
RETRIEVAL OPERATIONS AND DATA REPRESENTATIONS IN A CONTEXT-ADDRESSED DISC SYSTEM

Stanley Y.W. Su, George P. Copeland, Jr. and G. Jack Lipovski
University of Florida, Gainesville, Florida

ABSTRACT

This paper attempts to demonstrate that simple
expansion of the processing capabil i t ies of fixed
disc read and write heads can avoid the mult i-
level mappings from high-level retr ieval language
to machine language and from user oriented data
representation (information structure) to machine
oriented data representation (storage structure)
which are found necessary in conventional von
Neumann computers. The processing capabi l i t ies
bu i l t in the disc read and write heads for each
disc track allow information f i les to be segmented
and data items stored on al l segments to be
searched, modified, inserted, deleted, rearranged
and rewritten simultaneously as a set of discs are
rotating. Information structures such as the
network structure, the hierarchical or tree
structure and the relational structure are dis-
cussed and their implementations and basic search
operations in the disc system are described.

I. Introduction

Most existing information systems are im-
plemented on general purpose von Neumann type
computers. Von Neumann processors have serious
inherent limitations when they are applied in
non-numerical information processing. We shall
discuss some of the limitations with respect to
both retrieval language and storage of data in
information systems.

In every information system, a retrieval
language is designed to faci l i tate the user's
access to the data stored in the data base. The
language can be very close to the set of basic data
manipulation functions constructed for searching,
inserting, deleting, rearranging, etc., operations.
I t can also be a high level language which is then
translated into the set of basic data functions.
Recent works (Kellogg 1971, Dostert and Thompson
1972, Lefkovitz 1969, and Codd 1971) favor the
latter approach of using natural language or
other high-level retrieval languages for the
obvious reason that i t is easier for the user to
use. However, the price that has to be paid is
the inefficiency introduced by many levels of
language mapping from the high-level retrieval
language to the machine language level. Generally,
the high-level retrieval language is f i r s t trans-
lated into some type of intermediate languages
such as calculus statements or procedural statements

which invoke a set of retrieval functions im-
plemented in a programming language. The retrieval
functions are in turn compiled or assembled into
machine language. This time-consuming multi-level
language mapping is necessary because a computer
processor can only recognize the set of basic
operations such as load register, shif t register
and store. Unfortunately, basic operations of
von Neumann processors are very different from the
basic operations of non-numerical information
processing. I f the basic operations of non-
numerical processing can be implemented directly
in hardware, the gap between the retrieval language
and the machine can be closed up. Greater
processing efficiency can then be achieved.

The other limitation of von Neumann processors
can be shown in dealing with the issue of in-
formation representation. I t is now widely ac-
cepted that the provision of data independence is
one of the major objectives of a data base system
(CODASYL report 1971a-b, Engles 1970, and Guide/
Share report 1971). The user of a data base
system should not have to be concerned about all
aspects of data representations (for example, how
data is physically recorded and how data is
logically connected for efficient access) and
access strategy. The information structure at
the user's level is quite different from the data
structure designed for efficient data access
which is the data representation at the access
path level. The data structure is then implemented
and mapped into machine dependent storage structure.
These three levels of data representation are
found to be essential in the design of a f i le
system (Wang and Lum 1971). At the access path
level of design, pointers, cross reference indexes
and inverted records are often introduced and
incorporated into the data structure in order to
speed up data access. These are extra data which
require extra storage, access time and processing
time for their construction and maintenance.
Updating of the data when new information is
introduced into the system is the most time-
consuming and troublesome process.

Moreover, these pointers can have (software)
errors. Such errors are hard to check because
they are designed to be opaque to the user, who
may be entering the data. This misinformation
has led to lost accounts and other horrors. In
order to avoid such errors, confirmation of the
data is required in data acquisition. This is a

144

costly operation. I f data were in a natural format,
without added pointers, the cost of data acquisition
and confirmation, which is by far the largest cost
of ~he computer operation, could be sizably re-
duced. And the data would be more rel iable.

Transformation of data from user's information
structure level to access path level and then to
physical level is done to regain some eff iciency
which is lost in the use of conventional von
Neumann processors. Data is modified so that only
a small amount has to be searched. But as we noted
above, this leads to lower r e l i a b i l i t y and ef-
ficiency. This multi- level data mapping would be
unnecessary i f data can be stored in a form very
close to the information structure as viewed by
the user, and searched by hardware d i rect ly with-
out data transformation. Closing the gap between
information structure and storage structure wi l l
also ease the problems dealing with data base
translation (Sibley and Merton 1972) and data
sharing in computer networks (Roberts, et. a l . ,
1970) since complex data structure at the access
path level is eliminated.

This paper describes the application of a
context addressed disc system designed to perform
content as well as context searches on a set of
discs simultaneously. Data is organized on discs
in a form very close to the various suggested
information structures. Records of a f i l e are
stored on disc tracks each of which has a read
and a write head with considerable processing
capabil i t ies. The disc system is capable of
performing data manipulation functions on a disc
independent of the central processor using the
discs. This paper intends to demonstrate that
changing the architecture of a popular secondary
storage device such as a disc may a l ter the picture
and issues of retr ieval language, information
representation, data r e l i a b i l i t y of information
retrieval systems. The second section outlines
the design of a disc system with associative
processing capabil i ty. The third section discusses
the problems of associative storage and retr ieval
with respect to information representations and
retr ieval operations. The fourth section
i l lust rates the implementation of hierarchical
structures, relational structures and network
structures on discs and disc retr ieval operations.
A summary is given in the last section.

2. The Architecture of a Disc System with
Associative Processing Capability

We shall f i r s t famil iar ize the reader with
the basic construction and operations of a disc
system designed for handling large data bases. In
the following description, we shall give only the
architectural features and operations which are
related to the discussion on retr ieval language
and data representation to be presented in the next
section. A detailed description of the hardware
and various sophisticated content and context
search methods on discs wi l l appear in a paper
submitted by the authors to the Is t Annual
Symposium on Computer Architecture to be held in
December, 1973 (Copeland eto al. 1973). The paper
wi l l be made available to the attendants of the
interface meeting.

The disc system described here follows the
general concept of performing associative searches
on discs presented by the previous works (Hollander
1956, Minsky 1972, Parhami 1972, Parker 1971,
Fuller e t .a l . 1965, Healy e t .a l . 1972). However,
the system is designed to do more sophisticated
str ing, tree, set and directed graph searches as
well as hardware garbage col lect ion.

The disc system in i ts design consists of a
set of fixed head discs with a read head and a
write head per disc track. The set of discs can
be visualized as a memory device containing a
long string of bits in which f i les are stored.
The disc tracks physically break the f i les into
segments. Each seQment (corresponds to a disc
track) may contain'only a part of a record, a
whole record, or several records of a f i l e .
Figure 1 shows the relationships among records,
segments and disc tracks. Data is not accessed
by a location number, but rather al l addressing
information (such as structural parameters and
attr ibutes) is stored in memory along with data.
Comparison logic is used to search for the
specified addressing information within memory.
Memory is scanned from one end to the other
while the comparison logic searches for the
address.

As shown in Figure 2, a one b i t wide random
access memory is used as a marker memory for data
items stored on each track so that items may be
marked for further processing or input-output.
A counter i n i t i a l l y set to zero at the beginning
of each disc revolution is used as the memory
address register. I f the beginning of each data
item indicated that the counter was to be in-
cremented (using a special delimiter b i t or symbol),
then the counter would point to a unique marker
b i t for each data item in a disc track. We have
a I - I onto mapping of marker bits to data items.
Furthermore, the mapping would be the same for
each revolution of the disc since the counter is
reset at the beginning of each revolution. Al-
though a random access memorYliS being used, data
items are not tied down to a ocation and items
may be of variable length. Only their relat ive
positions in the sequence are important. When
insertions and deletions are made, space can be
provided by delay hardware between the heads,
and the contents of the one b i t random access
memory can be shifted forward or backward from
the point of insertion. Thus storage allocation
and garbage collection are neatly and e f f i c ien t l y
handled in hardware for variable length data items.

The above br ief description of the disc
system is meant to give the reader some idea about
the hardware for associative storage and ret r ieval .
Much detail is purposely l e f t out. The hardware
for storage allocation and garbage collection on
discs, error correction, instruction fetch and
data modification is not shown in Figure 2. How-
ever, examples for data organization on discs
and the search methods for trees, relational
tables and directed graphs wi l l be given in section
4.

3. Associative Storage and Retrieval

We shall now deal with two major problems of

145

O

O

1

L) I i ~ _ "~"I ! "

] I \ IIFAI) /
/I~' • / ~'l~'i ~,i ~" J

~ o ~ Fiuure 2.

f - - - - -

, DEL,I!,;

|;.[FOR BEGINI'CIKG

COMPAP, ITORS l bi t

FOR]ncrement ~ ~
DE I. 1141 TF R S J ~'--~:~I~--

I COUI~IER
-F-~I__

OF TRACK - ~ e s e t

"" I? 0 lll.:k CO!4PARI'rORS

RAr~I)OM _j /~"
ACCI;SS
I.IEt.IORY

Partial l)~,script.ion of llarck.:are for Each Track

o SEGMENTS • •

FILE "
L w"' I I . ~ #

sOn~,A,~E ~KEUP ,ARm.:ARr. PLA~,E,r

Figure 1. Storage of Records as Segm3nts

146

associative storage and retrieval using the
architecture of the disc system described in the
preceding section as a test base. The f i r s t problem
is to determine the data organization on discs
which is a direct representation of the various
information structures as the user sees them. Our
goal is to close the gap between the physical
storage structure and the information structures
in order to avoid data mapping in various levels
of data representation as described in the
introduction.

The second problem is to determine the set of
basic operations (or instructions) for the disc
system which corresponds to the queries that the
user of an information system uses to access data.
Our goal is to find the set of high level retrieval
queries which can be implemented as basic in-
structions to be carried out by the disc read-
write heads ef f ic ient ly and without excessively
increasing the hardware implementation cost.

In non-numeric processing, several information
structures have become useful in representing
information. They are the directed graph or net-
work model (CODASYL 1971a), the relational model
(Codd 1970, 1971), and the tree or hierarchical
structure, which is commonly used in data processing
systems. Information is represented in each of
these structures in general as a set (record) of
attribute-value pairs in each node or table entry.
These are called information structures because
the user views his data as being displayed most
naturally in these structures, and because
operations of his data involve specifying parameters
that are also parameters of the structures.

I t has been suggested by the proponents of
these models that the logical relations among data
items of any record can be represented by the
specific information structure they propose, and
data of different structures can be mapped into
the uniformed structure proposed. However, our
view is that the user of an information system
should be allowed to use all different information
structures to describe the data they have. There
are two reasons for taking this view. First, one
information structure may be easier to describe a
certain kind of data than the other. For example,
a network structure is more suitable for describing
data related to c i rcui t design and semantic in-
formation processing of natural languages (Shapiro
and Woodmansee 1969, Kay and Su 1970, Su Ig71,
1972, 1973), and hierarchical structure is more
suitable for describing l ibrary information since
most l ibraries have adopted hierarchical indexing
systems. Secondly, normalizing information
representation involves data mapping from one
structure to the other and may cause the loss of
the original structural properties. For example,
the tree structure is a special kind of graph. I f
information which can be conveniently represented
by tree structure is mapped into a network model,
the mapping operation wi l l be necessary each time
the user queries the data base. This translation
is further complicated by the fact that the
natural form of the query often involves s t ruc tura l
parameters (such as level numbers) or search
operations (such as the preorder, postorder, and
endorder predecessor or successor functions) that
are not defined for a general directed graph.

This may require using a sophisticated and expensive
data d e f i n i t i o n and management system with sub-
sequent loss in r e l i a b i l i t y or forc ing the user to
think in terms of the new s t ruc ture . Moreover,
i ne f f i c i enc ies in search time may be introduced
because information about the propert ies of a tree
may be los t .

Therefore, our disc system is designed to im-
plement the various information structure models
without losing their structural properties, and
content as well as context searches are performed
directly on the various structures using a set of
baSic disc operations.

Jus t l i ke the instruction set is to a computer
processor, a set of basic disc operations need to
be identif iedbefore the disc hardware can be
implemented. The contents of this set would very
much depend on the types of queries that wi l l be
used by the user of an information system to re-
trieve and manipulate the data base. The types of
queries, in turn, depend on the information
structure viewed by the user.

In order to see more concretely which
operations are performed on the information
structures of non-numeric processing, let us
examine an example inventory f i l e taken from J.C.
Date (1972) in his tutorial description of Codd's
work on relational f i les. The f i l e involves a
many-to-many mapping of suppliers and parts (each
supplier supplies many parts and each part is
supp!ied by many suppliers). Date l i s ts four
querles to be satisfied:

(a) find part numbers for parts supplied by
supplier 2;

(b) find part names for parts supplied by
supplier 2;

(c) find supplier numbers and status for
suppliers in London;

(d) for each part find part number and names
of al l c i t ies from which the part may
be obtained.

E.F. Codd's (1970) normalized relational form
of this f i l e involves three subfiles in the form
of tables as in Figure 3. Each table defines a
relation with the domains of the relation shown as
the headings of the columns. The supplier-part
(SP) subfile shows how the many-to-many mapping is
handled in the relational model usina redundant
data values to l ink subfiles by contents rather
than by addresses. I f the user is supplied with
the skeletal description of the table arrangement
as in Figure 4, he may specify each of the above
queries in a non-procedural statement similar to
that developed by Codd (1971b) and given in Date:

(a) SP.P# : SP.S# = 2 l~I P.PNAME :~SP((SP.P# : P.P#)A(sP.s# = 2))
s.s#, S.STATUS : S.CITY = 'LONDON'

(d) P.P#, S.CITY :~SP((P.P# = SP.P#)
A(S.S# : SP.S#)), -VP.P#

The data items in the above statements are
specified by qualified names as those used in
COBOL or PL/I. The expression on the le f t of the
colon indicates what is to be retrieved and the
expression on the right is a qualif ication. For

147

O~

°r-
4--

o~
v

4o

I

O~
°~-

r--

cO

O~

°~

CO
v

£.
O~
°~
r--

~J ~n
.I..~ v

.o'O

~- 0

CO

oO

Z

~D
~D ~n
-i-~v

K- O

cO ~-

O O O O O O O O O O O O O O
O O O O O O O O O O O O O O

v

~n

0
, . --

O ~ O ~
~ . ~ . ~
~ . ~

O ~ O ~

0 0 0 0 0

~n

u~
v

,-- £)

C~

O
.-J
O

Z
O-

O-

~ O ~ O ~ O

O O O O O O
O O O O O O

O
4-

%
O

N
0r-

E

O

"O
O

-r-

b

GJ

~o ~ ~ ~ ~ 0
$- .I-.J U ,-- ~

Q- ~'~ K- > K.

I--- c_~

~ 0

0

• Z Z

b ~ ~2 ~2
0 ~ ~ ~

~ v v ~

> oO

O
4-

%
O
°~.-

r--

m
°r--

%
E
S-
O

¢n

0

° r -

~J
r--

W-
O

O
°t-

O. "Z
U

(D
-O

%
~J

%

J
(IJ

148

example, the f i rs t statement is a query for re-
trieving all part numbers (P#) supplied by supplier
number 2 (S#=2).

I t has been demonstrated by Codd (1970) and
described in Date (1972) that information repre-
sented by hierarchical and network structures can
be represented by the type of normalized relational
form shown in Figure 3 and the basic operations
necessary to search and retrieve data from the re-
lational data tables are called "projection" and
"join" operations. These two operations are defined
as follows:

Projection: "To project a relation over specified
domains, we strike out the domains
(columns) not required (not specified)
and remove redundant dupl!cate tuples
(rows) from what remains.

Join: "Two relat ions with a common domain,
D say, can be joined over that domain.
The resu l t is a re la t ion in which
each tuple consists of a tuple from
the f i r s t re la t ion concatenated with
a tuple from the second D-value
(except that we el iminate one of the
two ident ical D-values)."

I t was suggested (Codd 1971) that statements
of the type shown above (a-d) can be translated
into a sequence of operations consisting of joins
and projections. For example, the relational
calculus statement (C) can be translated into the
following sequence of operation as shown by Date.
Note that the additional relation R of Figure 5
is necessary.

Join S and R over CITY
Project the resu l t over (S#, STATUS)

I CITY

I LONDON

Figure 5. Relation Table R

From the above discussion of Codd's and Date's
works, many interesting points need to be noted.
First, Codd's relational data tables express the
structural relationship among data items by using
redundant domains in the relational tables. For
example, the domain S# in S and SP relational
tables and P# in SP and P tables. The cross re-
ferences are specified by content rather than by
the conventional approach of using addresses or
indexes. This information structure can be im-
plemented very efficiently in the associative
processing disc system described because data is
searched by contents rather than by addresses. The
actual implementation of relational f i les on con-
ventional machines will involve time-consuming
operation of intersecting tables and building
intermediate tables. This operation can be pro-
hibitively costly i f the data tables are large.
But, on the disc system, the search operation
involves only the marking and reading out of the
marked data items by all disc read/write heads
simultaneously without the intervention of the
CPU. The size of tables has very l i t t l e effect

on the processing time. Secondly, the examples
show that the queries formulated by the user depend
heavily on the information structure as seen by
the user. The proposed relational calculus
statements are queries which can be implemented as
the basic operations of the disc system. This will
be illustrated in the next section.

4. Implementation of Information Structures

In this section we shall describe the im-
plementation of the various information structures
widely used. The organization of data and the
search operations in the disc system will be
described.

4.1 Trees or Hierarchical Structures

Information is represented in a tree or
hierarchical structure as a set, record or tuple
of attribute-value pairs in each node of the tree.
A tree can be linearized in several ways (Knuth
Vol. I 1969). I f the tree is written in preorder
with level numbers included with each node, then
i t is uniquely specified. Also, for a given node
at level l , i ts ancestor at level K (k<l) is the
last occurrence of a node with level k before
reaching the given node. This provides a convenient
method for marking backwards (up the tree) in the
sequence. For example, an ancestor node can be
marked i f a search within one of i ts successors
is successful. This can be done in the following
way.

The ancestor is encountered f i r s t because of
the preorder in which the tree is stored. The
random access address of the ancestor mark bit can
be saved for reference until the successor is
searched later in the sequence. I f the search
is successful, then the ancestor mark bit can be
set because its random access address was saved.
With the tree stored in preorder together with
level numbers, the above algorithm simply involves
remembering the random access address of the last
node at level k. I f a particular member of the
set or record within the ancestor node is to be
marked, the random access address of the member
can be saved in a similar manner. Marking forward
(down the tree) is much simpler. I f a decendent
is to be marked whenever an ancestor is success-
ful ly searched, the only thing to be remembered
is whether or not the search was successful. A
similar communication can be used between set
members of the same tree node.

Thus we have the capability of marking a node
or node member i f another node or node member
satisfies a given condition. This can be done in
one disc revolution i f the communicating elements
are along the same path of the tree. Although
a random access memory is being used here, i t is
used str ic t ly for internal hardware implementation
of an instruction and is total ly transparent to
the user. The user speaks only in terms of his
natural information structure. Now let us see how
the hierarchical structure of Figure 6 can be
stored and searched in the disc memory.

Items within a record are stored physically
together as a unit with their level number.
Special attribute records can be used to eliminate

149

> -
I - - '

I - -

f -
e n

LCI

Z

::::It:

C"
I - -
O "

l - -

tJ-I

0
. - - I
0

l.*J

Z

v
ID-

I =
OJ (D (D

~ O U O ~ O

0 0 0 0 0 0
0 0 0 0 0 0

0

o

~n -[

0

~n

0
'-D

O.I

CO,q-

04P'~
r--- w--

(i~ K.

-I.~ ,--
0

O 0
O 0
r--04

Ill .[

c~

O
09

(D

r~

~X3

,:tOU

r,.O4

Cl)

In (.)

O O
O 0
eO l..C,

r - - ,:::I- e 4
r - - r - - l - -

CD
($) "ID ~
S_. (~.~ , . - -
f i n f&... 4 ~

_Q I n U

0 0 0
0 0 0
O.J ~:~" I.f)

0

0
..--I

O
C4

O4

r-
.O

E

O
O

(D

O
O9

E

0
g -

0

S-

" r -

rC~

V-

O

~D
>

D

~ Z

, r -

0

. r -

F-- r~

-r--

H 4-.
W

0

0 " r -
.-.1 ~
0 ~

W ~

z %

~ %

0
cJ
O)

cz:: , - - .

CD
u~

-CD

O
O

C~OU

G),--

• ~-- r--
S..

O

u~

v

O
CD

(U

~t
S-

°~

O v

>

~D

U_

150

redundant storage of a t t r i bu tes . These a t t r i b u t e
records are stored f i r s t , one fo r each leve l . Then
the value records are stored in the preorder in-
dicated by the ver t ica l posi t ion ing of Figure 6.
I f the user is given the skeletal descr ip t ion of
the f i l e as in Figure 7, he may express each of the
queries in a non-procedural statement s imi la r to
that developed by Codd:

(a) S.P.P# : S.S# = 2
I~I S.P.PNAME : S.S# = 2

S.(S#, STATUS) : S.CITY = 'LONDON'
(d) S.(R.P#, CITY), -V- P#

The qua l i f i ca t i on on the r i gh t is s imp l i f ied
by the fact that spec i f ic h ierarch ica l dependencies
are given in the expression on the l e f t using
parentheses. To sa t i s f y query (b), two comparitors
are needed. One searches for the item to be marked
(S.P.PNAME) and the other searches fo r the condi t ion
that must be sa t i s f i ed (S.S# = 2). As memory is
scanned from one end to the other, both comparitors
continuously search. When S.S# = 2 is sa t i s f i ed ,
th is information is remembered for the durat ion
of the search of that subtree so that a l l PNAME's
wi th in the subtree can be marked. This is an
example of forward marking. Backward marking is
involved in the fo l lowing query: a l l suppl ier
names that supply part number 200. The non-
procedural expression of th is query is S.SNAME :
S.P.P# = 200. Here one comparitor searches for
S.SNAME. Whenever i t is found, i t s random access
address is remembered for the durat ion of the
search of that subtree fo r S.P.P# = 200. I f
S.P.P# = 200 is s a t i s f i e d , then the mark b i t at
the address that was remembered is set.

4.2 Tables, Graphs, and the Relat ional
Data Structure

The tree hardware can also be used to implement
tables l i ke those of Figure 3 in section 3 by
providing a means of communicating between
elements wi th in the tables. I f a table is at t ree
level i , then each row (record) in the table is at
level i + l . Al l data items in the same row are
members of the same tree node. Also, several
tables may be grouped h ie ra rch ica l l y . A special
a t t r i bu te record can again be used to el iminate
redundant storage of a t t r i bu tes .

General graphs or networks can be implemented
by set t ing up a table for each node of the graph.
Each table would contain the node names of nodes
pointed to by the table node along with t he i r
corresponding re la t ion or arc name. A l t e rna t i ve l y ,
a table could be set up for each re la t ion or arc
name. Here each table would contain as rows the
node name pairs that are connected by the table
re la t ion or arc. Also, each graph node may contain
an addit ional set of data items which provide
fu r ther information about a node or re la t ion (arc) .
This set of data items can be included as table
entr ies in the same manner as the node names or
re la t ion names. Figure 3 is an example of such a
set of tables, where each table corresponds to a
re la t ion name. Communication between tables is
more involved and time-consuming than communication
between nodes of a t ree, however two methods are
described below that are s t i l l rather e f f i c i e n t .

The most obvious method is to pick up the node
names to be traversed from the source table and
use these names to context search the dest inat ion
tab le. This method has the advantage of using only
natural data pointers, but i t can be very time-
consuming i f many names must be compared. The
second method stores in the source table the random
access addresses of the mark b i ts of the node names
in the dest inat ion table. These random access
addresses may be stored in another table column
jus t as data is stored. The advantage of th is
method is that a l l marking between tables can be
done in one revo lu t ion. The disadvantages are
that time is needed to store the random access
addresses and inser t ions and delet ions are more
time-consuming because pointers must be changed.
Now l e t us look s p e c i f i c a l l y at how the re la t iona l
data s t ructure of Figure 3 can be stored and
searched in the disc memory.

Items wi th in a record are again stored
phys ica l ly together as a un i t with t he i r tree level
number. A t t r i bu te records are stored immediately
before the value records which they describe. The
value records wi th in a table are stored in any
order. Also, ordering of the tables themselves
is not re levant . Query (a) is sa t i s f i ed in the
same way as before since only one table (SP) is
involved. Query (b) involves re la t ing two tables
(SP and P). Durinp the f i r s t disc revo lu t ion, a
comparitor searches for SP.S# = 2. Whenever th is
is sa t i s f i ed , the SP.P# in the same row is marked.
These values can be picked up on the second
revolut ion and used to search for P.P# in the
th i rd revo lu t ion. During th is th i rd revo lu t ion,
a second comparitor searches for P.PNAME. When-
ever the P.P# search is successful , the P.PNAME
of the same row is marked. I f the number of
items communicating between tables is large, many
comparitors or many revolut ions are necessary to
make a l l the comparisons necessary. An a l te rna t i ve
method is to store in the source table the random
access address of the dest inat ion values. The
procedure to implement query (b) using th is scheme
is as fo l lows. The f i r s t revolut ion is the same.
During the second revo lu t ion, whenever SP.P#
values are found to be marked, the prestored random
access addresses are used to immediately set the
mark b i ts fo r items in the destinatiQn table. A
th i rd revolut ion marks PNAME's i f P#'s are marked.

From the above descr ip t ion of the im-
plementation of various information s t ructures,
one point becomes c lear . The processing of h ie r -
archical s t ructures can be implemented d i r e c t l y on
the disc and is more e f f i c i e n t than processing
other structures on the disc processor. This is
because the h ierarch ica l s t ructure can be
l inear ized and the s t ructura l information can be
stored with the data and be used in query statements
formulated by the user. The process suggested by
Codd of mapping a l l s t ructures into the re la t iona l
data s t ructure is found to be an unnecessary step
in our disc system, since, as we have shown above,
various information st ructures may be implemented
as they are and a l l data items in any st ructure
can be used d i r e c t l y as a search key.

5. Summary

We shall summarize th is paper in the fo l lowing

151

central points:

(I) I t is desirable to close the gap between
physical structure and the information structure as
viewed by the user in order to avoid mul t i - leve l
data mapping which reduces processing ef f ic iency
and data r e l i a b i l i t y . The expansion of disc read/
wr i te head processing capabi l i t y shown in th is
paperal lows various information structures to be
stored and processed without many levels of data
mappings.

(2) I t is desirable to have the hardware
carry out the basic high- level re t r ieva l functions
required in information systems. The disc system
described in th is paper is capable of reading,
modifying, inser t ing, delet ing and rewr i t ing data
and co l lec t ing unused cel ls on discs without the
intervent ion of the CPU using the disc system.
Since data is searched d i rec t l y on secondary
storage, excessive paging of data in and out of the
main memory is el iminated.

(3) Information systems often require the
processing of data in large data bases. Processing
operations to be carr ied out on conventional von
Neumann processors are often time-consuming. The
proposed disc system allows f i l e s to be physical ly
segmented and the segments searched and processed
simultaneously over a l l disc tracks. Thus, the
disc system offers a cost-ef fect ive means of im-
plementing the associat ive processing technique.

(4) Di f ferent information structures are
sui table for representing d i f fe ren t types of data
as viewed by the user. Thus, the user should be
allowed to use the structures as they are without
having to transform the data into a normalized
structure as proposed in the re la t ional model.
The example given in section 4 shows that h ier -
archical or tree structure can be handled more
e f f i c i e n t l y in the disc system than by transforming
the structure into i t s equivalent re la t ional data
tables.

.

2.

3.

4.

5.

BIBLIOGRAPHY

CODASYL Systems Committee: ' In t roduct ion to
"Feature Analysis of Generalized Data Base
Management Systems"', CACM 14,5 (May 1971b),
pp. 308-318.

Codd, E.F., "A Relational Model of Data for
Large Shared Data Banks," CACM 13,6 (June 1970)
pp. 377-387.

Codd, E.F., "Normalized Data Base Structure:
A Br ief Tu to r ia l , " Proceedings of ACM SIGFIDET
Workshop on Data Descript ion, Access and
Control, (Nov. 1971a), pp. 1-17.

Codd, E.F., "A Data Base Sublanguage Founded
on the Relational Calculus," Proceedings of
ACM SIGFIDET Workshop on Data Description,
Access and Control, (Nov. 1971b), pp. 35-68.

Copeland, G.P., Lipovski, G.J., and
Su, Stanley Y.W., "The Architecture of CASSM:
A Cel lu lar System for Non-numeric Processing,"
paper submitted to the F i rs t Annual Symposium
on Computer Archi tecture, December, 1973.

6. Data Base Task Group of CODASYL Programming
Languages Committee: Report, Apr i l , 1971a.

7. Date, C.J., "Relational Data Base Systems: a
Tu to r ia l , " paper presented at the Fourth
Internat ional Symposium on Computer and In-
formation Sciences, December 1972.

8. Dostert, B.H. and Thompson, F,B., "The REL
System," paper presented at the Fourth
Internat ional Symposium on Computer and
Information Sciences, December 1972.

9. Engles, R.W., "A Tutor ial on Data Base
Organization," IBM Technical Report TR 00.2004,
IBM, Poughkeepsie, N.Y., March, 1970.

I0. Fu l ler , R.H., Bird, R.M. and Worthy, R.M.,
"Study of Associative Processing Techniques,"
AD-621516, August, 1965.

I I . Guide/Share Data Base Task Force, "Data Base
Management System Requirements," Share, Suite
750, 25 Broadway, NY, November 1971.

12. Healy, L.D., Doty, K.L. and ~ipovski, G.J.,
"The Architecture of a Context Addressed
Segment Sequential Storage," Proceedings of
FJCC, Vol. 41, part I , 1972, pp. 691-702.

13. Hollander, G.L., "Quasi-Random Access Memory
Systems," Proceedings of FJCC, 1956,
pp. 128-135.

14. Kay, M. and Su, Stanley, Y.W., "The MIND
System: The Structure of the Semantic F i l e , "
RM-6265/3-PR, The RAND Corporation, Santa
Monica, Cal i forn ia , 1970.

15. Kellogg, C., Burger, J . , D i l l e r , T. and
Fogt, K., "The Converse Natural Language Data
Management System: Current Status and Plans,"
Proceedings of the Symposium on Information
Storage and Retr ieval , Ap r i l , 1971, pp.33-46.

16. Knuth, D.E., Fundamental Algorithms, Vol. I ,
Addison-Wesley, 1969.

17. Lefkovitz, D., Fi le Structure for On-line
Systems, Spartan Books, 1969.

18. Minsky, N., "Rotating Storage Devices as
Pa r t i a l l y Associative Memories," Proceedings
of FJCC, Vol. 41: Part I , 1972, pp.587-596.

19. Parhami, B., "A Highly Paral lel Computer System
for Information Retr ieva l , " Proceedings of
FJCC, Vol. 41, Part I : 1972, pp. 681-690.

20. Parker, J .L . , "A Logic per Track Retrieval
System," IFIP Congress, 1971, pp. 146-150.

21. Roberts, L.G. and Wessler, B.D., "Computer
Network Development to Achieve Resource
Sharing," AFIPS Conference Proceedings, May
1970, pp. 543-549.

22. Shapiro, S.C. and Woodmansee, G.H., "A Net
Structure Based Relational Question Answerer:
Description and Examples," Proc. I n t . Jt . Conf.
Ant. I n t e l . , Washington, D.C.,1969, pp.325-345.

152

23.

24.

25.

26.

27.

Sibley, E.H. and Merten, A.G., "Transferabil i ty
and Translation of Programs and Data," paper
presented at the Fourth International Symposium
on Computer and Information Sciences, December
1972.

Su, Stanley Y.W., "Managing Semantic Data in
an Associative Net," Proceedings of the
Symposium on Information Storage and Retrieval,
Apri l , 1971, pp. 105-116.

Su, Stanley Y.W. and Gr i f f i th , J., "Text
Analysis and Associative Retrieval," Invited
paper presented at the First Annual Creativity
Center Consortium Workshop and Computer Future
Applications Seminar, November, 1972.

Su, Stanley Y.W., "A Technique for Automatic
Text Analysis and Associative Retrieval and
Its Application to Drug Counseling and
Education," presented at the Computer Science
Conference, Columbus, Ohio, 1973.

Wang, C.P. and Lum, V.Y., "Quantitative
Evaluation of Design Tradeoffs in File
Systems," Proceedings of the Symposium on
Information Storage and Retrieval, April,1971.

153

QUESTIONS

Richard E. Nanoe:

Can you very briefly describe what additional requirements this will make on languages or what
additional capabilities it will give system designers in terms of languages?

Copeland:

As I illustrated, since the disk performs very high level search functions, we feel that it would be
quite easy to map from a natural language type statement of something similar to SQUARE to the type of
basic function that is needed to be performed. Certainly, we will need some type of translator or compiler
to map from the query language into the basic operations. But I believe the associative disk will remove
several of the levels of mapping and translation that now exist, and our mapping will be a much simpler
one. We really have not thought too much about the language that the user might employ.

Edward M. McCreight:

Do you have any idea at this point how much the hardware for each additional head on the disk will
cost?

Copeland:

We don't know exactly how much the cost will be, but the LSI technology seems to be reducing costs
very quickly. Each year the cost of the same amount of hardware on an LSI chip is reduced by a factor of
two. The machine that we are talking about is not only designed to facilitate the software end but is
designed to fit the hardware technology using bulk storage as our only storage medium, and the only logic
used is one-chip type used many times. This is the cheapest way you could build hardware.

Dennis E. Huaman:

Has this hardware been implemented yet?

Su:

No, it has not. We have finished the architectural design, and we are seeking support to build a
prototype.

Dennis E. Huaman:

Would you envision the hardware keeping account of the number of "hits" on a search?

Copeland:

Yes, we can do that by simply implementing a counter recording the results of the search.

Huaman:

What about the use of Hamming codes for error detection and correction?

154

Copeland:

We plan on using an error correction capability within the cell logic as we read and write.

Huaman:

When the system is working, could you queue the queries with this king of hardware approach, or would
you need additional random access memory, or would you need a read/write memory?

Copeland:

I think initially the machine will operate with a small mini-computer as the front end feeding
instructions to the disk.

Huaman:

You mean a minicomputer driving the disk controller?

Copeland:

Yes.

Huaman:

Don't you think that will take more time as the "mini" processes requests going from the main computer
to the disk?

Copeland:

No, I mean to bypass the main computer completely. The minicomputer will serve as the total front end.

Leo A. Bellew:

It seems that there are some similarities between what you are doing and paging techniques. For
example, the use of the RAM to mark things has some relationship to marking the last page accessed. I am
wondering if you dug far enough, you might find that taking specific things and placing them in a cache
memory might not be equivalent to what you are doing. In fact, you might find that you have come out with
paging from a different angle.

Su:

In the case of paging, what you are doing is to isolate certain segments of a random access memory in
order to perform efficient searching. But our disk system is geared for very large data bases, and we are
avoiding the memory hierachy type of approach by accomplishing search of a large data base in parallel.
By the way, are you thinking about conventional paging schemes or the use of associative memories for
paging? The GE 645 uses an associative memory attached to the segmentation mechanism to do an associative
search of the segment and the page number to find the physical block. The idea here is to search simul-
taneously for all entries. I am afraid I do not see a very close relationship, however, between what we
are doing and that type of thing.

155

DISCUSSION SESSION

Marsaret B. Webster:

I was not quite clear about the difference between the "segment" and the "track".
concept?

Is a "segment" a

Su:

You might consider a segment as being a disk track, that is if we use a disk for implementation.
segment is a physical record, where you could have several physical records on a disk track.

Margaret B. Webster:

You're proposing to have a read/write head per segment.

Su:

That is correct. The crucial question here is the disk synchronization, i.e. being able to read and
write properly on the same track.

A. A. Brooks:

This

With respect to the question of cost, about four years ago Jack [Lipovski] gave a talk on the cost of
associative memories. At that time the cost of a large memory was approximately two to three times the
cost for the von Neumann type of machine. Is there any more current estimate of the order of magnitude
of the extra cost for this hardware?

Su:

The talk to which you refer is one in which Jack proposed to construct a cellular automata. He has
come to the conclusion that they are simply too expensive. The real cost is in the logical control, and
our indications are that this can be fitted into an LSI chip. These chips will essentially be identical.

Copeland:

Initially, the chip will cost several thousand dollars. But under mass production, the cost will
probably go down to something around ten dollars.

A. A. Brooks:

Su:

Are we talking about ten dollars per track?

Yes, and what we are proposing is well within the hardware technology.

A. A. Brooks:

Basically, it would simply be the cost of adding this circuitry to a fixed head swapping disk?

156

Su:

That is right. But we should consider more than simply the hardware cost. Reduction in response
time and the simplification of the software should be considerable. We are avoiding many levels of
language mapping by making the hardware function a very high level one.

Tom Kibler:

First a comment. The IBM 1500 used one read head and one write head for refreshing their scope. It
did perform read and write operations on the same track. My question involves the simplicity that your
system will have when searching down a usual logical statement, i.e. expressed in terms of some set of
keys. When you get to a query that involves both a key and a qualifier (a field that is not defined as a
key), then your system requires another processor such that the disk can pull certain records but a
sequential search must still be performed. Is that the way it would work?

Su:

Yes, certainly we will not be able to handle all types of retrieval operations. We shall seek to
handle the most common and most frequent types. For sometime, as you describe, you will have to use the
processor and search in the conventional way rather than utilizing the disk.

Copeland:

We have another paper that describes more fully the relationships between the cells. If you are
interested in the hardware details, I would suggest that you read it.

Edward McCreisht:

One of the most endearing qualities of the scheme is that it has such a wide cost/performance
potential payoff. It would seem that with about twenty copies of your hardware gadget, you could search
a IBM 3330 in about ten seconds.

Su:

You're suggesting using the same logic on many disks?

Edward McCreisht:

No, I am simply suggesting that instead of the fixed head disk using a moveable head disk.
what you are doing is time-multiplexing your hardware over many tracks.

In effect

Copeland:

What we would prefer however would be the cheapest technology available duplicated many times so as to
have one cell per track. This would make data base searches independent of data base size.

Leo Bellew:

Is your primary thrust to develop a piece of hardware, or is your primary effort to develop some
primitives which are planted in the associative direction?

Su:

Our biggest concern is along the second line. We do not only wish to design a piece of hardware, but
we wish to make it suitable to this particular type of application, i.e. information retrieval.

Leo Bellew:

So that it would not matter essentially what type of devices were being used; only that you could
bring things into a memory that would allow you to do operations in parallel?

Su:

I do not believe that it would work on tapes, for the memory must be circular.

Leo Bellew:

Are you saying that the primitives you are developing are oriented toward a particular type of device?

Su:

It must be circular in nature; disk, drum, magnetic bubble memory, etc.

157

Leroy Lacy:

It does not apply to two separate heads?

Copeland:

Yes, the problem is that we find that it cost three times as much to put two heads on a track for
they must be perfectly aligned. We shall be using every other track, and in one revolution, one track will
be reading and the other will be writing. One further advantage of this scheme is that we have a complete
copy of the data base both before and ofter the operation, and if errors occur we can do it over.

Margaret B. Webster:

Well, where will the logic chips be housed, in the controller?

Su:

Yes.

Copeland:

The actual logic chips can be placed anywhere you want them.
somewhere'close to the disk.

We will probably put them on a rack

Webster:

Then I do not see how the concept can apply to the 3330 as was mentioned previously. I Just do not

see how it fits in here.

Su:

If I understand the questioner correctly, what he is saying is that you do not have to build a unit of
logic per track. You can use movable heads rather than fixed heads, and he is considering the IBM 3330

rather as an example than a specific device.

Edward McCrei~ht:

Yes, that is what I meant.

A. A. Brooks:

To really get the advantage from this, you must have multiple heads because the whole game is
parallel processing. To move from track to track on a 3330-type device, I would suspect to be accomplished
with the conventional hierarchical indices more quickly.

Edward McCreight:

l'm not so sure. The problem with 3330 is that it takes a long time to scan.

Tom Kibler:

I think the problem is very well stated in that if you have two or three 3330-type packs, you still
have 60 searches in parallel. To accolmodate the same kind of information capability, you would have to
have a fixed head device with 6,000 independent logic units. I'm not sure that the 6,000 is the actual
number, but it is something of that magnitude. I'm not sure that the cost differential between 60 and

6000 is worth it.

Copeland:

From the hardware po~t of view we can afford to be very generous with parallelism. The cost of the
device is dependent on the square root of the number of units because of the learning curve property. So
if we go from i to i00 we are only increasing the cost factor by about i0.

Kibler:

You prime your search process with some message from the main frame.
different type of messages going out may cause problems?

Isntt it true that these

Su:

No, that is not a problem. You give the instruction to the entire disk at one time.

158

Unidentified questioner:

How does this relate to the Parker disk and the other disk mentioned in your paper?

Copeland:

The major difference is that they handle only a very simple data type, e.g. name/value pairs. This
takes a lot of software, and is very inefficient. Also, no "garbage collection" facility exists.

Donald Chamberlin:

What happens when a user wants to define a new table on the fly? Doe that invoke a procedure of
initializing tracks?

Copeland:

We would mark a subset of the table rather than copy. We do not want to duplicate information. We do
not create new tables from the existing tables.

Donald Chamberlin:

What if a user wished to define a new table that did not exist before? Would that be a complicated
process?

Copeland:

It should be very simple because the storage structure is almost the same as the structure of the
table. We would simply have to linearize the table.

Donald Chamberlin:

Then is there a catalog of the existing tables, so that when you wish to query you can check to see if
the proper table is loaded into core?

Su:

Each table is identified by a name and is loaded into the disk. You search for tables by name. Both
the table name and the data field that would go there would then be marked.

Donald Chamberlln:

Then is the data self-describlng?

Copeland:

It is variable in records and each item is of variable length.

Tom Kibler:

What is the scheme for handling the updating of information on the disk? Suppose I submit a list of
records to be updated and they come in from different disks. I change some and then they are to be
restored. Do they return to their original location or to new locations~

Copeland:

We never remove the records, for we update on an item basis. We can access any item within a record.

Tom Kibler:

How do you do a selection that goes across several tracks?

Copeland:

I am afraid this is a little too difficult to explain with the time limitations,

A. A. Brooks:

Is this logically equivalent to the associative memory with the "and-rail" and "or-rail"? Are they
functionally equivalent?

159

Copeland:

The cellular processor developed from the associative memory idea.

so in that context it is drawn from the previous ideas.

And our scheme does involve rails

Su:

It is sort of a compromise between the fully parallel processor and the existing sequential type. The
emphasis in our case is on the logic per segment rather than per word. The concept of rails is utilized.

Stewart A. Schuster:

After the records meeting a particular query are marked, are they issued one at a time or do you have

a work area and dump all of them into this area?

Su:

The marked recor4s are transmitted one at a time.

Stewart A. Schuster:

Could there be a capability for working with the output from one query while resubmitting another

query?

Su:

We do have a set of marked disks specifically for output purposes. It seems that you can handle all
the requests of one person, but that you cannot begin work on a second person without the first being
moved out to another storage area.

Copeland:

This problem is more of balancing the queueing of requests and output than of anything else.
do that by having more than one marked output disk and queue them in the hardware itself.

We can

Unidentified Questioner:

You keep proposing a disk, is it because a disk is cheaper?
talk about drums?

Would it not be just as reasonable to

Su:

We have really thought about disks, and what we would like to do is to take the concept to
implementation using a disk. We feel that it is important to work from the software end also. Our
approach is basically top-down, and we want to understand the problems and work toward a hardware
supported solution.

160

