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ABSTRACT 

This paper attempts to demonstrate that simple 
expansion of the processing capabil i t ies of fixed 
disc read and write heads can avoid the mult i-  
level mappings from high-level retr ieval language 
to machine language and from user oriented data 
representation (information structure) to machine 
oriented data representation (storage structure) 
which are found necessary in conventional von 
Neumann computers. The processing capabi l i t ies 
bu i l t  in the disc read and write heads for each 
disc track allow information f i les  to be segmented 
and data items stored on al l  segments to be 
searched, modified, inserted, deleted, rearranged 
and rewritten simultaneously as a set of discs are 
rotating. Information structures such as the 
network structure, the hierarchical or tree 
structure and the relational structure are dis- 
cussed and their  implementations and basic search 
operations in the disc system are described. 

I. Introduction 

Most existing information systems are im- 
plemented on general purpose von Neumann type 
computers. Von Neumann processors have serious 
inherent limitations when they are applied in 
non-numerical information processing. We shall 
discuss some of the limitations with respect to 
both retrieval language and storage of data in 
information systems. 

In every information system, a retrieval 
language is designed to faci l i tate the user's 
access to the data stored in the data base. The 
language can be very close to the set of basic data 
manipulation functions constructed for searching, 
inserting, deleting, rearranging, etc., operations. 
I t  can also be a high level language which is then 
translated into the set of basic data functions. 
Recent works (Kellogg 1971, Dostert and Thompson 
1972, Lefkovitz 1969, and Codd 1971) favor the 
latter approach of using natural language or 
other high-level retrieval languages for the 
obvious reason that i t  is easier for the user to 
use. However, the price that has to be paid is 
the inefficiency introduced by many levels of 
language mapping from the high-level retrieval 
language to the machine language level. Generally, 
the high-level retrieval language is f i r s t  trans- 
lated into some type of intermediate languages 
such as calculus statements or procedural statements 

which invoke a set of retrieval functions im- 
plemented in a programming language. The retrieval 
functions are in turn compiled or assembled into 
machine language. This time-consuming multi-level 
language mapping is necessary because a computer 
processor can only recognize the set of basic 
operations such as load register, shif t  register 
and store. Unfortunately, basic operations of 
von Neumann processors are very different from the 
basic operations of non-numerical information 
processing. I f  the basic operations of non- 
numerical processing can be implemented directly 
in hardware, the gap between the retrieval language 
and the machine can be closed up. Greater 
processing efficiency can then be achieved. 

The other limitation of von Neumann processors 
can be shown in dealing with the issue of in- 
formation representation. I t  is now widely ac- 
cepted that the provision of data independence is 
one of the major objectives of a data base system 
(CODASYL report 1971a-b, Engles 1970, and Guide/ 
Share report 1971). The user of a data base 
system should not have to be concerned about all 
aspects of data representations (for example, how 
data is physically recorded and how data is 
logically connected for efficient access) and 
access strategy. The information structure at 
the user's level is quite different from the data 
structure designed for efficient data access 
which is the data representation at the access 
path level. The data structure is then implemented 
and mapped into machine dependent storage structure. 
These three levels of data representation are 
found to be essential in the design of a f i le  
system (Wang and Lum 1971). At the access path 
level of design, pointers, cross reference indexes 
and inverted records are often introduced and 
incorporated into the data structure in order to 
speed up data access. These are extra data which 
require extra storage, access time and processing 
time for their construction and maintenance. 
Updating of the data when new information is 
introduced into the system is the most time- 
consuming and troublesome process. 

Moreover, these pointers can have (software) 
errors. Such errors are hard to check because 
they are designed to be opaque to the user, who 
may be entering the data. This misinformation 
has led to lost accounts and other horrors. In 
order to avoid such errors, confirmation of the 
data is required in data acquisition. This is a 

144 



costly operation. I f  data were in a natural format, 
without added pointers, the cost of data acquisition 
and confirmation, which is by far the largest cost 
of ~he computer operation, could be sizably re- 
duced. And the data would be more rel iable.  

Transformation of data from user's information 
structure level to access path level and then to 
physical level is done to regain some eff iciency 
which is lost in the use of conventional von 
Neumann processors. Data is modified so that only 
a small amount has to be searched. But as we noted 
above, this leads to lower r e l i a b i l i t y  and ef- 
ficiency. This multi- level data mapping would be 
unnecessary i f  data can be stored in a form very 
close to the information structure as viewed by 
the user, and searched by hardware d i rect ly  with- 
out data transformation. Closing the gap between 
information structure and storage structure wi l l  
also ease the problems dealing with data base 
translation (Sibley and Merton 1972) and data 
sharing in computer networks (Roberts, et. a l . ,  
1970) since complex data structure at the access 
path level is eliminated. 

This paper describes the application of a 
context addressed disc system designed to perform 
content as well as context searches on a set of 
discs simultaneously. Data is organized on discs 
in a form very close to the various suggested 
information structures. Records of a f i l e  are 
stored on disc tracks each of which has a read 
and a write head with considerable processing 
capabil i t ies. The disc system is capable of 
performing data manipulation functions on a disc 
independent of the central processor using the 
discs. This paper intends to demonstrate that 
changing the architecture of a popular secondary 
storage device such as a disc may a l ter  the picture 
and issues of retr ieval language, information 
representation, data r e l i a b i l i t y  of information 
retrieval systems. The second section outlines 
the design of a disc system with associative 
processing capabil i ty. The third section discusses 
the problems of associative storage and retr ieval 
with respect to information representations and 
retr ieval operations. The fourth section 
i l lust rates the implementation of hierarchical 
structures, relational structures and network 
structures on discs and disc retr ieval operations. 
A summary is given in the last section. 

2. The Architecture of a Disc System with 
Associative Processing Capability 

We shall f i r s t  famil iar ize the reader with 
the basic construction and operations of a disc 
system designed for handling large data bases. In 
the following description, we shall give only the 
architectural features and operations which are 
related to the discussion on retr ieval language 
and data representation to be presented in the next 
section. A detailed description of the hardware 
and various sophisticated content and context 
search methods on discs wi l l  appear in a paper 
submitted by the authors to the Is t  Annual 
Symposium on Computer Architecture to be held in 
December, 1973 (Copeland eto al. 1973). The paper 
wi l l  be made available to the attendants of the 
interface meeting. 

The disc system described here follows the 
general concept of performing associative searches 
on discs presented by the previous works (Hollander 
1956, Minsky 1972, Parhami 1972, Parker 1971, 
Fuller e t .a l .  1965, Healy e t .a l .  1972). However, 
the system is designed to do more sophisticated 
str ing, tree, set and directed graph searches as 
well as hardware garbage col lect ion. 

The disc system in i ts  design consists of a 
set of fixed head discs with a read head and a 
write head per disc track. The set of discs can 
be visualized as a memory device containing a 
long string of bits in which f i les are stored. 
The disc tracks physically break the f i les  into 
segments. Each seQment (corresponds to a disc 
track) may contain'only a part of a record, a 
whole record, or several records of a f i l e .  
Figure 1 shows the relationships among records, 
segments and disc tracks. Data is not accessed 
by a location number, but rather al l  addressing 
information (such as structural parameters and 
attr ibutes) is stored in memory along with data. 
Comparison logic is used to search for the 
specified addressing information within memory. 
Memory is scanned from one end to the other 
while the comparison logic searches for the 
address. 

As shown in Figure 2, a one b i t  wide random 
access memory is used as a marker memory for data 
items stored on each track so that items may be 
marked for further processing or input-output. 
A counter i n i t i a l l y  set to zero at the beginning 
of each disc revolution is used as the memory 
address register. I f  the beginning of each data 
item indicated that the counter was to be in- 
cremented (using a special delimiter b i t  or symbol), 
then the counter would point to a unique marker 
b i t  for each data item in a disc track. We have 
a I - I  onto mapping of marker bits to data items. 
Furthermore, the mapping would be the same for 
each revolution of the disc since the counter is 
reset at the beginning of each revolution. Al- 
though a random access memorYliS being used, data 
items are not tied down to a ocation and items 
may be of variable length. Only their  relat ive 
positions in the sequence are important. When 
insertions and deletions are made, space can be 
provided by delay hardware between the heads, 
and the contents of the one b i t  random access 
memory can be shifted forward or backward from 
the point of insertion. Thus storage allocation 
and garbage collection are neatly and e f f i c ien t l y  
handled in hardware for variable length data items. 

The above br ief  description of the disc 
system is meant to give the reader some idea about 
the hardware for associative storage and ret r ieval .  
Much detail is purposely l e f t  out. The hardware 
for storage allocation and garbage collection on 
discs, error correction, instruction fetch and 
data modification is not shown in Figure 2. How- 
ever, examples for data organization on discs 
and the search methods for trees, relational 
tables and directed graphs wi l l  be given in section 
4. 

3. Associative Storage and Retrieval 

We shall now deal with two major problems of 
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associative storage and retrieval using the 
architecture of the disc system described in the 
preceding section as a test base. The f i r s t  problem 
is to determine the data organization on discs 
which is a direct representation of the various 
information structures as the user sees them. Our 
goal is to close the gap between the physical 
storage structure and the information structures 
in order to avoid data mapping in various levels 
of data representation as described in the 
introduction. 

The second problem is to determine the set of 
basic operations (or instructions) for the disc 
system which corresponds to the queries that the 
user of an information system uses to access data. 
Our goal is to find the set of high level retrieval 
queries which can be implemented as basic in- 
structions to be carried out by the disc read- 
write heads ef f ic ient ly  and without excessively 
increasing the hardware implementation cost. 

In non-numeric processing, several information 
structures have become useful in representing 
information. They are the directed graph or net- 
work model (CODASYL 1971a), the relational model 
(Codd 1970, 1971), and the tree or hierarchical 
structure, which is commonly used in data processing 
systems. Information is represented in each of 
these structures in general as a set  (record) of 
attribute-value pairs in each node or table entry. 
These are called information structures because 
the user views his data as being displayed most 
naturally in these structures, and because 
operations of his data involve specifying parameters 
that are also parameters of the structures. 

I t  has been suggested by the proponents of 
these models that the logical relations among data 
items of any record can be represented by the 
specific information structure they propose, and 
data of different structures can be mapped into 
the uniformed structure proposed. However, our 
view is that the user of an information system 
should be allowed to use all different information 
structures to describe the data they have. There 
are two reasons for taking this view. First,  one 
information structure may be easier to describe a 
certain kind of data than the other. For example, 
a network structure is more suitable for describing 
data related to c i rcui t  design and semantic in- 
formation processing of natural languages (Shapiro 
and Woodmansee 1969, Kay and Su 1970, Su Ig71, 
1972, 1973), and hierarchical structure is more 
suitable for describing l ibrary information since 
most l ibraries have adopted hierarchical indexing 
systems. Secondly, normalizing information 
representation involves data mapping from one 
structure to the other and may cause the loss of 
the original structural properties. For example, 
the tree structure is a special kind of graph. I f  
information which can be conveniently represented 
by tree structure is mapped into a network model, 
the mapping operation wi l l  be necessary each time 
the user queries the data base. This translation 
is further complicated by the fact that the 
natural form of the query often involves s t ruc tura l  
parameters (such as level numbers) or search 
operations (such as the preorder, postorder, and 
endorder predecessor or successor functions) that 
are not defined for a general directed graph. 

This may require using a sophisticated and expensive 
data d e f i n i t i o n  and management system with sub- 
sequent loss in r e l i a b i l i t y  or forc ing the user to 
think in terms of the new s t ruc ture .  Moreover, 
i ne f f i c i enc ies  in search time may be introduced 
because information about the propert ies of a tree 
may be los t .  

Therefore, our disc system is designed to im- 
plement the various information structure models 
without losing their structural properties, and 
content as well as context searches are performed 
directly on the various structures using a set of 
baSic disc operations. 

Jus t l i ke  the instruction set is to a computer 
processor, a set of basic disc operations need to 
be identif iedbefore the disc hardware can be 
implemented. The contents of this set would very 
much depend on the types of queries that wi l l  be 
used by the user of an information system to re- 
trieve and manipulate the data base. The types of 
queries, in turn, depend on the information 
structure viewed by the user. 

In order to see more concretely which 
operations are performed on the information 
structures of non-numeric processing, let us 
examine an example inventory f i l e  taken from J.C. 
Date (1972) in his tutorial  description of Codd's 
work on relational f i les.  The f i l e  involves a 
many-to-many mapping of suppliers and parts (each 
supplier supplies many parts and each part is 
supp!ied by many suppliers). Date l i s ts  four 
querles to be satisfied: 

(a) find part numbers for parts supplied by 
supplier 2; 

(b) find part names for parts supplied by 
supplier 2; 

(c) find supplier numbers and status for 
suppliers in London; 

(d) for each part find part number and names 
of al l  c i t ies from which the part may 
be obtained. 

E.F. Codd's (1970) normalized relational form 
of this f i l e  involves three subfiles in the form 
of tables as in Figure 3. Each table defines a 
relation with the domains of the relation shown as 
the headings of the columns. The supplier-part 
(SP) subfile shows how the many-to-many mapping is 
handled in the relational model usina redundant 
data values to l ink subfiles by contents rather 
than by addresses. I f  the user is supplied with 
the skeletal description of the table arrangement 
as in Figure 4, he may specify each of the above 
queries in a non-procedural statement similar to 
that developed by Codd (1971b) and given in Date: 

(a) SP.P# : SP.S# = 2 l~I P.PNAME :~SP((SP.P# : P.P#)A(sP.s# = 2)) 
s.s#, S.STATUS : S.CITY = 'LONDON' 

(d) P.P#, S.CITY :~SP((P.P# = SP.P#) 
A(S.S# : SP.S#)), -VP.P# 

The data items in the above statements are 
specified by qualified names as those used in 
COBOL or PL/I. The expression on the le f t  of the 
colon indicates what is to be retrieved and the 
expression on the right is a qualif ication. For 
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example, the f i rs t  statement is a query for re- 
trieving all part numbers (P#) supplied by supplier 
number 2 (S#=2). 

I t  has been demonstrated by Codd (1970) and 
described in Date (1972) that information repre- 
sented by hierarchical and network structures can 
be represented by the type of normalized relational 
form shown in Figure 3 and the basic operations 
necessary to search and retrieve data from the re- 
lational data tables are called "projection" and 
"join" operations. These two operations are defined 
as follows: 

Projection: "To project a relation over specified 
domains, we strike out the domains 
(columns) not required (not specified) 
and remove redundant dupl!cate tuples 
(rows) from what remains. 

Join: "Two relat ions with a common domain, 
D say, can be joined over that domain. 
The resu l t  is a re la t ion in which 
each tuple consists of a tuple from 
the f i r s t  re la t ion concatenated with 
a tuple from the second D-value 
(except that we el iminate one of the 
two ident ical  D-values)." 

I t  was suggested (Codd 1971) that statements 
of the type shown above (a-d) can be translated 
into a sequence of operations consisting of joins 
and projections. For example, the relational 
calculus statement (C) can be translated into the 
following sequence of operation as shown by Date. 
Note that the additional relation R of Figure 5 
is necessary. 

Join S and R over CITY 
Project the resu l t  over (S#, STATUS) 

I CITY 

I LONDON 

Figure 5. Relation Table R 

From the above discussion of Codd's and Date's 
works, many interesting points need to be noted. 
First, Codd's relational data tables express the 
structural relationship among data items by using 
redundant domains in the relational tables. For 
example, the domain S# in S and SP relational 
tables and P# in SP and P tables. The cross re- 
ferences are specified by content rather than by 
the conventional approach of using addresses or 
indexes. This information structure can be im- 
plemented very efficiently in the associative 
processing disc system described because data is 
searched by contents rather than by addresses. The 
actual implementation of relational f i les on con- 
ventional machines will involve time-consuming 
operation of intersecting tables and building 
intermediate tables. This operation can be pro- 
hibitively costly i f  the data tables are large. 
But, on the disc system, the search operation 
involves only the marking and reading out of the 
marked data items by all disc read/write heads 
simultaneously without the intervention of the 
CPU. The size of tables has very l i t t l e  effect 

on the processing time. Secondly, the examples 
show that the queries formulated by the user depend 
heavily on the information structure as seen by 
the user. The proposed relational calculus 
statements are queries which can be implemented as 
the basic operations of the disc system. This will 
be illustrated in the next section. 

4. Implementation of Information Structures 

In this section we shall describe the im- 
plementation of the various information structures 
widely used. The organization of data and the 
search operations in the disc system will be 
described. 

4.1 Trees or Hierarchical Structures 

Information is represented in a tree or 
hierarchical structure as a set, record or tuple 
of attribute-value pairs in each node of the tree. 
A tree can be linearized in several ways (Knuth 
Vol. I 1969). I f  the tree is written in preorder 
with level numbers included with each node, then 
i t  is uniquely specified. Also, for a given node 
at level l ,  i ts ancestor at level K (k<l) is the 
last occurrence of a node with level k before 
reaching the given node. This provides a convenient 
method for marking backwards (up the tree) in the 
sequence. For example, an ancestor node can be 
marked i f  a search within one of i ts successors 
is successful. This can be done in the following 
way. 

The ancestor is encountered f i r s t  because of 
the preorder in which the tree is stored. The 
random access address of the ancestor mark bit can 
be saved for reference until the successor is 
searched later in the sequence. I f  the search 
is successful, then the ancestor mark bit can be 
set because its random access address was saved. 
With the tree stored in preorder together with 
level numbers, the above algorithm simply involves 
remembering the random access address of the last 
node at level k. I f  a particular member of the 
set or record within the ancestor node is to be 
marked, the random access address of the member 
can be saved in a similar manner. Marking forward 
(down the tree) is much simpler. I f  a decendent 
is to be marked whenever an ancestor is success- 
ful ly searched, the only thing to be remembered 
is whether or not the search was successful. A 
similar communication can be used between set 
members of the same tree node. 

Thus we have the capability of marking a node 
or node member i f  another node or node member 
satisfies a given condition. This can be done in 
one disc revolution i f  the communicating elements 
are along the same path of the tree. Although 
a random access memory is being used here, i t  is 
used str ic t ly  for internal hardware implementation 
of an instruction and is total ly transparent to 
the user. The user speaks only in terms of his 
natural information structure. Now let us see how 
the hierarchical structure of Figure 6 can be 
stored and searched in the disc memory. 

Items within a record are stored physically 
together as a unit with their level number. 
Special attribute records can be used to eliminate 
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redundant storage of a t t r i bu tes .  These a t t r i b u t e  
records are stored f i r s t ,  one fo r  each leve l .  Then 
the value records are stored in the preorder in-  
dicated by the ver t ica l  posi t ion ing of  Figure 6. 
I f  the user is given the skeletal  descr ip t ion of  
the f i l e  as in Figure 7, he may express each of the 
queries in a non-procedural statement s imi la r  to 
that  developed by Codd: 

(a) S.P.P# : S.S# = 2 
I~I S.P.PNAME : S.S# = 2 

S.(S#, STATUS) : S.CITY = 'LONDON' 
(d) S.(R.P#, CITY), -V- P# 

The qua l i f i ca t i on  on the r i gh t  is s imp l i f ied  
by the fact  that  spec i f ic  h ierarch ica l  dependencies 
are given in the expression on the l e f t  using 
parentheses. To sa t i s f y  query (b),  two comparitors 
are needed. One searches for  the item to be marked 
(S.P.PNAME) and the other searches fo r  the condi t ion 
that must be sa t i s f i ed  (S.S# = 2). As memory is 
scanned from one end to the other, both comparitors 
continuously search. When S.S# = 2 is sa t i s f i ed ,  
th is  information is remembered for  the durat ion 
of the search of that  subtree so that  a l l  PNAME's 
wi th in  the subtree can be marked. This is an 
example of forward marking. Backward marking is 
involved in the fo l lowing query: a l l  suppl ier  
names that supply part number 200. The non- 
procedural expression of th is  query is S.SNAME : 
S.P.P# = 200. Here one comparitor searches for  
S.SNAME. Whenever i t  is found, i t s  random access 
address is remembered for  the durat ion of the 
search of that  subtree fo r  S.P.P# = 200. I f  
S.P.P# = 200 is s a t i s f i e d ,  then the mark b i t  at  
the address that was remembered is set. 

4.2 Tables, Graphs, and the Relat ional 
Data Structure 

The tree hardware can also be used to implement 
tables l i ke  those of Figure 3 in section 3 by 
providing a means of communicating between 
elements wi th in the tables.  I f  a table is at t ree 
level i ,  then each row (record) in the table is at 
level i + l .  Al l  data items in the same row are 
members of  the same tree node. Also, several 
tables may be grouped h ie ra rch ica l l y .  A special 
a t t r i bu te  record can again be used to el iminate 
redundant storage of a t t r i bu tes .  

General graphs or networks can be implemented 
by set t ing up a table for  each node of the graph. 
Each table would contain the node names of nodes 
pointed to by the table node along with t he i r  
corresponding re la t ion  or arc name. A l t e rna t i ve l y ,  
a table could be set up for  each re la t ion  or arc 
name. Here each table would contain as rows the 
node name pairs that are connected by the table 
re la t ion  or arc. Also, each graph node may contain 
an addit ional set of data items which provide 
fu r ther  information about a node or re la t ion  (arc) .  
This set of data items can be included as table 
entr ies in the same manner as the node names or 
re la t ion  names. Figure 3 is an example of such a 
set of tables,  where each table corresponds to a 
re la t ion  name. Communication between tables is 
more involved and time-consuming than communication 
between nodes of a t ree,  however two methods are 
described below that are s t i l l  rather e f f i c i e n t .  

The most obvious method is to pick up the node 
names to be traversed from the source table and 
use these names to context search the dest inat ion 
tab le.  This method has the advantage of  using only 
natural data pointers,  but i t  can be very time- 
consuming i f  many names must be compared. The 
second method stores in the source table the random 
access addresses of the mark b i ts  of the node names 
in the dest inat ion table.  These random access 
addresses may be stored in another table column 
jus t  as data is stored. The advantage of th is  
method is that a l l  marking between tables can be 
done in one revo lu t ion.  The disadvantages are 
that time is needed to store the random access 
addresses and inser t ions and delet ions are more 
time-consuming because pointers must be changed. 
Now l e t  us look s p e c i f i c a l l y  at how the re la t iona l  
data s t ructure of Figure 3 can be stored and 
searched in the disc memory. 

Items wi th in  a record are again stored 
phys ica l ly  together as a un i t  with t he i r  tree level 
number. A t t r i bu te  records are stored immediately 
before the value records which they describe. The 
value records wi th in  a table are stored in any 
order. Also, ordering of the tables themselves 
is not re levant .  Query (a) is sa t i s f i ed  in the 
same way as before since only one table (SP) is 
involved. Query (b) involves re la t ing  two tables 
(SP and P). Durinp the f i r s t  disc revo lu t ion,  a 
comparitor searches for  SP.S# = 2. Whenever th is  
is sa t i s f i ed ,  the SP.P# in the same row is marked. 
These values can be picked up on the second 
revolut ion and used to search for  P.P# in the 
th i rd  revo lu t ion.  During th is  th i rd  revo lu t ion,  
a second comparitor searches for  P.PNAME. When- 
ever the P.P# search is successful ,  the P.PNAME 
of the same row is marked. I f  the number of 
items communicating between tables is large, many 
comparitors or many revolut ions are necessary to 
make a l l  the comparisons necessary. An a l te rna t i ve  
method is to store in the source table the random 
access address of the dest inat ion values. The 
procedure to implement query (b) using th is  scheme 
is as fo l lows.  The f i r s t  revolut ion is the same. 
During the second revo lu t ion,  whenever SP.P# 
values are found to be marked, the prestored random 
access addresses are used to immediately set the 
mark b i ts  fo r  items in the destinatiQn table.  A 
th i rd  revolut ion marks PNAME's i f  P#'s are marked. 

From the above descr ip t ion of the im- 
plementation of various information s t ructures,  
one point becomes c lear .  The processing of h ie r -  
archical  s t ructures can be implemented d i r e c t l y  on 
the disc and is more e f f i c i e n t  than processing 
other structures on the disc processor. This is 
because the h ierarch ica l  s t ructure can be 
l inear ized and the s t ructura l  information can be 
stored with the data and be used in query statements 
formulated by the user. The process suggested by 
Codd of mapping a l l  s t ructures into the re la t iona l  
data s t ructure is found to be an unnecessary step 
in our disc system, since, as we have shown above, 
various information st ructures may be implemented 
as they are and a l l  data items in any st ructure 
can be used d i r e c t l y  as a search key. 

5. Summary 

We shall  summarize th is  paper in the fo l lowing 
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central points: 

( I )  I t  is desirable to close the gap between 
physical structure and the information structure as 
viewed by the user in order to avoid mul t i - leve l  
data mapping which reduces processing ef f ic iency 
and data r e l i a b i l i t y .  The expansion of disc read/ 
wr i te head processing capabi l i t y  shown in th is 
paperal lows various information structures to be 
stored and processed without many levels of data 
mappings. 

(2) I t  is desirable to have the hardware 
carry out the basic high- level  re t r ieva l  functions 
required in information systems. The disc system 
described in th is  paper is capable of reading, 
modifying, inser t ing,  delet ing and rewr i t ing data 
and co l lec t ing  unused cel ls  on discs without the 
intervent ion of the CPU using the disc system. 
Since data is searched d i rec t l y  on secondary 
storage, excessive paging of data in and out of the 
main memory is el iminated. 

(3) Information systems often require the 
processing of data in large data bases. Processing 
operations to be carr ied out on conventional von 
Neumann processors are often time-consuming. The 
proposed disc system allows f i l e s  to be physical ly  
segmented and the segments searched and processed 
simultaneously over a l l  disc tracks. Thus, the 
disc system offers a cost-ef fect ive means of im- 
plementing the associat ive processing technique. 

(4) Di f ferent  information structures are 
sui table for representing d i f fe ren t  types of data 
as viewed by the user. Thus, the user should be 
allowed to use the structures as they are without 
having to transform the data into a normalized 
structure as proposed in the re la t ional  model. 
The example given in section 4 shows that h ier -  
archical or tree structure can be handled more 
e f f i c i e n t l y  in the disc system than by transforming 
the structure into i t s  equivalent re la t ional  data 
tables. 
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QUESTIONS 

Richard E. Nanoe: 

Can you very briefly describe what additional requirements this will make on languages or what 
additional capabilities it will give system designers in terms of languages? 

Copeland: 

As I illustrated, since the disk performs very high level search functions, we feel that it would be 
quite easy to map from a natural language type statement of something similar to SQUARE to the type of 
basic function that is needed to be performed. Certainly, we will need some type of translator or compiler 
to map from the query language into the basic operations. But I believe the associative disk will remove 
several of the levels of mapping and translation that now exist, and our mapping will be a much simpler 
one. We really have not thought too much about the language that the user might employ. 

Edward M. McCreight: 

Do you have any idea at this point how much the hardware for each additional head on the disk will 
cost? 

Copeland: 

We don't know exactly how much the cost will be, but the LSI technology seems to be reducing costs 
very quickly. Each year the cost of the same amount of hardware on an LSI chip is reduced by a factor of 
two. The machine that we are talking about is not only designed to facilitate the software end but is 
designed to fit the hardware technology using bulk storage as our only storage medium, and the only logic 
used is one-chip type used many times. This is the cheapest way you could build hardware. 

Dennis E. Huaman: 

Has this hardware been implemented yet? 

Su: 

No, it has not. We have finished the architectural design, and we are seeking support to build a 
prototype. 

Dennis E. Huaman: 

Would you envision the hardware keeping account of the number of "hits" on a search? 

Copeland: 

Yes, we can do that by simply implementing a counter recording the results of the search. 

Huaman: 

What about the use of Hamming codes for error detection and correction? 
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Copeland: 

We plan on using an error correction capability within the cell logic as we read and write. 

Huaman: 

When the system is working, could you queue the queries with this king of hardware approach, or would 
you need additional random access memory, or would you need a read/write memory? 

Copeland: 

I think initially the machine will operate with a small mini-computer as the front end feeding 
instructions to the disk. 

Huaman: 

You mean a minicomputer driving the disk controller? 

Copeland: 

Yes. 

Huaman: 

Don't you think that will take more time as the "mini" processes requests going from the main computer 
to the disk? 

Copeland: 

No, I mean to bypass the main computer completely. The minicomputer will serve as the total front end. 

Leo A. Bellew: 

It seems that there are some similarities between what you are doing and paging techniques. For 
example, the use of the RAM to mark things has some relationship to marking the last page accessed. I am 
wondering if you dug far enough, you might find that taking specific things and placing them in a cache 
memory might not be equivalent to what you are doing. In fact, you might find that you have come out with 
paging from a different angle. 

Su: 

In the case of paging, what you are doing is to isolate certain segments of a random access memory in 
order to perform efficient searching. But our disk system is geared for very large data bases, and we are 
avoiding the memory hierachy type of approach by accomplishing search of a large data base in parallel. 
By the way, are you thinking about conventional paging schemes or the use of associative memories for 
paging? The GE 645 uses an associative memory attached to the segmentation mechanism to do an associative 
search of the segment and the page number to find the physical block. The idea here is to search simul- 
taneously for all entries. I am afraid I do not see a very close relationship, however, between what we 
are doing and that type of thing. 
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DISCUSSION SESSION 

Marsaret B. Webster: 

I was not quite clear about the difference between the "segment" and the "track". 
concept? 

Is a "segment" a 

Su: 

You might consider a segment as being a disk track, that is if we use a disk for implementation. 
segment is a physical record, where you could have several physical records on a disk track. 

Margaret B. Webster: 

You're proposing to have a read/write head per segment. 

Su: 

That is correct. The crucial question here is the disk synchronization, i.e. being able to read and 
write properly on the same track. 

A. A. Brooks: 

This 

With respect to the question of cost, about four years ago Jack [Lipovski] gave a talk on the cost of 
associative memories. At that time the cost of a large memory was approximately two to three times the 
cost for the von Neumann type of machine. Is there any more current estimate of the order of magnitude 
of the extra cost for this hardware? 

Su: 

The talk to which you refer is one in which Jack proposed to construct a cellular automata. He has 
come to the conclusion that they are simply too expensive. The real cost is in the logical control, and 
our indications are that this can be fitted into an LSI chip. These chips will essentially be identical. 

Copeland: 

Initially, the chip will cost several thousand dollars. But under mass production, the cost will 
probably go down to something around ten dollars. 

A. A. Brooks: 

Su: 

Are we talking about ten dollars per track? 

Yes, and what we are proposing is well within the hardware technology. 

A. A. Brooks: 

Basically, it would simply be the cost of adding this circuitry to a fixed head swapping disk? 
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Su: 

That is right. But we should consider more than simply the hardware cost. Reduction in response 
time and the simplification of the software should be considerable. We are avoiding many levels of 
language mapping by making the hardware function a very high level one. 

Tom Kibler: 

First a comment. The IBM 1500 used one read head and one write head for refreshing their scope. It 
did perform read and write operations on the same track. My question involves the simplicity that your 
system will have when searching down a usual logical statement, i.e. expressed in terms of some set of 
keys. When you get to a query that involves both a key and a qualifier (a field that is not defined as a 
key), then your system requires another processor such that the disk can pull certain records but a 
sequential search must still be performed. Is that the way it would work? 

Su: 

Yes, certainly we will not be able to handle all types of retrieval operations. We shall seek to 
handle the most common and most frequent types. For sometime, as you describe, you will have to use the 
processor and search in the conventional way rather than utilizing the disk. 

Copeland: 

We have another paper that describes more fully the relationships between the cells. If you are 
interested in the hardware details, I would suggest that you read it. 

Edward McCreisht: 

One of the most endearing qualities of the scheme is that it has such a wide cost/performance 
potential payoff. It would seem that with about twenty copies of your hardware gadget, you could search 
a IBM 3330 in about ten seconds. 

Su: 

You're suggesting using the same logic on many disks? 

Edward McCreisht: 

No, I am simply suggesting that instead of the fixed head disk using a moveable head disk. 
what you are doing is time-multiplexing your hardware over many tracks. 

In effect 

Copeland: 

What we would prefer however would be the cheapest technology available duplicated many times so as to 
have one cell per track. This would make data base searches independent of data base size. 

Leo Bellew: 

Is your primary thrust to develop a piece of hardware, or is your primary effort to develop some 
primitives which are planted in the associative direction? 

Su: 

Our biggest concern is along the second line. We do not only wish to design a piece of hardware, but 
we wish to make it suitable to this particular type of application, i.e. information retrieval. 

Leo Bellew: 

So that it would not matter essentially what type of devices were being used; only that you could 
bring things into a memory that would allow you to do operations in parallel? 

Su: 

I do not believe that it would work on tapes, for the memory must be circular. 

Leo Bellew: 

Are you saying that the primitives you are developing are oriented toward a particular type of device? 

Su: 

It must be circular in nature; disk, drum, magnetic bubble memory, etc. 
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Leroy Lacy: 

It does not apply to two separate heads? 

Copeland: 

Yes, the problem is that we find that it cost three times as much to put two heads on a track for 
they must be perfectly aligned. We shall be using every other track, and in one revolution, one track will 
be reading and the other will be writing. One further advantage of this scheme is that we have a complete 
copy of the data base both before and ofter the operation, and if errors occur we can do it over. 

Margaret B. Webster: 

Well, where will the logic chips be housed, in the controller? 

Su: 

Yes. 

Copeland: 

The actual logic chips can be placed anywhere you want them. 
somewhere'close to the disk. 

We will probably put them on a rack 

Webster: 

Then I do not see how the concept can apply to the 3330 as was mentioned previously. I Just do not 

see how it fits in here. 

Su: 

If I understand the questioner correctly, what he is saying is that you do not have to build a unit of 
logic per track. You can use movable heads rather than fixed heads, and he is considering the IBM 3330 

rather as an example than a specific device. 

Edward McCrei~ht: 

Yes, that is what I meant. 

A. A. Brooks: 

To really get the advantage from this, you must have multiple heads because the whole game is 
parallel processing. To move from track to track on a 3330-type device, I would suspect to be accomplished 
with the conventional hierarchical indices more quickly. 

Edward McCreight: 

l'm not so sure. The problem with 3330 is that it takes a long time to scan. 

Tom Kibler: 

I think the problem is very well stated in that if you have two or three 3330-type packs, you still 
have 60 searches in parallel. To accolmodate the same kind of information capability, you would have to 
have a fixed head device with 6,000 independent logic units. I'm not sure that the 6,000 is the actual 
number, but it is something of that magnitude. I'm not sure that the cost differential between 60 and 

6000 is worth it. 

Copeland: 

From the hardware po~t of view we can afford to be very generous with parallelism. The cost of the 
device is dependent on the square root of the number of units because of the learning curve property. So 
if we go from i to i00 we are only increasing the cost factor by about i0. 

Kibler: 

You prime your search process with some message from the main frame. 
different type of messages going out may cause problems? 

Isntt it true that these 

Su: 

No, that is not a problem. You give the instruction to the entire disk at one time. 
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Unidentified questioner: 

How does this relate to the Parker disk and the other disk mentioned in your paper? 

Copeland: 

The major difference is that they handle only a very simple data type, e.g. name/value pairs. This 
takes a lot of software, and is very inefficient. Also, no "garbage collection" facility exists. 

Donald Chamberlin: 

What happens when a user wants to define a new table on the fly? Doe that invoke a procedure of 
initializing tracks? 

Copeland: 

We would mark a subset of the table rather than copy. We do not want to duplicate information. We do 
not create new tables from the existing tables. 

Donald Chamberlin: 

What if a user wished to define a new table that did not exist before? Would that be a complicated 
process? 

Copeland: 

It should be very simple because the storage structure is almost the same as the structure of the 
table. We would simply have to linearize the table. 

Donald Chamberlin: 

Then is there a catalog of the existing tables, so that when you wish to query you can check to see if 
the proper table is loaded into core? 

Su: 

Each table is identified by a name and is loaded into the disk. You search for tables by name. Both 
the table name and the data field that would go there would then be marked. 

Donald Chamberlln: 

Then is the data self-describlng? 

Copeland: 

It is variable in records and each item is of variable length. 

Tom Kibler: 

What is the scheme for handling the updating of information on the disk? Suppose I submit a list of 
records to be updated and they come in from different disks. I change some and then they are to be 
restored. Do they return to their original location or to new locations~ 

Copeland: 

We never remove the records, for we update on an item basis. We can access any item within a record. 

Tom Kibler: 

How do you do a selection that goes across several tracks? 

Copeland: 

I am afraid this is a little too difficult to explain with the time limitations, 

A. A. Brooks: 

Is this logically equivalent to the associative memory with the "and-rail" and "or-rail"? Are they 
functionally equivalent? 
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Copeland: 

The cellular processor developed from the associative memory idea. 

so in that context it is drawn from the previous ideas. 

And our scheme does involve rails 

Su: 

It is sort of a compromise between the fully parallel processor and the existing sequential type. The 
emphasis in our case is on the logic per segment rather than per word. The concept of rails is utilized. 

Stewart A. Schuster: 

After the records meeting a particular query are marked, are they issued one at a time or do you have 

a work area and dump all of them into this area? 

Su: 

The marked recor4s are transmitted one at a time. 

Stewart A. Schuster: 

Could there be a capability for working with the output from one query while resubmitting another 

query? 

Su: 

We do have a set of marked disks specifically for output purposes. It seems that you can handle all 
the requests of one person, but that you cannot begin work on a second person without the first being 
moved out to another storage area. 

Copeland: 

This problem is more of balancing the queueing of requests and output than of anything else. 
do that by having more than one marked output disk and queue them in the hardware itself. 

We can 

Unidentified Questioner: 

You keep proposing a disk, is it because a disk is cheaper? 
talk about drums? 

Would it not be just as reasonable to 

Su: 

We have really thought about disks, and what we would like to do is to take the concept to 
implementation using a disk. We feel that it is important to work from the software end also. Our 
approach is basically top-down, and we want to understand the problems and work toward a hardware 
supported solution. 

160 


