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ABSTRACT
In this paper we propose a novel entity annotator for texts
which hinges on Tagme’s algorithmic technology, currently
the best one available [6, 4]. The novelty is twofold: from
the one hand, we have engineered the software in order to be
modular and more efficient; from the other hand, we have
improved the annotation pipeline by re-designing all of its
three main modules: spotting, disambiguation and pruning.
In particular, the re-design has involved the detailed inspec-
tion of the performance of these modules by developing new
algorithms which have been in turn tested over all publicly
available datasets (i.e. AIDA, IITB, MSN, AQUAINT, and
the one of the ERD Challenge).
This extensive experimentation allowed us to derive the

best combination which achieved on the ERD development
dataset an F1 score of 74.8%, which turned to be 67.2% F1
for the test dataset. This final result was due to an im-
pressive precision equal to 87.6%, but very low recall 54.5%.
With respect to classic Tagme on the development dataset
the improvement ranged from 1% to 9% on the D2W bench-
mark, depending on the disambiguation algorithm being
used.
As a side result, the final software can be interpreted as a

flexible library of several parsing/disambiguation and prun-
ing modules that can be used to build up new and more
sophisticated entity annotators. We plan to release our li-
brary to the public as an open-source project.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.3.5 [Information Storage
and Retrieval]: Online Information Services, Web-based
services; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Text analysis
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1. INTRODUCTION
Enriching texts with proper semantic annotations is today

a proven technique used to increase the quality of several IR
tasks, ranging from indexing to classification and retrieval.
The classic BoW paradigm is starting to show its limita-
tions, fact confirmed by the recent paradigm shift in the
IR community which is now trying to design more reliable
entity annotators (see e.g. [11, 16]).

An entity annotator is a tool that applied to a text is capa-
ble of identifying short-and-meaningful sequences of terms
(also calledmentions) and annotate them with unambiguous
identifiers (also called entities) drawn from a catalog (usu-
ally Wikipedia). The process involves three main steps: (i)
spotting of the input text, that is finding mentions and sets of
candidate entities they could link to; (ii) disambiguation of
mentions, in which each mention is linked to the most perti-
nent entity that best describes it; (iii) pruning of a mention,
that discards a mention and its linked entity in the case that
the annotation is not considered correct or consistent with
the overall interpretation of the input text.

In this work we introduce our new entity annotator Wat,
the successor of Tagme [6] the best known annotator to
date [4], redesigned from the ground up in order to easily
accommodate modifications and tweaking of each different
step of the annotation pipeline. The paper will provide an
analysis of each single step of the entire pipeline, quantifying
how the performance of each single module can influence the
performance of the successive one, and how this will impact
the final performance of the system.

2. RELATED WORKS
The first work that introduced the entity linking problem

was Wikify [12], followed by [5]. Milne and Witten [13, 14],
improved the original idea by proposing a new annotator
that hinges on (i) the identification in the input text of non-
ambiguous mentions C which links to only one entity; (ii)
the introduction of a relatedness function rel(e1, e2) between
two Wikipedia entities e1 and e2 based on the size of the
overlap between their in-linking pages; (iii) and a notion of
coherence of an entity e with other un-ambiguous entities
C.

Chakrabarti et al [9] improved further the previous ap-
proaches by introducing two scores for each annotation: one
local, modeling the mention-entity linkage compatibility, and
the other global, modeling the coherence among all the en-
tities chosen to disambiguate all the mentions. The authors
then used a collective annotation approach, via the (slow)
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solution of a quadratic assignment problem, to find the best
mapping that maximizes the sum of the two scores.
Subsequently, Ferragina and Scaiella [6] proposed a fast

yet accurate local disambiguation procedure that disambi-
guates one mention at the time by means of a voting scheme
which operates pairwise and links it to its top-scoring can-
didate entity. This voting scheme aims at finding the collec-
tive agreement between all the mention-entity bindings by
exploiting the relatedness function introduced by [14] and
other statistics derived from a pre-processing of Wikipedia.
A completely different approach is the one followed by the

authors of AIDA [8]. The authors proposed to solve the dis-
ambiguation problem by exploiting a new form of coherence
graph, called Mention-Entity Graph, a weighted undirected
graph in which nodes are either mentions or candidate enti-
ties. They considered weighted edges between mentions and
entities, capturing context similarities and weighted edges
among entities to capture coherence among entities. They
then solved the disambiguation problem by looking for a
dense sub-graph that would contain all the mentions nodes
and exactly one mention-entity edge for each mention. Since
the dense sub-graph problem is NP-hard they adopted a
light approximation algorithm [15].
In [7], the authors proposed a similar framework by ex-

ploiting the so called Referent Graph that strictly resembles
the Mention-Entity Graph of [8]. The difference being the
disambiguation method which here is based on PageRank.
More recently [18] proposed another approach to entity

disambiguation based on the HITS algorithm which is run
over a sub-graph of the RDF Knowledge Base (DBPedia [1]),
derived using a truncated BFS visit. The seeds node used in
the BFS exploration are the entities found in the spotting
phase. A set of heuristics, such as co-reference resolution
and normalization and expansion of surface forms, are used
to achieve good performance for the proposed system. The
authors claim an increase in accuracy up to 20% with respect
to [8] but a comparison over the AIDA CONLL dataset is
missing.
In designing Wat we took inspiration from the recent

trends in entity annotator design, and set up a modular
framework which hinges on the Tagme’s approach but, in
addition, offers the most well known disambiguation algo-
rithms (based on voting scheme or on collective linking us-
ing the Mention Entity Graph model) and other software
modules that can be flexibly combined to design and test
new ideas in the entity annotators/entity linking landscape.

3. TERMINOLOGY
The objective of an entity annotator is to annotate a text

t producing a set of annotations a ∈ At. Each annotation
a is a binding between a mention m, occurring in t, and
an entity e and can be represented by the pair (m, e). In
our context an entity is a Wikipedia article identified by its
page-ID, while a mention is a sequence of terms located in
the input text t. Each mention is uniquely identified by a
pair (s, l) (mention’s span) where s is the position of the
first character in t of the mention and l is the length of the
mention.
In order to be annotated, an input text has to go through

the annotation pipeline that consists of three main steps:

Spotting: the entity annotator will scan the input text t
looking for interesting sequences of terms and it will pro-

duce a set Mt of possible mentions. Additionally a list of
candidate entities Em will be retrieved for every single men-
tion m ∈ Mt. The candidate list will contain all possible
senses that can be associated to a specific mention. We can
distinguish between unambiguous mentions, i.e. |Em| = 1,
and ambiguous mentions, i.e. |Em| > 1.

Disambiguation: in this phase the entity annotator will
associate a score se to each candidate entity e ∈ Em. The
score models how well the entity e describes the mention m
in the context of the input text t. The top-scoring bindings
will be the candidate annotations At.

Pruning: in this phase the entity annotator has to choose
whether or not to discard an annotation from the set At.

4. FRAMEWORK
In this section we will briefly describe the changes and

additions implemented by Wat with respect to our reference
annotator Tagme.

4.1 Spotter
The possible set of mentions that Wat can recognize in a

given input text t derives from an offline pre-processing of
Wikipedia. As in [6] we used wiki-anchors, titles, redirect
pages to create the database of possible spots. Additionally
every single mention in the spot database has a link prob-
ability attribute lp(m) = link(m)/freq(m) where freq(m)
denotes the number of times the given mention m occurs in
Wikipedia (as an anchor or not); whereas link(m) denotes
the number of times the mention m occurs as an anchor
in Wikipedia’s pages. The spot database provides for each
mention m a list of candidate entities Em which are ranked
according to the prior-probability attribute (also known as
commonness) defined as Pr(e|m), which is the number of
times the mention m is used to link the entity e.

In addition to the classic attributes, we added a diverse set
of statistics to each mention of the spot database. The set
of features can be consulted by looking at Table 4.3 (first
half). They are used by Wat to train an optional binary
classifier (a SVM with linear or RBF kernel) which is used
to increase the performance of the spotting procedure.

Most of the features (FID 1-7) try to catch the syntac-
tic properties of a mention and are self-explanatory, while
others (FID 8-12) deserve a better explanation. Specifically,

the feature boostedLinksRatio is defined as link(m)
boostedLink(m)

,

where boostedLink(m) is a modified version of link(m) that
also accounts for artificial links introduced during the pro-
cessing of entities relative to persons (two artificial anchors
are created respectively for the given name and the first

name). The feature ambiguityRatio is defined as |Em|
links(m)

,

while documentProb is the freq(m)
|W | with |W | being the num-

ber of Wikipedia pages (and thus entities). The feature

mutualDependency is Pr(t1,··· ,tn)2

Pr(t1)···Pr(tn)
where t1, · · · tn are the

terms forming the mention m, as in [17]. The features
with FID between 13 and 15 are binary features indicating
whether the most common sense that might be linked to m
is respectively of type person, location or organization.
The same applies to features 16–18 whose value is 1 if the
mention m is found inside a span that the OpenNLP 1 NER
system recognized as such. The last two features, namely

1http://opennlp.apache.org/
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hasSuperior and isWhitelisted, are binary as well, with the
former representing the fact that mention m is overlapped
by a longer mention m′ (with greater length); the latter is
only considered in the context of the ERD dataset and it is
set to 1 in case the most common entity is part of the entity
subset that the ERD challenge [2] assumes valid. In addi-
tion Wat provides the possibility to access a set of binary
features (with FID starting from 37) indicating the presence
of a specific NLP tag inside the mention span.

4.2 Disambiguator
Wat offers a suite of disambiguation algorithms, which

can be divided in two main categories: (i) the ones based on
the voting framework introduced for the classic Tagme [6];
and (ii) the ones which rely on the Mention-Entity graph
as a framework for designing collective entity-linking algo-
rithms. Both families exploit a context window surround-
ing the mention m, denoted by W (m), in order to derive a
proper disambiguation context. The function W (m) applied
to a given mention m occurring in a text t returns a prede-
fined number (30 by default) of closest mentions surrounding
m.
All the implemented disambiguation algorithms support

the so called ϵ-trick that works as follows [6]: instead of
assigning to the mention m the top-scoring entity e, the
system will choose from the top-ϵ scoring entities the one
with greater commonness or PageRank (evaluated on the
graph of Wikipedia using SNAP 2).

4.2.1 Voting algorithms
We can easily describe the original voting procedure in-

troduced in [6] as depicted in Algorithm 1. At the end, each
entity Em will have associated a score se, and entity e with
the highest score will be selected as representative for the
mention m. Scores are then normalized mention-wide.

Algorithm 1 base method (Tagme voting scheme)

for all m′ ∈W (m) do
for all e′ ∈ Em1 do

se ← se + rel(e, e′) · Pr(e′|m′)
end for

end for

In addition to the base method, Wat provides three vari-
ants in which either (a) trigram-similarity (jaccard) between
the title title(e) of the entity e and mention m, or (b) the
number n of positive votes (number of times when the re-
latedness is greater than 0), or both indicators are used in
addition to the semantic relatedness between e and e′ as a
way to derive a score for the entity e. We will refer to these
variations as: base-t (trigram-only), base-n (votes only),
and base-nt (trigram + votes) methods.

4.2.2 Graph-based algorithms
As in [8], theMention-Entity graphGme = (Vm∪Ve, Eme∪

Eee) is a graph in which mention nodes are linked to a set
of candidate entities, indicating the possible senses for a
given mention. Entities are interconnected through weighted
edges indicating the semantic similarity among them.
The construction of the graph proceeds as follows: the set

of mentions m and its candidate entities Em found by the

2http://snap.stanford.edu/

Name Similarity Graph Algorithm

pr identity PageRank
ctx-pr context PageRank
comm-pr commonness PageRank

ppr identity Personalized PageRank
ctx-ppr context Personalized PageRank
comm-ppr commonness Personalized PageRank

ppr-uniform identity Personalized PageRank
ctx-ppr-uniform context Personalized PageRank
comm-ppr-uniform commonness Personalized PageRank

hits-auth identity HITS - Authority score
ctx-hits-auth context HITS - Authority score
comm-hits-auth commonness HITS - Authority score

hits-hub identity HITS - Hub score
ctx-hits-hub context HITS - Hub score
comm-hits-hub commonness HITS - Hub score

salsa-auth identity SALSA - Authority score
ctx-salsa-auth context SALSA - Authority score
comm-salsa-auth commonness SALSA - Authority score

salsa-hub identity SALSA - Hub score
ctx-salsa-hub context SALSA - Hub score
comm-salsa-hub commonness SALSA - Hub score

Table 1: Disambiguation algorithms offered by the
WAT framework to work on the Mention-Entity
graph.

spotter are respectively used to create the mention nodes
(Vm) and the entities nodes (Ve) of the final graph Gme.
The edges of type Eme can be weighted according to one of
the following mention-similarity functions: (i) identity (al-
ways 1), (ii) commonness or (iii) context similarity, that is
the normalized BM25 similarity score 3 between the query
q (text around m not including other mentions) and each
Wikipedia entity e ∈ Em (considered as text documents).
A similar weighting strategy is applied to the edges of type
Eee. In this case the weighted are calculated using one of the
relatedness functions that will be introduced in Section 4.4.

Once the graph Gme is constructed, a disambiguation pro-
cedure is applied to it. The final goal is to derive for each
mention node Vm a single entity Ve that represents the“best”
sense for that mention, in the context of the mention-entity
graph, given the text t. We argue that the “best” entity Ve

for the mention Vm is the entity node with the highest score,
evaluated by means of one of the well known graph analy-
sis algorithms: such as PageRank, Personalized PageRank,
HITS, and SALSA [10]. The application of PageRank is
trivial, since it does not require any other parametrization
except the damping factor, whose value was set to the clas-
sic 0.85. Conversely, the personalized PageRank requires the
specification of an initial distribution. Wat offers two alter-
natives: (i) uniform prior probability or (ii) prior probability
derived from the lp(m) attribute of each mention involved in
Gme. HITS and SALSA algorithms, unlike Pagerank, pro-
vide two probabilistic scores: an authority score and a hub
score. Table 1 summarizes all possible configurations that
can be used to solve the entity linking problem.

4.2.3 Optimizer
After the disambiguation step, it is possible to enable the

so called optimizer that will perform a second disambigua-
tion pass using the base-nt method but with a simple trick:
the voting procedure will just consider the votes coming from

3http://lucene.apache.org/
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the entities associated to the just derived annotations At in-
stead of using all the possible candidate entities Em of every
mention m. The method base-nt was chosen with the fol-
lowing rationale: (i) after the first disambiguation step we
argue that the majority of annotations are correct so that
(ii) we just need to reconsider just few bindings, and so we
link the entity that not only receives the best score and has
the greatest trigram similarity but also the ones that was
voted by the “right” majority of other senses (forcing cohe-
sion in the annotations).

4.3 Pruner
An ideal pruner has the objective to prune useless anno-

tations computed in the disambiguation step, in order to
increase the precision of the system. As in [6], Wat offers
the possibility to use the legacy ρ(a) threshold mechanism to
prune non-coherent annotations. The ρ is a synthetic metric
of a given annotation a = (m, e) that is the average between
the link probability lp(m) of mention m and the coherence
(average relatedness) of e with its surrounding annotations.

It can be expressed as ρ(a) = lp(m)+coherence(a)
2

with the

coherence being:
∑

a′∈W (a)
rel(e′,e)
|W (a)| . The relatedness used is

the so called MW-function [14].
In addition to the classic ρ threshold mechanism, Wat

offers the possibility to plug in the pruner a binary classi-
fier (a SVM binary classifier with either a linear or RBF
kernel) trained on a diverse set of features, both involving
the mention and the top-scoring entity. The set of available
features is shown in Table 4.3 (the entity specific features
are reported in the table on the right). Features with FID
between 21 and 26 are local features and they are relative to
the entity only. Specifically pageRank is the PageRank score
of that entity (article) in the Wikipedia graph, pageHits is
the WikiLinks score extracted from the WikiLinks corpora 4.
The degree features (inDegree, outDegree) capture the num-
ber of in/out links of that entity. numRedirects denotes the
number of redirect pages pointing to e, while the common-
ness feature is the prior probability Pr(e|m). Other features
worth an explanation are localCoherence, contributions and
contributionsRatio. The former differs from the classical co-
herence in the denominator (called contributions) which just
counts the number of annotations around a whose related-
ness (with a) are non-zero. The same kind of reasoning is
behind contributionsRatio, which is defined to be the ratio
between contributions and |W (a)|. The feature pointsTo de-
notes the number of annotations around a that are pointed
by e, while pointedBy is defined as the number of anno-
tations around a that points to e. The pointsToScore and
pointedByScore features are the scaled versions of the previ-
ous ones, in which a “point-to/pointed-by” relationship does
not count as 1 but rather 1

out(e)
. The last feature, trigram-

Similarity, is the trigram similarity based on the Jaccard-
score between title(e) and the mention m.

4.4 Relatedness functions
Aware of the possible limitations of the relatedness func-

tion being used by Tagme, as found in [3], we tried to de-
vise and implement new measures rel(e1, e2) which try to
quantify how much two entities e1 and e2 are related. The
function returns a score between 0 and 1, with 1 denoting
a strong relation between the two entities and 0 indicating

4https://code.google.com/p/wiki-links/

FID Feature

1 allUpper
2 isCapitalized
3 numCapWords
4 ratioCapWords
5 mentionLength
6 numTokens
7 averageTokenLength
8 linkProb
9 boostedLinksRatio
10 ambiguityRatio
11 documentProb
12 mutualDependency
13 isPerson
14 isLocation
15 isOrganization
16 insidePersonSpans
17 insideLocationSpans
18 insideOrganizationSpans
19 hasSuperior
20 isWhitelisted
37– NLP tags

FID Feature

21 pageRank
22 pageHits
23 inDegree
24 outDegree
25 numRedirects
26 commonness
27 rho
28 localCoherence
29 coherence
30 contributions
31 contributionRatio
32 pointsTo
33 pointedBy
34 pointsToScore
35 pointedByScore
36 trigramSimilarity

Table 2: Mention and Entity feature sets

that the two entities are not related at all. For our ex-
periments we considered four different relatedness functions
(others have been experimented with lower success and are
therefore dropped from this description, but they are avail-
able in the Wat framework):

1. Jaccard is the ratio between the intersection and the
union of the in-links of e1 and e2:

|in(e1)∩in(e2)|
|in(e1)∪in(e2)|

2. Milne-Witten [14] defined as:

1− max(log|in(e1)|, log|in(e2)|)− log|in(e1) ∩ in(e2)|
|W | −min(log|in(e1)|, log|in(e2)|)

3. LSI vector cosine similarity between two LSI vectors
extracted using the gensim 5 library.

4. A special (empirical) measure obtained by precomput-
ing the intersection |in(e1)∩ in(e2)| for all the possible
pairs of entities (e1, e2). The intersection frequency
distributions were stored in logarithm buckets iden-
tified by the pair ⟨log2(e1), log2(e2)⟩, with |in(e1)| <
|in(e2)|. We then dropped from each distribution the
first 80% pairs thus focusing our attention on the long
tail. The relatedness is then defined to be the value of
CDF at point i = |in(e1) ∩ in(e2)| of the distribution
indexed by ⟨log2(e1), log2(e2)⟩.

5. EVALUATION
In order to have a clear picture of the performance of var-

ious instantiations of our system, we devised three different
tests (inspired to [4]). The first one, called Spotting coverage,
determines the level of coverage of our spotter with respect
to the gold-standard dataset: namely, the mentions in the
gold-standard are compared with the mentions our system
identifies in the input text. The second test, called D2W,
evaluates the performance of our disambiguation algorithms:
namely, the mentions of the gold-standard are sent as input
to our system that, by running one of the proposed disam-
biguation algorithms, returns a mention-entity assignment
for each (gold) mention. The assignments are compared
with the ones in the gold-standard and F1/Precision/Recall

5http://radimrehurek.com/gensim/ with k = 400
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measures are derived. The last test deals with the perfor-
mance of the system as a whole. The input text is annotated
via the entire annotation pipeline, and F1/Precision/Recall
measures are derived by comparing the detected mention-
entity annotations with the ones in the gold-standard.
For the sake of clarity we now define the concept of weak

and strong annotation match between two annotations a1

and a2, as in [4]. The former, denoted by Mw(a1, a2), is
true iff the mentions m1 and m2 textually overlap and e1
equals e2, while the latter denoted by Ms(a1, a2) is true iff
a perfect text-alignment occurs between the two mentions
m1 and m2 in addition to the entity equality property.

5.1 Datasets
In this work we will concentrate our attention onto the

ERD dataset, but the conclusion and results can be ex-
tended to all the available datasets such as (AIDA/CoNNL,
AQUAINT, IITB and MSNBC). We do not report a detailed
analysis of those datasets for the sake of space, details are
deferred to a future paper. The datasets we considered are:

ERD-50 contains a subset of the original ERD-100 corpus,
consisting of 50 annotated documents as described on the
ERD challenge site 6.

ERD-100 is the complete development dataset. We didn’t
have access to it but it was possible to test a given Wat
configuration getting the macro averaged F1, Precision and
Recall.

5.2 Spotting
Under the assumption of strong/weak annotation match,

the benchmark for the spotting can be easily defined. We
consider as true positives the mentions reported in the gold-
standard that are also found by the annotator (ignoring the
entity equality property that, for this test, is not defined).
False positives are the mentions found by the system that
are not in the gold-standard. Conversely false negatives are
the mentions that appear in the gold-standard but are not
reported by the annotator. Given these definitions we can
derive the classical IR metrics: Precision, Recall and F1 for
each type of match: either strong or weak.
Being the first stage of the processing pipeline of an an-

notator, we can tune the performance of spotting in three
different ways. We can (a) maximize the recall of the spot-
ter, leaving to the pruner the burden to remove spurious
mentions at the end of the pipeline. The second option, un-
der the assumption of having a not-so robust disambiguator
and a very fragile pruner, is to (b) maximize the precision
of the spotter. The third option is (c) maximizing the F1,
even if it might be not the best choice in most cases because
it assumes the presence of an adequate disambiguator (that
is robust to limited noise in the spotting procedure) and a
very simple pruner. Therefore if a spotter does not return
an F1 near to 1 it is usually better to optimize the recall.
We report the performance of Wat’s spotter against the

Stanford NER system in Table 3 and Table 4. The compar-
ison against Stanford NER is important since it is currently
used as a spotter module of several annotators like AIDA [8].
Indeed it is the one offering the best F1, but surprisingly we
argue that using a spotter that is based on Wikipedia, like
the one provided by Wat, is the best choice with respect

6http://web-ngram.research.microsoft.com/erd2014/

Dataset Annotator Thr. P R F1

erd-50 wat .266 .557 .641 .564
erd-50 wat .000 .090 .986 .160
erd-50 stanford .560 .673 .573

Table 3: Spot experiment using the weak match
Mw(a1, a2), with threshold over lp(m).

Dataset Annotator Thr. P R F1

erd-50 wat .266 .467 .588 .493
erd-50 wat .000 .076 .919 .136
erd-50 stanford - .296 .381 .312

Table 4: Spot experiment using the strong match
Ms(a1, a2), with threshold over lp(m).

to efficiency and flexibility. Indeed Stanford NERs and oth-
ers are orders of magnitude slower, taking seconds rather
than milliseconds. Conversely the Wat’s spotter is much
faster and capable of handling a diverse set of datasets ei-
ther by a simple threshold mechanism or by introducing a
more sophisticate spotting procedure based on the features
introduced in Section 4.1. This conclusion can be drawn
by just taking a closer look to the Recall metric (in case
no threshold is applied). We argue that by properly tun-
ing the spotter model we can reach a good compromise be-
tween mention coverage and introduction of spurious noise
that might affect the successive steps of the disambiguation
pipeline.

5.3 Disambiguation
We tested the performance of each disambiguation algo-

rithm in isolation, using the D2W benchmark. The D2W
benchmark can be described as follows. The input document
and the set of correct mentions are passed to the annotator,
which is asked to only disambiguate the gold-mentions. The
annotator is free to choose whether to use other sources of
information in the input text, such additional mentions or
lexical features in the input text (full D2W), or not (light
D2W). The results of the light-D2W experiment are present
in Table 5, which shows the performance upper bound of
the system under the assumption of a perfect spotting pro-
cedure. We set the parameter epsilon to 0 in order to obtain
results that just depend onto the disambiguation algorithm
procedure (and not on the other steps).

As the reader can observe, the vast majority of the dis-
ambiguators report a close F1’s value (between 0.83−0.84),
thus suggesting that the problem is not the disambiguation
algorithm itself, but rather the spotting phase. In order to
further prove our point and in order to test the robustness
of each algorithm in presence of noise (derived from a not
so precise spotting function), we can pass to the system,
in addition to the mentions that are present in the gold-
standard, other mentions derived from a spotting procedure
of the input text. The peculiarity of this test is that false
positives relative to mentions that are not found in the gold-
standard are not taken in consideration but they are just
used to influence the disambiguation algorithm providing a
sort of (useful or not) contextual information. The results of
this experiment are reported in Table 6 for the top scoring
configurations previously highlighted. The performance loss
in F1 with respect to the best scoring algorithms of Table 5
is reported in parenthesis.
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Dataset Method P R F1

erd-50 base .871 .781 .817
erd-50 base-t .891 .793 .831
erd-50 base-nt .884 .787 .824
erd-50 base-n .871 .781 .817

erd-50 pr .862 .773 .808
erd-50 ctx-pr .839 .766 .795
erd-50 comm-pr .874 .784 .820
erd-50 ppr .866 .776 .812
erd-50 ctx-ppr .839 .765 .795
erd-50 comm-ppr .893 .801 .838
erd-50 ppr-uniform .862 .774 .809
erd-50 ctx-ppr-uniform .837 .764 .793
erd-50 comm-ppr-uniform .890 .799 .835

erd-50 hits-auth .894 .797 .834
erd-50 ctx-hits-auth .802 .722 .752
erd-50 comm-hits-auth .894 .792 .830
erd-50 hits-hub .843 .754 .789
erd-50 ctx-hits-hub .851 .776 .806
erd-50 comm-hits-hub .833 .748 .782

erd-50 salsa-auth .903 .805 .843
erd-50 ctx-salsa-auth .808 .725 .756
erd-50 comm-salsa-auth .878 .778 .816
erd-50 salsa-hub .873 .783 .819
erd-50 ctx-salsa-hub .874 .797 .828
erd-50 comm-salsa-hub .873 .783 .819

Table 5: Light D2W results on ERD-50 dataset

Dataset Method P R F1

erd-50 base-t .731 .731 .731 (-.100)

erd-50 comm-ppr .811 .812 .811 (-.027)

erd-50 hits-auth .797 .800 .798 (-.036)

erd-50 salsa-auth .806 .809 .807 (-.036)

Table 6: Full D2W results on ERD-50 dataset

All the algorithms suffer from spurious noise being intro-
duced by a loose spotter, but the algorithms based on the
mention entity graph seem to be more robust. The drop is
more pronounced for the base-t scheme (10% drop), while
the other methods are less affected (3–4% drop). The results
prove that our algorithms are reasonably robust in that they
can handle incorrect mentions without the risk of topic drift.
However the use of a not-so-precise spotter must be taken
with care because the introduction of more mentions makes
the decision of the pruner more difficult. In fact the dis-
ambiguator will always try to find a mention-entity binding
that makes sense to the overall text, or a window of it, and
the spurious mentions could wrongly affect the disambigua-
tion of the correct ones.

Dataset Method P R F1

erd-50 Tagme .762 .698 .725

erd-50 base-t .731 .731 .731 (-.100)

erd-50 comm-ppr .811 .812 .811 (-.027)

erd-50 hits-auth .797 .800 .798 (-.036)

erd-50 salsa-auth .806 .809 .807 (-.036)

Table 7: SA2W to D2W results on ERD-50 dataset

We finally introduce a third experiment, the so called
SA2W to D2W reduction experiment, that is also useful to
understand the improvement in disambiguation performance
with respect to classic Tagme. In this case a document t is

fully annotated without any auxiliary information being pro-
vided to the system and then only the annotations matching
the ones in the gold-standard (using Mw(a1, a2)) are consid-
ered for the final evaluation. The results of this final test
are reported in Table 7, which are in complete accordance
to what we have found with the previous test. The improve-
ment over Tagme is in the range 1–9%, with comm-ppr being
the top-scoring disambiguation algorithm on this test.

5.4 SA2W benchmark
In this section we report the results of the SA2W experi-

ment (using Mw(a1, a2)) under the assumption of a spotting
procedure that feeds all the possible spots to the annotator’s
pipeline. The results and the performance loss in F1 with
respect to the results obtained in the previous test (in paren-
thesis) are reported in Table 8.

Dataset Method Thr. P R F1

erd-50 Tagme .242 .481 .513 .455 (-.270)

erd-50 base-t .180 .466 .536 .456 (-.275)

erd-50 comm-ppr .180 .493 .580 .489 (-.322)

erd-50 hits-auth .172 .480 .551 .475 (-.323)

erd-50 salsa-auth .156 .466 .586 .477 (-.330)

Table 8: SA2W experiment using Mw(a1, a2), with
threshold over ρ

You can see how dramatic the drop in performance is and
how the use of all possible mentions makes the methods
almost identical in performance. The only possible way to
intervene is either by plugging a more sophisticated pruning
module or a more clever spotter module with the aim of
minimizing the chance of introducing false positives.

6. ERD TUNING
All the choices made during the tuning of the system were

done by using the leaderboard system before the ERD-50
dataset leaked in the mailing list. Thus some of the choices
made in this phase are not in accordance to what detailed in
the previous sections and in general might have been non-
optimal.

Aware of the possible limitations of the spotter and the
pruner modules we started doing a brute-force search over
the parameters lp(m) and ρ(a) with reasonable step sizes us-
ing all the disambiguation algorithms. The three top-scoring
algorithms are shown below:

Method Thr. lp(m) Thr. ρ(a) P R F1

base-t .16 .16 .802 .651 .718
comm-ppr .16 .16 .816 .657 .727
hits-auth .16 .16 .803 .651 .719

The base-t method was selected as disambiguation algo-
rithm since the difference between the methods was minimal
with such a strict thresholding mechanism. We then eval-
uated the performance of the system using a diverse set of
relatedness functions. The results were in favor of the Jac-
card measure:

Relatedness P R F1

jaccard .802 .651 .718
empirical .808 .644 .717
lsi .802 .645 .715
mw .793 .644 .710
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We then analyzed how both ϵ and the sorting by either
commonness or PageRank might have impacted the final
results. The results revealed the top scoring configuration
to be the one with ϵ = 0 hence with the ϵ-trick disabled,
bringing up the F1 to 72.5%. At this point we took a look
at errors in the logs revealing a set common error patterns
in the annotated documents. We then came up with a filter
implementing four different rules:

1. Remove all the annotations that link to entities not
recognized as valid by the ERD Challenge

2. Remove all the annotations with mentions that are
lower case

3. Remove all the ambiguous annotations that have con-
tributions equal to 0

4. Re-enable all the pruned annotations that have the
same mention of a currently active annotation (result-
ing in a primitive co-reference resolution mechanism).

The use of rule system and the enabling of the optimizer
allowed us to improve the precision bringing the F1 score
to 74.8%. This was the final configuration we submitted to
the challenge that registered a final F1 67.2% score, with an
impressive precision of 87.6% but very low recall 54.5%.
In order to increase the recall of the system we tried to

intervene on the spotting module by plugging a binary clas-
sifier trained on different publicly available datasets. The
same was done for the pruner module. Unfortunately the
use of different datasets didn’t provide the generality (they
actually worsen the overall performance of the system) we
were hoping for and therefore we discarded the option of us-
ing machine learning techniques to improve the performance
the system, since the risk of over-fitting was too high.
Just for the sake of completeness we document our over-

fitted configuration (using the ERD-50 dataset), derived by
training a linear SVM with L2 loss function and L1 penalty
both for the spotter and the pruner module. The system
scored 80% (91.5% Precision and 71.2% Recall) on the test
dataset using the comm-ppr method.

7. CONCLUSIONS
In recent years the literature around entity linking and

entity annotators has focused its attention on the disam-
biguation step of the annotation pipeline, thus ignoring the
issues raised by mentions recognition and annotations prun-
ing (see e.g.[3, 8, 7, 18]). At the end we can confess that
in attacking the ERD challenge we did the same mistake,
spending lot of time and efforts in trying to improve and
implement new disambiguation algorithms based on the re-
cent trends in the literature [7, 18]. The main conclusion
of our extensive experiments, that we will detail in a future
paper, is that the spotter and the pruner modules need a
complete redesign. They are responsible of the introduction
of many false positives, which provoke the significant gap in
the Wat’s performance witnessed by the figures reported in
Table 8 versus Table 6.
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