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ABSTRACT

Cross-media hashing, which conducts cross-media retrieval
by embedding data from different modalities into a common
low-dimensional Hamming space, has attracted intensive at-
tention in recent years. The existing cross-media hashing
approaches only aim at learning hash functions to preserve
the intra-modality and inter-modality correlations, but do
not directly capture the underlying semantic information of
the multi-modal data. We propose a discriminative cou-
pled dictionary hashing (DCDH) method in this paper. In
DCDH, the coupled dictionary for each modality is learned
with side information (e.g., categories). As a result, the cou-
pled dictionaries not only preserve the intra-similarity and
inter-correlation among multi-modal data, but also contain
dictionary atoms that are semantically discriminative (i.e.,
the data from the same category is reconstructed by the
similar dictionary atoms). To perform fast cross-media re-
trieval, we learn hash functions which map data from the
dictionary space to a low-dimensional Hamming space. Be-
sides, we conjecture that a balanced representation is cru-
cial in cross-media retrieval. We introduce multi-view fea-
tures on the relatively “weak” modalities into DCDH and
extend it to multi-view DCDH (MV-DCDH) in order to en-
hance their representation capability. The experiments on
two real-world data sets show that our DCDH and MV-
DCDH outperform the state-of-the-art methods significantly
on cross-media retrieval.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
With the rapid development of Internet and social net-

work, it has attracted increasing attention to study the cor-
relations among multi-modal data. For example, an up-
loaded image on the Flickr web site is always tagged with
some related descriptions or labels; a microblog may consist
of a short text and correlative images. The relevant data
from different modalities may have semantic correlations.
Therefore, it is desirable to support cross-media retrieval
across the data of different modalities, e.g., the retrieval
of semantically-related textual documents in response to a
query image and vice versa. Due to the large-scale nature
of the existing multimedia data over the Internet, efficient
retrieval of cross-media is particularly important.

An effective way to speed up the similarity search is the
hashing-based method, which makes a tradeoff between ac-
curacy and efficiency by approximate nearest neighbor search.
The principle of hashing method is to map the high dimen-
sional data into compact hash codes and generate the same
or similar hash codes for similar data.

The motivation of hashing is to solve the approximate
nearest neighbor (ANN) search problem. However, in the
cross-media retrieval, the NN cannot be directly obtained
as the data may come from different modalities. Therefore,
most of the existing hashing approaches are not applica-
ble to cross-media retrieval and cross-media hashing method
should be specifically studied.

Generally speaking, the existing hashing approaches can
be classified into three categories:

• uni-modal hashing: uni-modal hashing utilizes on-
ly a single type of feature (homogeneous feature) from
uni-modal data as input, aiming at learning hash func-
tions to project the homogeneous feature to compact
hash codes.

• multi-view hashing: multi-view hashing utilizes mul-
tiple types of features (heterogeneous features) from
uni-modal data as input, and learns hash functions to
project the heterogenous features to hash codes.
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• cross-media hashing: cross-media hashing utilizes
data from multi-modalities (e.g, images and texts) as
input, and preserves the intra-modality similarity and
inter-modality correlation to learn hash functions. Thus,
the correlation of the data from different modalities is
measurable.

Most of the existing hashing approaches are uni-modal
hashing. One of the well-known uni-modal hashing method
is Locality Sensitive Hashing (LSH) [2], which uses random
projections to obtain the hash functions. However, due to
the limitation of random projection, LSH usually needs a
quite long hash code and hundreds of hash tables to guar-
antee good retrieval performance. To make the hash codes
compact, several learning based approaches are proposed.
Weiss et al. proposed Spectral Hashing (SH) [23] which
utilizes the distribution of training data and uses eigenfunc-
tion to obtain the hash functions. Compared with LSH, SH
achieves better performance since the hash functions cap-
ture the manifold structure of the data. Since then, many
extensions of SH have been proposed [27, 11, 20, 21, 5, 12].

However, in the real world applications, we can extract
heterogenous features from the data and some multi-view
hashing approaches are therefore leveraged to boost the re-
trieval performance[26, 17]. The principal idea of them is
to learn the hash functions while preserving the local struc-
tures of each individual feature and globally considering the
consistency of multi-view features.

Cross-media hashing is a new research area and there has
been only limited research efforts focusing on it so far [3, 9,
28, 29, 15, 30, 25]. Most of the existing cross-media hash-
ing approaches share the common idea of learning different
hash functions individually for each modality and map the
data from different modalities to a shared low-dimensional
Hamming space. However, such a binary embedding strate-
gy often results in poor indexing performance for the shared
embedding space is not semantically discriminative, which
is significantly important for cross-media retrieval.

In this paper, we propose a cross-media hashing frame-
work titled Discriminative Coupled Dictionary Hashing (D-
CDH). Firstly, data from different modalities along with
their classes or categories are jointly utilized to learn the
both discriminative and coupled dictionaries. The discrimi-
native capability indicates that data from same category will
have similar sparse representation (i.e., sparse codes), and
the coupling means not only intra-modality similarity but
also inter-modality correlation will be preserved. As a re-
sult, DCDH assigns an explicit semantic meaning (i.e., top-
ic) to each dictionary atom in multi-modal dictionaries and
thus makes the sparse representation for the multi-modal
data interpretable. Secondly, the obtained sparse codes for
the data over their corresponding dictionary are exploited
to learn the hash functions and further transform the sparse
codes to compact binary hash codes.

Furthermore, we find that the representation capability of
the dictionaries from different modalities varies and an “un-
balanced” representation may adversely influence the per-
formance of cross-media hashing. To address this problem,
we additionally incorporate multi-view features into DCDH
to enhance the representation capability of the dictionaries
from the relatively“weak” modalities. This extended version
of DCDH is named Multi-View DCDH (MV-DCDH).

The main contributions of this paper are three-fold:

• We propose a two-stage cross-media hashing frame-
work consisting of the learning of discriminative cou-
pled dictionaries and hash functions, respectively. The
learned discriminative coupled dictionaries in the first
stage have both discriminative and similarity-preserving
capability.

• The discriminative coupled dictionary learning is for-
mulated as an optimization problem of submodular
function and an approximation solution can be effi-
ciently obtained using a greedy algorithm.

• Multi-view and multi-modal data are jointly consid-
ered in the MV-DCDH framework. The multi-view
features is incorporated to strengthen the represen-
tation capability for the dictionary from a relatively
“weak” modality and lead to a balanced cross-media
representation. This enhancement improves the cross-
media retrieval performance of DCDH significantly.

The rest of the paper is organized as follows: In Section
2, we review the related work of dictionary learning and
cross-media hashing approaches. In Section 3, we give out
the detailed explaination of our DCDH and its multi-view
extension MV-DCDH. The complexity of DCDH is analyzed
in Section 4. Experimental results and comparisons on two
real-world data sets are demonstrated in Section 5. Finally,
the conclusions are given.

2. RELATED WORK

2.1 Dictionary Learning
Beyond the traditional dictionary learning approaches [24,

1], coupled or semi-coupled dictionary learning approaches
[6, 22] attempt to learn dictionaries for multi-modal data
by minimizing the reconstruction error of each dictionary
and preserving the pairwise correspondence across differen-
t modalities. However, these approaches are unsupervised
so that the class or category information is not exploited
and can not significantly boost the performance of learned
coupled dictionaries. Zhuang et al. proposed a supervised
semi-coupled dictionary learning approach which introduces
the category side information into multi-modal dictionary
learning via a ℓ2,1-norm regularization term.

Our proposed DCDH bears some resemblance to submod-
ular dictionary learning (SDL) [7] that takes advantage of
the submodularity to learn dictionary efficiently. We extend
the idea from uni-modal data into multi-modal data in order
to learn discriminative coupled dictionaries .

2.2 Cross-media Hashing
Cross-media retrieval is a hot research focus in recent

years [16, 32, 31]. With the rapid advance of hashing, some
cross-media hashing approaches have been proposed [3, 9,
28, 29, 15, 30, 25].

The problem of cross-media hashing was first proposed
by Bronstein et al. in CMSSH [3]. Specifically, given two
modalities of data sets, CMSSH learns two groups of hash
functions to ensure that if two data points (with differen-
t modalities) are relevant, their corresponding hash codes
are similar and otherwise dissimilar. However, CMSSH on-
ly preserves the inter-modality correlation but ignores the
intra-modality similarity. Kumar et al. extended Spectral
Hashing [23] from the traditional uni-modal setting to the
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multi-modal scenario and proposed CVH [9]. CVH attempt-
s to generate the hash codes by minimizing the distance of
hash codes for the similar data and maximizing the distance
for the dissimilar data. The inter-view and intra-view sim-
ilarities are both preserved in CVH. LCMH [30] adopts a
“two-stage” strategy to learn the cross-media hash functions:
First, the data within each modality are low-rank represent-
ed using the anchor graph[11]. Then, hash functions for each
modality are learned to project the data from each anchor
graph space into a shared Hamming space. MLBE employs a
probabilistic generative model to encode the intra-similarity
and inter-similarity of data across multiple modalities. Ac-
cording to the estimation of maximum a posteriori, the bi-
nary latent factors can be obtained and then be taken as the
hash codes in MLBE. However, the hash codes generated by
MLBE do not require the independency between different
hash bits, and may obtain highly redundant hash bits.

Wu et al. introduced dictionary learning into cross-media
hashing [25]. By the joint modeling of the intra-modality
similarity and inter-modality correlation among multi-modal
data with a hypergraph, the coupled dictionaries with a hy-
pergraph laplacian regularizer are learned in an iterative
manner. The learned dictionary for each modality is then
adopted as the hash functions, and the sparse code of each
data point over its corresponding dictionary is regarded as
the hash code to perform cross-media retrieval.

Inspired by the effectiveness of using the coupled dictio-
nary space to represent the data points from different modal-
ities, we additionally emphasize discrimination when learn-
ing coupled dictionaries in order to make the shared dic-
tionary space interpretable. Furthermore, unlike [25] that
directly exploits the sparse codes as the hash codes, we fur-
ther learn hash functions to map the sparse codes to binary
hash codes.

3. THE OVERVIEW OF DCDH
In this section, we introduce the detail of DCDH. Figure

1 illustrates the algorithmic flowchart of our DCDH. For
the sake of illustrative simplicity, we assume that only two
kinds of data (e.g., images and texts) are available in Figure
1. The proposed DCDH mainly consists of the following two
stages:

1. Discriminative coupled dictionary learning : In Figure
1, the clusters of multi-modal data can be learned by
a submodular function with the help of inter-modality
correlation, intra-modality similarity as well as the su-
pervised side information (e.g.,category labels). Given
a cluster, its centroid is taken as a dictionary atom
of their corresponding dictionary. That is to say, the
dictionary atom from one modality is coupled with the
corresponding dictionary atoms from the other modal-
ities in the same cluster.

2. Unified hash functions learning : Based on the learned
coupled dictionaries, the data points from differen-
t modalities can be represented as sparse codes in a
unified dictionary space. Afterwards, utilizing the s-
parse property, hash functions which project the sparse
codes into compact binary hash codes can be learned
efficiently.

The notations used in this paper are listed in Table 1.

Table 1: Notations used in this paper
Symbols Explanation

M the number of modalities
m m ∈ {1, 2, ...M} is one of the M modalities
K the common size of the coupled dictionaries
L the length of the hash codes
N the common size of each data set

p1,...,pM the dimensionality of each modality

X1,...,XM data set Xm = [xm
1 , xm

2 , ..., xm
Nm

] ∈ R
pm×N

D1,...,DM dictionary Dm = [dm1 , dm2 , ..., dmK ] ∈ R
pm×K

Z1,...,ZM sparse codes Zm ∈ R
K×N of Xm w.r.t. Dm

3.1 Unified Graph Representation of Labeled
Multi-modal Data

To well model the intra-modality similarity and the inter-
modality correlation of M data sets, we resort to the unified
graph G(V,E,w) similar to [19]. The vertex set V denotes
the data from all the data sets, and the edge set E models
the pairwise intra-modality similarity or the inter-modality
correlation between data points. The weight of an edge is
measured by some similarity functions which we will discuss
in the following.

To model the intra-modality similarity within the same
modality, we adopt the local similarity metric with a Gaus-
sian kernel. The intra-modality similarity wm

i,j of two data
points xm

i and xm
j from modality m is defined as:

wm
i,j =







e
−

|xm
i −xm

j |2

2σ2 , if xm
i ∈ Nk(xm

j ) or xm
i ∈ Nk(xm

j )

0 otherwise

(1)
where NK(x) represents the set of k-nearest neighbours of
x and σ = 1

N

∑

i,j |xm
i −xm

j |2 is the expectation over all the
pairwise distance in Xm.

It takes O(N2pm) time to compute an intra-modality sim-
ilarity matrix. When N is large, we can use some approxi-
mated methods such as the anchor graph structure to con-
struct this similarity matrix efficiently [11]. In this paper,
we simply use the exact k-NN graph in Eq.(1).

To model the inter-modality correlation of the data from
two modalities (we name them as modality a and b, a 6= b

and a, b ∈ {1, 2, ...,M}), the similarity function wa,b
i,j for two

data xa
i and xb

j is defined as:

wa,b
i,j =

{

1, if xa
i has known correlation with xb

j

0, otherwise
(2)

Moreover, to better understand the semantics of data, we
additionally exploit the category information. Let C be the
category-labels set indicating the category label of each da-
ta point (i.e., each vertex in G), the final category-labeled
unified graph is denoted as G(V,E,w,C).

3.2 Discriminative Coupled Dictionary
Learning

Given the category-labeled graph G(V,E,w,C), we at-
tempt to jointly learn the discriminative coupled dictionar-
ies D1,...,DM for the data from each modality. The cou-
pling of the dictionaries indicates that these dictionaries
have the same number of atoms (i.e, K) and the dictionary
atoms from M modalities have a one-to-one correspondence
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Binary 
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Figure 1: The algorithmic flowchart of DCDH. Without loss of generality, we assume that there are two
modalities of data (represented as squares and circles). The data points with the same stripe have the
same category label (e.g., ‘sports’, ‘biology’, ‘history’). Given multi-modal data, the submodular dictionary
learning is utilized to obtain discriminative coupled dictionaries. The “discriminative” capability is reflected
by the fact that each dictionary atom is assigned a dominant category label to enhance its interpretability
(i.e., category ‘sport’ for G1 and ‘history’ for G2). The “coupling” means that each dictionary atom in one
modality has its counterpart dictionary atom in another modality. The coupled dictionary atoms are combined
to characterize the multi-modal data. Each data point from a given modality can be sparsely represented as
a sparse code using its corresponding dictionary. Finally, hash functions is learned to transform the sparse
codes to binary hash codes.

(paired dictionary atoms), since the paired dictionary atoms
have their different intrinsic power to characterize the multi-
modal data. Moreover, the paired dictionary atoms are dis-
criminative in terms of semantics (i.e., category ) and is
consistent with only one category label. That is to say, the
data from different modalities are semantically aligned in a
shared coupled dictionary space.

Inspired by the efficiency and effectiveness of submodular
dictionary learning approach [7], we formulate our discrimi-
native coupled dictionary learning as a graph partition prob-
lem on G(V,E,w,C). Learning coupled dictionaries with
size K is equal to partitioning the category-labeled graph G
into K subgraphs which can be further regarded as a prob-
lem of selecting a subset A of the edge set E (i.e., A ⊆ E)
[7, 10]. We can formulate an objective function with respec-
t to A and maximize it to obtain the optimal partitions.
Our objective function has the property of submodularity
and thus can be approximately optimized with an efficient
greedy algorithm.

Our objective function consists of three parts which cor-
responds to the following requirements: 1) each subgraph
should be compact so that the obtained dictionaries have a
good representative capability; 2) each subgraph is encour-
aged to be discriminative so that the sparse representation
of the data over learned dictionary (i.e. using the centroid
to represent subgraphs), from the same category to be simi-
lar; 3) to avoid the over-fitting on the subgraphs’ size (some
subgraphs may be extremely large while the others are so
tiny), the size of each subgraph is in balance (nearly equal).

Compact Function: The entropy rate of the random
walk over the graph G is exploited to obtain the compact
subgraphs. The entropy rate measures the uncertainty of a
stochastic process S = {St|t ∈ T} where T is an index set.
For a discrete random process, the entropy rate is defined as
an asymptotic measure as: H(S) = limt→∞H(St|St−1, ..., S1),

which is the conditional entropy of the last random variable
given the past. In the case of a stationary 1st-order Markov
chain, the entropy rate is: H(S) = limt→∞H(St|St−1) =
limt→∞H(S2|S1) = H(S2|S1).

We define the random walk model on graph G as S =
{St|t ∈ T}. The transition probability from the vertex vi to
the vertex vj is defined as pi,j = Pr(St+1 = vj |St = vi) =
wi,j/wi where wi =

∑

k:ei,k∈E wi,k is the sum of incident

weights of the vertex vi, and the stationary distribution is
defined as:

µ = (µ1, µ2, ..., µ|V |)
T = (

w1

wall
,
w2

wall
, ...,

w|V |

wall
)T (3)

where wall =
∑|V |

i=1 wi is the sum of incident weights of all
vertices. The entropy rate of the random walk is defined as:

H(S) = H(S2|S1) =
∑

i µiH(S2|S1 = vi)
= −∑

i µi

∑

j Pi,j logPi,j
(4)

Leaving µ in Eq.(3) intact, the set functions for the tran-
sition probability Pi,j : 2E → R w.r.t. A are defined as:

Pi,j(A) =















wi,j

wi
, if i 6= j and ei,j ∈ A

0, if i 6= j and ei,j /∈ A

1−
∑

j:ei,j∈A wi,j

wi
, if i = j

(5)

Consequently, the compact function with respect to A can
be defined as the entropy rate of the random walk on G:

H(A) = −
∑

i

µi

∑

j

Pi,j(A)logPi,j(A) (6)

Given the entropies of the transition probabilities, maxi-
mizing the entropy rate in Eq.(6) encourages the edges with
large weights (small distance) to be selected [7]. Hence the
compact function H(A) can generate compact subgraphs.
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Discriminative Function: To encourage the discrimi-
nation of subgraphs which further guarantees the sparse rep-
resentation of the data from the same category to be similar,
a discriminative function on G is proposed [7].

Let A be the selected edge set, NA be the number of sub-
graphs with respect to A, the partition of graph G with
selected edge set A is GA = {G1, ..., GNA} where each Gi is a
subgraph. We construct a count matrix N = [N1, ...,NNA ] ∈
R

c×NA for the count of each category label of the data as-
signed to each subgraph and c is the number of the categories
of the multi-modal data set. Each Ni = [N i

1, ..., N
i
c ]T ∈ R

c

where N i
c is the number of data points from the c-th catego-

ry assigned to i-th subgraph. It is worth noting that the size
of the count matrix N is dynamic since NA changes when
new edges are added to the selected edge set A.

The purity for each subgraph Gi is defined as: P(Gi) =
1
Ci

maxyN
i
y where y ∈ {1, 2, ..., c} is the category label, Ci =

∑c
y=1 N

i
y is the count for data points of all categories as-

signed to subgraph Gi. The overall purity of GA is:

P(GA) =

NA
∑

i=1

Ci

Ctotal
P(Gi) =

NA
∑

i=1

1

Ctotal
maxyN

i
y (7)

where Ctotal =
∑

i Ci = |V | is the sum of the count of all
subgraphs. The discriminative function is defined as:

D(A) = P(GA)−NA =

NA
∑

i=1

1

Ctotal
maxyN

i
y −NA (8)

D(A) measures the discriminative capability of the sub-
graphs. Maximizing D(A) encourages each subgraph to have
a consistent category label, i.e., the data within each sub-
graph are expected to have the same category label.

Balancing Function: If we only use the compact and
discriminative functions, there may exist some extreme cas-
es where the majority of data belong to one subgraph and
the other data are sporadically dispersed. This makes the
learned dictionary suffer from over-fitting. Therefore, a bal-
ancing function is used to regularize the subgraphs of similar
sizes.

Denote pA as the distribution of the subgraph member-
ship, pA is formulated as:

pA(i) =
|Gi|

∑

i |Gi|
, i = {1, 2, ..., NA} (9)

The balancing function is defined using the entropy max-
imum theory:

B(A) = −
∑

i

pA(i)log(pA(i))−NA (10)

The aforementioned three functions are proved to be mono-
tonically increasing and submodular with respect to A [10][7].
Furthermore, It has been proved that the linear combination
of submodular function is still submodular [14]. Therefore,
we define an overall function F = H(A) + λD(A) + γB(A)
which is also monotonically increasing and submodular. The
optimal solution of F(A) is achieved by maximizing the ob-
jective function with best A as:

max
A

H(A) + λD(A) + γB(A)

s.t. A ⊆ E and NA ≥ K
(11)

where λ and γ control the contribution of the three terms.

Follow the settings of [7], we set λ =
maxei,j H(ei,j)−H(∅)

maxei,j
D(ei,j)−D(∅)λ

′

and γ =
maxei,j

H(ei,j)−H(∅)

maxei,jB(ei,j)−B(∅) γ
′, where λ′ and γ′ are pre-

defined parameters. NA ≥ K is a constraint on the number
of subgraphs which enforces exactly K subgraphs since the
objective function is monotonically increasing.

Directly maximizing Eq.(11) is a NP-hard problem. How-
ever, since F(A) is a submodular function, we can obtain an
approximate solution by a simple greedy algorithm, which
gives a 1

2
-approximation lower bound on the optimality of

the solution [14]. When the optimal K subgraphs are ob-
tained, we simply use the center of the data within each
subgraph as the corresponding dictionary atom. Since each
subgraph consists of the data from M modalities respective-
ly, M coupled dictionary atoms are obtained. The coupled
dictionaries of the common size K are generated based on all
the subgraphs. The overall algorithm of the discriminative
coupled dictionary learning is summarized in Algorithm 1.

Note that the weights of the intra-modality edges wm
i,j ∈

(0, 1] are not larger than the inter-modality edges wa,b
i,j = 1,

and the two vertices connected by the inter-modality edges
are within the same category. Therefore, adding an inter-
modality edge satisfies the discriminative function and the
compact function at the same time and each inter-modality
edge has a high probability to be selected out at the early
iterations in the step 4 of Algorithm 1. This observation is
valuable which ensures that within each subgraph, there is
at least one data point for every modality and the trivial
zero-value dictionary atoms is avoided.

Algorithm 1 Discriminative Coupled Dictionary Learning

Input: data sets X1,...,XM , λ′, γ′, K
Output: The learned coupled dictionaries D1,...,DM

1: Construct unified graph with labeled multi-modal data
G(V,E,w,C) for the data sets X1,...,XM

2: Initialization: A← ∅, D1, ..., DM ← ∅
3: while NA > K do
4: e∗ = argmax

e∈E
F(A ∪ {e}) −F(A)

5: A← A ∪ {e∗}
6: end while

# generation of coupled dictionaries.
7: for each subgraph Gi in G do
8: for m = 1 to M do
9: V m

i = {vj |vj ∈ Gi and vj from modality m}
10: Dm ← Dm ∪ { 1

|V m
i

|

∑

j:vj∈V m
i

vj}
11: end for
12: end for

3.3 Unified Hash Function Learning
As the coupled dictionary for each modality is learned,

the data from each modality can be encoded as sparse codes
using its corresponding learned dictionary.

For the data points in data set Xm, their K-dimensional
sparse codes Zm can be efficiently computed using the dic-
tionary Dm as follows:

min
Zm

‖Xm −DmZm‖2F + β‖Zm‖1
s.t. Zm ≥ 0

(12)

The non-negative constraint on Zm is needed for the fol-
lowing hash functions learning step. Eq.(12) is a simple
non-negative LASSO problem [18], and we use the efficient
LARS [4] solver to solve this problem. Moreover, despite of
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different choices of β, the sparsity (maximum number of the
zero-elements) of Z can be well controlled by LARS. This is
helpful since we expect the sparsity of each sparse code to
be equivalent. The sparsity is set to 0.9 (i.e., 90% elements
of a sparse code are 0) throughout the paper.

By solving the Eq.(12) for the data set of each modality,
the sparse codes Z1, ..., ZM are correspondingly generated.
Denote Z = [Z1, ..., ZM ] ∈ R

K×MN as the joint sparse codes
for all M data sets , we intend to further learn hash functions
which linearly projects each sparse code zi ∈ Z onto L-
dimensional compact binary hash codes (L < K).

The commonly used hash function learning strategy is
based on graph-laplacian [9, 27], etc. The hash functions
are learned by solving an eigenvalue-decomposition problem
of a laplacian matrix which takes O(N3) time. However, it
is infeasible to learn hash functions when N is large. There-
fore, we adopt the hash function learning strategy based on
the sparse characteristic of sparse codes.

Since Z is non-negative, we can use Z (each column has
been ℓ1 normalized) to construct an approximate adjacency

matrix Ŵ = ZT Λ−1Z ∈ R
N×N where Λ = diag(Z1) ∈

R
K×K [11]. The approximate adjacency matrix Ŵ is: 1)

nonnegative and sparse; 2) low-rank (the rank is at most
K); 3) double stochastic, i.e., has unit row and column sum.

Afterwards, the laplacian matrix is formulated as L̂ = I−Ŵ
where I is the identity matrix.

The optimal hash functions can be acquired as the L
eigenvectors with smallest eigenvalues of the approximated
laplacian matrix L̂ (removing the trivial eigenvector corre-
sponds to eigenvalue 0), which is equal to L eigenvectors

with largest eigenvalues of Ŵ . Due to the low-rank prop-
erty of Ŵ , a smaller matrix Q = Λ−1/2ZZT Λ−1/2 ∈ R

K×K

is substituted for eigenvalue-decomposition problem on L̂.
By solving the eigen-system of Q, L largest eigenvector-
eigenvalue pairs{(vk, σk)}Lk=1 where 1 > σ1 ≥ ...σL > 0
are obtained. Denote V = [v1, v2, ..., vL] ∈ R

K×L and Σ =
diag(σ1, σ2, ..., σL) ∈ R

L×L, the hash functions are defined
as follows:

h(z) = sign(P T z) (13)

where P =
√
MNΛ−1/2V Σ−1/2 ∈ R

K×L is the normalized
projection matrix, z ∈ R

K is a sparse code and sign(·) is the
binary function.

When given a new data point, its hash code can be con-
sequently generated using a two-stage mechanism: for ex-
ample, given a data point xm from modality m, it is first
nonlinearly transformed to a sparse code zm using its cor-
responding dictionary Dm similar with Eq.(12). After that,
with the learned projection matrix P , zm is linearly trans-
formed to a L-dimensional compact binary hash code using
the learned hash functions in Eq.(13).

3.4 Multi-View Enhancement
It is natural that the representation capability of the dic-

tionaries for different modalities varies widely. For exam-
ple, the representing capability of the dictionary for a text
modality is much stronger than the one for an image modal-
ity. This “unbalanced” representation may lead to an un-
satisfying cross-media retrieval performance. Therefore, we
incorporate the multi-view representation into our coupled
dictionary learning to enhance the representing capability of
the relatively “weak” modalities.

Without loss of generality, assuming we have two modal-
ities a and b, for modality a, we have a single-view feature
Xa; for modality b, we extract multi-view (e.g., 2 views)
features Xb1 and Xb2 . The construction of category-labeled
unified graph G(V, E,w,C) is similar with the aforemen-
tioned methods. The size of vertex set does not change
since each vertex represents one data point. The edge set E
is expanded as some relations between the vertices in V are
added with the introduction of multi-view features.

The multi-view discriminative coupled dictionary learning
method is similar to the DCDH in Algorithm (1) except for
the generation of coupled dictionaries. For the single-view
modality a, its corresponding dictionary Da is learned; for
the multi-view modality b, two dictionaries Db1 and Db2 are
learned, respectively.

For modality a, we use the dictionary Da to generate s-
parse codes Za for the data set Xa by Eq.(12). For modality
b, we use the dictionaries Db1 and Db2 to jointly learn the
sparse codes Zb as follows:

min
Zb

∑

i=1,2

‖Xbi −DbiZb‖2F + β‖Zb‖1
⇔ ‖Xb −DbZb‖2F + β‖Zb‖1

s.t. Zb ≥ 0

(14)

where Zb is the sparse codes over the multi-view dictionar-

ies, Xb = [Xb1 ;Xb2 ] ∈ R
(p1+p2)×N , Db = [Db1 ;Db2 ] ∈

R
(p1+p2)×K . Here, p1, p2 denote the dimensionality of the

two views. The optimization of Eq.(14) is similar to Eq.(12).

4. COMPLEXITY ANALYSIS
Our DCDH approach consists of an off-line stage to learn

the discriminative coupled dictionaries and unified hash func-
tions; an on-line stage to encode an out-of-sample data point
into a binary hash code. We detail the time complexity for
each part respectively.

4.1 Off-line training
Discriminative coupled dictionary learning: Leav-

ing out the time for constructing the graph G(V, E,w, C)

which takes O(
∑M

m=1 N
2pm) time, the complexity of dis-

criminative coupled dictionary learning can be implemented
efficiently. Using a well designed heap structure, the ideal
time complexity is O(|V |log|V |) (i.e., O(MN logMN)) [7].

Unified hash functions learning: To learn the u-
nified hash functions V , we first learn the sparse codes of
Z1, ..., ZM using Eq.(12). which can be solved in

O(
∑M

m=1 NKpm) time using the LARS algorithm [4]. How-
ever, the generation of each sparse code is independent which
can be solved in O(pmK) time, some parallel implementa-
tion can be adopted to solve the problem efficiently 1. After
the sparse codes for all training data are obtained, an eigen-
system of a small matrix Q ∈ R

K×K is solved in O(K3)
time to obtain the projection matrix W and corresponding
hash functions. Therefore, the overall unified hash functions
learning step can be very efficient.

4.2 On-line hash encoding
The on-line hash encoding step should be fast enough to

support the cross-media retrieval over the large scale data
set. The time for encoding a new data point is two-fold:

1http://spams-devel.gforge.inria.fr/
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(b) On-line testing time

Figure 2: The time cost of the training and test-
ing stages for DCDH, MV-DCDH and other cross-
media hashing approaches. The experiments are
conducted on Wiki-Potd data set with dictionary
size K = 100 and MV-DCDH uses two views of fea-
tures.

Sparse Coding: Given a new data point xm from modal-
ity m, its sparse code zm is obtained similar as Eq.(12).
Therefore, the time complexity is O(pmK).

Binary Embedding: The linear transformation from a
sparse code zm to a binary hash code is achieved by the hash
functions in Eq.(13) which takes O(KL) time.

An intuitive comparison of DCDH and other state-of-the-
art cross-media hashing methods on off-line training and on-
line testing time are demonstrated in Figure 2. We can see
that our DCDH and MV-DCDH require the least time in the
training stage and is also very efficient in the testing stage.

5. EXPERIMENTS
In our experiments, we evaluate the performance of our D-

CDH. We first introduce the data set, evaluation criteria and
the parameter setting we used in the experiments. Then,
we compare our DCDH with other state-of-the-art methods
and analyze the results. Finally, we further investigate the
learned coupled dictionary space to explain why our DCDH
and MV-DCDH achieve the superior performance.

5.1 Experimental Setup
We use two real-world data sets “Wikipedia-Picture of the

Day”(abbreviated as Wiki-Potd) 2 and NUS-WIDE3. Both
data sets are bi-modal containing images and texts.

The Wiki-Potd data set consists of 2866 Wikipedia doc-
uments. Each document contains one text-image pair. All
documents are labeled by one of 10 semantic categories. For
the image modality, we extract 1000-D Bag of visual words
(BoVW) and 512-D GIST descriptors for each image. For
the text modality, we calculate the frequency of all words
in the data set and select the most representative words to
quantize all texts into 5,000-D Bag-of-Words (BoW).

The NUS-WIDE data set contains 269,648 labeled images
and is manually annotated with 81 categories. Each image
with its annotated tags in NUS-WIDE can be taken as a
pair of image-text data. To guarantee that each category has
abundant training samples, we select those pairs that belong
to one of the 10 largest categories (e.g., ‘sky’, ‘buildings’,
‘person’) with each pair exclusively belonging to one of the
10 categories (discrimination on concepts are required when
learning coupled dictionaries.). For the image modality, over
three types of visual features are extracted for each image

2http://www.svcl.ucsd.edu/projects/crossmodal/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

Table 2: The details of the data sets used in the
experiments

Data Set NUS-WIDE Wiki-Potd

Image modality BoVW(500-D) BoVW(1000-D)
CM(255-D) GIST(512-D)

Wavelet(128-D) -
Text modality BoW(1000-D) BoW(5000-D)
Data set size 60641 2866

Training set size 3000 1000
Validation set size* 2000 /10000 866/866

Testing set size* 2000 / 47641 866/1000
* Partitions are ordered by query/database set respectively. The

query set are random sampled from the database set.

(i.e., 500-D BoVW, 255-D Color Moments, 128-D Wavelet
Texture). For the text modality, the corresponding labels of
each image are represented by a 1,000-D BoW.

The details of the two data sets are shown in Table 2.
To evaluate the performance of the cross-media retrieval

results, we adopt the mean average precision (MAP) and
mean average top-R precision (MAP@R) defined in [13].

5.2 Compared Methods
We perform three types of retrieval schemes in the experi-

ments : 1) Image-query-Texts: use image queries to retrieve
relevant texts. 2) Text-query-Images: use text queries to
retrieve relevant images. 3) Image-query-Images: use image
queries to retrieve relevant images. For the first two re-
trieval schemes, we compare with the state-of-the-art cross-
media hashing methods CMSSH [3], CVH [9], MLBE [28],
LCMH [30]; for the third retrieval scheme, we additional-
ly compare with some uni-modal hashing approaches: SH
[23], KLSH [8], AGH [11] and a multi-view hashing approach
MFH [17]. The reason why we don’t compare DCDH with
the approaches in [31] and [25] is that they can not generate
compact and binary hash codes, thus their performance can
not be fairly evaluated under the same settings.

Our DCDH method and its multi-view enhancement are
denoted as DCDH and MV-DCDH, respectively.

For the Image-query-Texts and Text-query-Images retrieval
schemes, the performances of CMSSH, CVH, MLBE, L-
CMH, DCDH, MV-DCDH are compared. Except for our
MV-DCDH which induces multi-view features, the remain-
ing methods take the BoVW descriptors for the image modal-
ity and BoW for text modality; for MV-DCDH, the multi-
view features are utilized for image modality.

For the Image-query-Images retrieval scheme, we compare
with all the counterparts aforementioned. It is notable that
for MFH, the multi-view features are exploited.

5.3 Parameters Sensitivity
There are four parameters in DCDH: the k-NN of the

intra-modality; λ′, γ′ in Eq.(11) when learning the coupled
dictionaries; the size of the coupled dictionaries K.

Following the prior settings in [7, 10], λ′ and γ′ are set to
10 and 1 respectively throughout the experiments.

We fix the code length L = 24 and evaluate the aver-
age MAP variations (the average MAP scores of Image-
query-Texts and Text-query-Images) in terms of K and k-
NN on the validation set. The tested combinations are K =
{50, 100, 200, 300, 400, 500} and k-NN = {5, 10, 20, 30, 50},
The optimal combination on NUS-WIDE is k-NN = 5, K =
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Table 3: The MAP performance comparison on the
NUS-WIDE data set with code length L varying
from 8 to 40. The items in bold are the two best
results, and the results with asterisk are the best.

Task Methods
Hash code length

L = 8 L = 24 L = 40

Image
query
Texts

CVH 0.3144 0.3139 0.3140
CMSSH 0.3233 0.3131 0.3140
MLBE 0.3142 0.3138 0.3119
LCMH 0.3163 0.3117 0.3144
DCDH 0.3608 0.3573 0.3568

MV-DCDH 0.3645* 0.3627* 0.3608*

Task Methods
Hash code length

L = 8 L = 24 L = 40

Text
query

Images

CVH 0.3158 0.3152 0.3144
CMSSH 0.3373 0.3309 0.3287
MLBE 0.3133 0.3156 0.3167
LCMH 0.3142 0.3124 0.3133
DCDH 0.3452 0.3559 0.3554

MV-DCDH 0.3640* 0.3629* 0.3604*

Table 4: The MAP performance comparison on the
Wiki-Potd data set.

Task Methods
Hash code length

L = 8 L = 24 L = 40

Image
query
Texts

CVH 0.1490 0.1407 0.1381
CMSSH 0.1448 0.1407 0.1431
MLBE 0.1445 0.1359 0.1371
LCMH 0.1267 0.1273 0.1258
DCDH 0.1821 0.1985 0.1934

MV-DCDH 0.2017* 0.2010* 0.1997*

Task Methods
Hash code length

L = 8 L = 24 L = 40

Text
query

Images

CVH 0.1435 0.1361 0.1351
CMSSH 0.1412 0.1364 0.1380
MLBE 0.1449 0.1344 0.1363
LCMH 0.1260 0.1237 0.1235
DCDH 0.1606 0.1648 0.1620

MV-DCDH 0.1745* 0.1734* 0.1716*

100 and k-NN = 20, K = 300 on Wiki-Potd. These settings
are adopted in the following experiments.

5.4 Performance Comparisons
We compare our DCDH and its extension MV-DCDH

with the three following methods: CMSSH [3], CVH [9] and
MLBE [28]. We evaluate the cross-media retrieval perfor-
mance with code length varying from 8 to 40 and report
results in terms of MAP in Table 3 and 4, respectively.
Moreover, we report the Image-query-Images retrieval per-
formance in terms of MAP@50 in Figure 3. The reason why
we choose MAP@50 rather than MAP for the Image-query-
Images task is that the differences of MAP scores, especial-
ly for the counterparts, are not statically significant, which
makes it difficult to illustrate them explicitly in a line graph.

The MAP scores on Wiki-Potd data set is generally low-
er than that on NUS-WIDE even if the Wiki-Potd data set
contains rich textual information. This may be explained as
that the categories of Wiki-Potd data set (e.g., ‘art’, ‘biol-
ogy’) is too general, so the feature vector can not precisely
capture its corresponding semantic meaning.
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Figure 3: The performance comparison of Image-
query-Images on two data sets.

It can be noted that DCDH significantly outperforms the
counterparts over different code lengths: 2% ∼ 7% on Wiki-
Potd data set and 2% ∼ 5% on NUS-WIDE, respectively.
The improvement is due to the effectiveness of the sparse
representation over the discriminative coupled dictionaries.
All the counterparts simply project the data from different
modalities into a shared Hamming space using the learned
hash functions. However, the meaning of the shared Ham-
ming space is ambiguous and cannot well clarify the seman-
tic information of the data. By contrast, our DCDH exploits
the category information when learning the coupled dictio-
naries, thus making the coupled dictionary space semantic
interpretable. By utilizing the distribution of the sparse
codes, the manifold structure of the dictionary space is also
preserved in the embedding Hamming space. Therefore, the
binary hash codes represent the semantic information of the
data and lead to superior cross-media retrieval performance.
Moreover, we find that the incorporation of the multi-view
features on the image modality, i.e., MV-DCDH, produces a
significant improvement over DCDH on both of the Image-
query-Texts and the Text-query-Images tasks. This obser-
vation is explained as that exploiting multiple features over
the “weak” modality (image modality) gives better under-
standing of the semantics of the images. This observation
also verifies our hypothesis that a balanced representation
is important in cross-media retrieval.

Although our main goal is cross-media retrieval, we can
readily use the hash functions we learned to perform uni-
modal retrieval. That is to say, all the cross-media hashing
approaches can be adapted to uni-modal hashing. We con-
duct the task of Image-query-Images and report the perfor-
mance of the aforementioned cross-media hashing approach-
es. Besides, we add some state-of-the-art uni-modal hashing
and multi-view hashing approaches to perform fair experi-
mental comparison. The results are shown in Figure 3.

From Figure 3, we find that all the cross-media hashing
approaches except CMSSH achieve reasonable performance.
This is due to the fact that the learned hash functions for im-
age modality can borrow strength from text modality. The
observation for the poor performance of CMSSH in this task
may be explained as the lack of intra-modality preservation
when learning hash functions in CMSSH.

In addition, since MV-DCDH induces multi-features, we
also add MFH [17] into comparison which also exploits multi-
features when learning hash functions. The results show
that MFH outperforms the other uni-modal hashing ap-
proaches and most of the cross-media hashing approaches,
which demonstrates the effectiveness of multi-views in im-
age understanding. Our MV-DCDH slightly outperforms
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Table 5: Topic words and corresponding category la-

bels of some selected dictionary atoms on the Wiki-
Potd data set.

Categories Topic Words

Biology
Skull Dinosaurs Bone Fossils Prey
Whales Killer Meat Oil Atlantic

Sport
Goals Hockey Players Montreal NHL

Football Yard Bowl Champion Quarter

Warfare
Natives Crops Australian Infantry Landing

Soviet, Moscow Marshall Defense Battle
Media Theater Broadway Movie Actor Disc

Geography Creek Tree Parks Ridge Forest

the MFH and achieves the overall best performance in the
Image-query-Images task.

5.5 The Discriminative Capability of the
Coupled Dictionary Space

The results over both the data sets above outline the supe-
rior performance of DCDH over the other cross-media hash-
ing approaches. This superiority mainly owes to the aptitude
of the discriminative capability of the coupled dictionary s-
pace in DCDH. To verify our hypothesis, we investigate the
coupled dictionary space. We choose the Wiki-Potd data set
since it has rich textual information and is convenient for il-
lustrations. To show the effect of discriminative capability of
the coupled dictionary space, we design a non-discriminative
version of DCDH by simply setting λ′ = 0. The rest settings
are same as the ones used aforementioned (K = 300 and k-
NN = 20).

Denote the learned coupled dictionaries for image and text
modalities as Dx amd Dy , respectively. Zx and Zy are the
sparse codes of the test data set in two modalities by the
corresponding dictionaries. To measure the discrimination
of the sparse codes, we define a metric called Discriminative
Degree (abbreviated as DD) as follows:

DD(Z) =
1

N

N
∑

i=1

P (zi) (15)

where N is the number of the testing samples. P (zi) = 1
if at least one of the selected dictionary atoms of the sparse
code zi indicates the true category label of the i-th data
point and 0 otherwise.

Moreover, DD can also be used to measure the coupling
degree of the sparse codes from different modalities. De-
note the dot product of Zx and Zy as Zxy and DD(Zxy)
reflects the one-to-one correspondence of the paired dictio-
nary atoms .

Figure 4 shows the comparison results. The “Random”
method indicates that the dictionaries are randomly gen-
erated; The “Non-discriminative” method is the aforemen-
tioned DCDH with λ′ = 0. The “Discriminative” and “MV-
Discriminative” methods correspond to our DCDH and MV-
DCDH. From the results, we get four observations: 1) the
sparse codes of the text modality is more semantically dis-
criminative than the ones from the image modality (even
when we do not impose the discriminative constraints); 2)
The introduction of side information improves the discrimi-
native capability especially for the image modality (without
the category side information, the DD score of the image
modality is almost equal to the random method); 3) The
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Figure 4: The discriminative capability comparison

coupling degree is significantly improved when imposing the
discriminative constraint. This is mainly due to the better
representation of the image modality; 4) Exploiting multi-
view features further improves the performance on both the
understanding of the image modality and the coupling de-
gree.

To give an intuitive illustration of the learned dictionary,
we give an insight into the textual dictionary Dy (the image
dictionary Dx is learned from the BoVW, which is difficult
to illustrate). Since each dictionary atom dyk is obtained by
clustering a portion of BoW features, the values of the ele-
ments in dyk measure the occurrence frequency of the words.
Naturally, we can use the elements with largest values in
dyk to represent the topic words of this dictionary atom dyk.
Moreover, each dyk is learned with a discriminative constrain-
t and has a dominated category label, we demonstrate the
relation between the category label and topic words of the
dictionary atoms in Table 5 (topic words correspond to the 5
largest elements of the selected dictionary atoms). From the
results, we can find that the topic words for each dictionary
atom indeed reflect some certain semantic information and
are consistent with its belonging category. Besides, two dic-
tionary atoms belong to the same category have an explicit
disparity in semantics. e.g., the two atoms from the cat-
egory “Biology” describe different topics of “Biology”: the
first topic is about dinosaurs and the second one is about
whale killing. This observation can be explained as the col-
laborative effect of the compact function and discriminative
function. The discriminative function encourages the topics
to be classified into the correct categories and the compact
function encourages each topic to reflect an individual aspect
of its corresponding category.

6. CONCLUSIONS
In this paper, we propose a discriminative coupled dic-

tionary hashing (DCDH) approach for fast cross-media re-
trieval. Our DCDH is two-stage in that we first learn cou-
pled dictionary for each modality discriminatively with the
side information of category labels, so that the data from
different modalities are represented as the sparse codes in a
shared semantically discriminative dictionary space. After-
wards, the sparse codes are mapped to binary hash codes
by the learned unified hash functions to support fast cross-
media retrieval. Extensive experiments on two real-world
data sets demonstrate the superior performance of DCDH
over the existing state-of-the-art hashing approaches.

Moreover, we conjecture that a balanced cross-media rep-
resentation benefits the cross-media retrieval performance.
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Therefore, we extend DCDH to MV-DCDH which intro-
duces multi-view features on the relatively “weak” modal-
ities (i.e., the image modality in our experiments) to obtain
a balanced representation. The experimental results verify
the effectiveness of MV-DCDH.
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