that similar practices are in order for the rest of the IR community
as well.
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