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Abstract : Modern distributed fact databases are
heterogeneous and autonomous. Their hetero-
geneity is due to many reasons, including varying
data models, data structures, attribute naming con-
ventions, units of measurement or naming of data
values, composition of data as attributes, technical
representation of data, abstraction levels of data,
etc. Database autonomity means that the database
users have hardly any means for reducing such
heterogeneity. Present information retrieval (IR)
systems either provide no support for overcoming
such heterogeneity or their support is insufficient
and difficult to utilize. In this paper we offer inte-
grated and powerful data conversion, aggregation
and deductive techniques for advanced IR in such
environments. These techniques allow the users
to overcome data inconsistency due to units of
measurement or naming of data values, composi-
tion of data as attributes, abstraction levels of data,
and difficulties related to deductive use of hierar-
chically classified data. In complex situations, all
these inconsistencies appears together. Therefore
we also show how these techniques are integrated
into a powerful query language which has been
implemented in Prolog in a workstation environ-
ment.
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1. INTRODUCTION

The characteristics of modern distributed fact
database environments make their utilization by
end-users and information specialists difficult.
There are thousands of fact databases available
through many diverse databanks and networks. l[t
is hard to keep track on what is information availa-
ble, where and how. The databases in such envi-
ronments are heterogeneous and autonomous.
Their heterogeneity may be due to many reasons,
e.g. data models, data structures, attribute naming
conventions, units of measurement or naming c~f
data values, composition of data as attributes,
technical representation of data, abstraction levels
of data, etc. Therefore it is difficult to bring data
from different sources together. Often the data
item values are based on classifications which the
users must consult in separate files. Autonomity
means that there is no global control on database
characteristics and the users in particular cannc}t
exercise such control. [1] [2] [5] [18]

The literature uses many terms, e.g. nu-
meric, statistical, factual, non-bibliographic datab-
ases or databanks to refer to public access datab-
ases which provide structured data [1] [5]. In
this paper we use the term fact database. We
assume for simplicity that the data are stored in
(heterogeneous) relational databases. We assume
that the reader is familiar with the relational model
(RDM) and the relational algebra (RA).

The characteristics of the distributed fact
database environments have made it necessmy to
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develop tools on all levels to aid database access.
Studies in the area concern data structure conver-
sion (e.g. [15]), communication with remote
databases, deductive capabilities (e.g. [41[101),
integration of relational databases and statistical
software (e.g. [9]), and object-oriented systems
aiming especially at hiding technical details of
databases from remote users (e.g. [2] [14]).

We introduce integrated and powerful data
retrieval, conversion, aggregation and deductive
operations which are necessary for advanced in-
formation retrieval (IR) in fact database environ-
ments. They allow the users to overcome data in-
consistency due to units of measurement or nam-
ing of data item values, composition of data as at-
tributes, data abstraction levels, and difficulties in
the utilization of classifications. These problems
are frequent in the use of fact databases.

We mean by duta conversion the conversion
of data item values from one domain (i.e. a set of
possible values) to another rather than structural
conversion (e.g. [15]). This may also involve de-
composition of data as attributes, e.g. replacing
day, month and year -values by a unary date-
value. We present a generalized andpowerfiul data
conversion operation as an RA operation which
supports unit-of-measurement transparent y and
requires minimal effort from the user. Although
data conversion has been considered earlier as a
tool for heterogeneous databases (e.g. [2]) and is
available to a limited degree in some statistical
databases [5], our operation is original in its gen-
erality and ease-of-use, and because it is defined
as an optimizable relational operation.

Data aggregation means raising the abstrac-
tion level of data, i.e. classifying source data in
some defined classes on the basis of some attribute
values and computing means, sums, minimums
etc. on some other attributes in these classes. The
resulting data are on a new abstraction level. Sim-
ple, single level data aggregation is provided in
conventional query languages (e.g. SQL, QBE
[16]) and - with limited class definition possibili-
ties - in fact database query interfaces (e.g. [18]).
However, single level aggregation is insufficient.
In particular, multiple aggregation levels and clas-
sification attribu~e reclassification to hierarchical
superclasses during aggregation are vital to IR.
We present a novel powe@d multi-level data ag-
gregation operation as an RA operation which
supports aggregation level transparent y and re-
quires minimal effort from the user.

Much effort has been devoted in database re-
search to developing deductive capabilities in data
management (e.g. [10] [14] [17]). In practice the

computation of transitive relationships among en-
tities is the most important case of deriving new
information from explicitly stored information. In
this paper we introduce a novel set of deductive
operations for processing transitive relationships.

We demonstrate the use of these operations
in deductions based on classifications for data item
values. Such classifications (of e.g. chemical
compounds) are usual in lR. Conventional query
languages and numeric database query interfaces
provide insufficient support in the use of classifi-
cations (e.g. only a lookup possibility in a separate
classification file [18]). Traditional IR systems
(e.g. Medline) provide only a hierarchical expan-
sion of query terms. Moreover, deductive data-
base systems require that users specify deductions
by Horn clauses which makes end-user access
very difficult [13]. Our deductive operations are
integrated seamlessly with other query operations,
are much easier to use than Horn clauses and
enuble powerfiul utilization of classljkations.

Encapsulation of technical details of dis-
tributed databases through e.g. object oriented
techniques is very important for simplifying IR
(e.g. [2]). For example, users of relational data-
bases must know relation and attribute semantics,
join conditions and their semantics in detail in
order to use them properly. In distributed envi-
ronments there are many relations changing both
in structure and content, and users thus have
difficulties. In this paper we present entity types
and an entity data retrieval operation as a high-
level interface to relational databases which com-
bines the strengths of object-oriented database
systems (e.g. [14]) and universal relation systems
(e.g. [17]) for simple and semantically accurate
retrieval. However, our entity types and instances
are not limited to RDBs [6] [12].

Summing up, features of fact database user
interfaces and conventional query languages do
not meet user requirements : higher level inter-
faces providing better transparency and greater ex-
pressive power are needed. The operations pre-
sented in this paper form a powerful, flexible and
coherent operation-oriented query language for
heterogeneous database access and provide essen-
tial support in overcoming the limitations of pre-
sent systems. We shall focus on the operations
and the expressive power of our query language
and bypass many details of user interfaces, data
communication and technical implementation.

In Chapter 2 we present our sample envi-
ronment and introduce the representation of clas-
sifications as binary relations and the entity types
based on relational databases. In Chapter 3 we
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introduce our operations for processing transitive
relationships, data retrieval, conversion and ag-
gregation. Chapter 4 exemplifies our integrated
query language in solving complex queries.
Chapter 5 contains discussion and conclusions.

2. SAMPLE WEATHER AND POLLUTION DATABASES

Our imaginary database environment provides data
on weather and air pollution in Great Britain and
Germany. The data are gathered from sensor
stations located in various towns, cities and their
surroundings. Each town or city with its sur-
roundings is called a location. The environment
consists of two databases (London, Frankfurt)
which are structured differently. The environment
uses classifications for the attribute values. We
shall first introduce the classifications, followed
by the entity based query interface. In the final
section we discuss the inconsistency of the envi-
ronment.

2.1. Sample Classifications and Thesauri
Our sample environment contains several classifi-
cations given in the Appendix. The classification
air-pollutant classifies pollutants to pollutant
families and pollutant types, and the classification
health-hazard classifies pollutants to health-haz-
ard types (e.g. carcinogens). The geographical
classifications great-britain and germany clas-
sify locations to sub-regions, regions and coun-
tries. The sensor stations are classified to loca-
tions by the classifications gb-station-location
(for Great Britain) and ger-station-location
(for Germany). The sensor stations are also clas-
sified to station types (e.g. urban) by the classifi-
cations gb-station-type and ger-station-type.
Classifications with the prefix gb - (ger-) are
specific to the London (Frankfurt) database.

Classifications are represented as collections
of binary relations. These provide a natural, sim-
ple and general representation for deduction (e.g.
[4]). Transitive class relationships (e.g. finding
recursively all subclasses of a class) are repre-
sented easily by binary relations which store ex-
plicitly the immediate class relationships.

Each classification is represented so that each
pair of immediate hierarchical levels (i.e. each
level of subdivision) forms a binary relation.
Thus the binary relations for the classification air-
pollutants are as outlined in Fig. 2.1. Each
classification level forms its own domain of val-
ues. The root domain for air-pollutants has the
name air-pollutant and contains the single value
air-pollutant. The first level domain is poll-type

containing the values {solid-pollutant, gas-pollu-
tant ]. The second level domain is poll-family and
the leaf domain is pollutant. The first binary rela-
tion for air-pollutants is pollutant-types
which is a relation in the Cartesian product air-
pollutant xpoll-type. Analogously, the other bi-
nary relations are pollutant-families and
pollutants which are relations in poll-type xpoll-
fmily andpoll$amily xpollutant, respectively.

The Appendix contains the names of the do-
mains related to the levels of each classification as
well as names and signatures of the associated bi-
nary relations. It is easy to translate the classifica-
tion levels to respective domains and the hierarchi-
cal divisions to binary relations. They are used
below. The binary relations are called briefly
ECRS (Extensional Classification Relation). They
must not be mixed with regular relations.

pollutant-families

solid-pollutant soot

solid-pollutant dust

gas-pollutant Cox

Igas-pollutant I NOX

Fig. 2.1. Binary relations

I soot I coal-slx~

El=]
NOX NO
NOX N02
Sox S02
CFC C2H5F

CFC C3HC14F

HxCXCIX C14H9C15

1 . . . I ““” J

for air-pollutants

Our ECR organization has the advantage that
the treatment of classifications can be focused to
exactly those consecutive classification levels
which are of interest. For example, a classifica-
tion overview is obtained by considering hierar-
chical relationships only among pollutant-types
and pollutant-families. Our approach suppc)rts
multiple distinct classifications of the same basic
entities. For example, the classifications air-
pollutant and health-hazard classify the same
basic pollutants on the basis of a different aspect.
These features are necessary for IR (cf. the use of
thesauri in traditional IR) but not provided by cur-
rent deductive databases which define transitive
relationships in a single large binary relation.

When the subclasses of each single classifi-
cation are disjoint at all levels, the binary relations
representing them can be interpreted as functions
from the subclass domain to superclass doma~in.
That is, given a subclass, the superclass can be
identified. This feature allows very powerful data

conversion and aggregation.
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The classifications are augmented by the-
sauri, which give for each relevant term its do-
main, class name, definition, synonyms, and re-
lated terms (broader and narrower terms are given
by the classifications), etc. The domain descrip-
tion relates each term (and class) to a particular
domain of values. The attributes of the entity
types and relations (see below) are declared over
given domains. It is thus possible to find for any
attribute value its synonyms and other information
in the thesaurus. Contrary to [3], we associate the
thesauri with domains rather than attributes, be-
cause the same domain may be shared by several
attributes. The thesauri are represented to the
users as entity types in the way described in Sec-
tion 2.2. Here we bypass them because their
content and use are quite obvious in IR.

2.2. Sample Entity Types In our framework,
real world entities are represented by entity types
with their instances which have attributes. An en-
tity type gives an entity type name (e.g. person),
and a set of entity attribute names (e.g. name, age)
with their domains (e.g. string, integer). This no-
tion corresponds, on a higher level, to the notion
of relation schema in the RDM. An entity instance
is a set of entity tuples of a given entity type (cf.
the instance of a relation). An entity tuple is a tu-
ple of values (e.g. <smith, 34>). Entity types are
structured and named from the user’s point of
view - independent of the stored database rela-
tions. Their implementation is encapsulated.

Database users see onIy the entity level of the
database. Our framework combines the strengths
of the universal relation (e.g. [17]) and object-ori-
ented approaches (e.g. [14]) into an entity-based
query interface and provides enhanced data inde-
pendence, accurate query semantics, and high-
level query optimization [6] [13].

The entity types of our sample environment
are given in Figs. 2.2 and 2.3. Each entity type
has an entity type name (e.g. Daily-Weather-Ob-
servation) and a set of entity attribute names to-
gether with their domains (e.g. DailyMinTemp, ‘F
; Station, gb-stat-name ; etc.). All entity attributes
are not shown as denoted by ‘...’. This is the part
of entity types the users may see and use in their
queries. The queries are thus build on entity type
names and entity attribute names.

Figs. 2.2 and 2.3 also list the relational at-
tributes (rdb-attributes) corresponding to entity at-
tributes, For each of the latter, there may be sev-
eral corresponding relational attributes, e.g. in the
entity type Daily-Weather-Observation, the rela-
tional attributes TStat and WStat correspond to the

entity attribute Station. The values of an entity at-
tribute can be retrieved from any corresponding
relational attribute depending on the combination
of entity attributes in &e Whoie request. [6] [13]

Entity-type : Daily-Weather-Observation

attribute name domain rdb-attributes

DailyMinTemp “F DMinTmp

DailyMaxTemp ‘F DMaxTmp
DailyAverTemp “F DAvTmp
Windspeed mph Wspal
Pressure mmbar Press
. .. . .. . ..
Station gb-stat-name TStat, WStat
Day day-int TDay, WDay
Month month-ch TMonth, WMonth
Year vear-int TYe2r. WYear

Entity-type : Hourly -Pollution-ObservationI

attribute name domain rdb-attributes

Pollutant

Content

. ..
Hour

Station
Day
Month
Year

pollutant
Oz-per-ft3
. ..
hour-int
gb-stat-name
day-int
month-ch
vear-int

Ptant
PMesment
. ..
PTime
PLoc, GLOC
PDay,GDay
PMonth, GMonth
PYW. GY(?2W

Fig. 2,2. Entity types in the London database

Entity-type : Hourly-Weather-Observation

attribute name domain rdb-attributes

Temperature ‘c Temp
Windspeed mps Wspeed
Pressure MPascal Press
,.. . . . . ..
Station ger-stat-name TStat, RStat
Hour hour-int THour, RHour

Entity-type : Hourly -Pollution-ObservationII

attribute name domain rdb-attributes

Pollutant Dollutant Ptant

EG2iiiu
Fig. 2.3. Entity types in the Frankfurt database

2.3. Inconsistency of the Sample Envi-
ronment Our sample fact database environment
is clearly very inconsistent because :
● The two databases do not give explicitly the

same attributes (e.g. London provides Dai-
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e

●

●

lyAverTemp, DailyMinTemp, etc. while Frank-
furt provides only Temperature).
Corresponding information is given by dijferent
numbers of attributes (e.g. Date in Frankfurt vs.
Day, Month, Year in London).
Semantically and structurally equivalent at-
tributes have diflerent units (e.g. the attibutes
WindSpeed and Pressure have ISO units in
Frankfurt and anglo-american units in London).
Semantically strongly related data are at difierent
aggregation levels (e.g. hourly weather data in
Frankfurt vs. daily weather data in London).

Thus the data from the two databases cannot
be put together without serious errors. Such in-
consistencies are frequent among fact databases
and form an important problem in IR. Due to
database autonomity it is hardly possible to stan-
dardize them into directly compatible forms.
Tools are thus needed for data standardization
during retrieval.

In addition, it is difficult to obtain summary
data based on the classifications for e.g. chemical
compounds or geographical areas. The data ag-
gregation tools in ordinary query languages cannot
utilize external classifications - they support only
aggregation on explicit values in the data.

3. DATA RETRIEVAL, CONVERSION, AGGREGATION
AND DEDUCTtON OPERATIONS

3.1. Relational Algebra Relational languages
(e.g. SQL) as such are at a too low level for basic
database access. The problems of a relational
language are essentially reduced when it is used
only for combining subquery results, and the
subqueries are expressed in terms of higher level
operations. In such a case there are only a few
(intermediate) relations to be considered and the
user knows their semantics. We use RA for
combining subquery results.

Usual RA operations are allowed in our
query language. The operations can be nested in
more complex expressions in the usual way.
Below we allow also the entity data retrieval op-
eration and the data conversion and aggregation
operations as subexpressions in RA expressions.

3.2. The Operation-Oriented Query
Language for Classifications Our operation-
oriented query language for classifications pro-
vides several types of ECR-based operations :
non-transitive operations, set-oriented and path-
oriented transitive operations as well as an
aggregation operation for paths [13]. Here we

shall introduce only some set-oriented operations.
Formal and complete treatment isin[11] [13].

The set operations set_intersectior~ (

setlr set2) , set_union (setlr set2) , and

set_difference (setl, set 2 ) can be applied

on sets of classes. The basic transitive set-
oriented operations are the operations s u c ces -

sors (Class, Scope) and predecessors i
Classr scope ) which give all subclasses or
superclasses of a class (the argument class) in the
given collection of ECRS (the argument scope).
The subclasses (superclasses) of a class are its all
subclasses (superclasses) at all lower (higher)
levels of hierarchy within scope.

The two operations union_ of_succes -

sors (Class-set, Scope) and union of_prt>-

decessors (Class-set, scope ) co–repute all

distinct subclasses or superclasses of given classes

(the argument c1 ass-set) in the collection of

ECRS (the argument scope). The operations in-
tersection of_successors (Class-set,

Scope) tind~ntersect ion_of_predeces sors (

Class-set, Scope) are used to find the commf]n

subclasses or superclasses of classes (the argu-

ment Class-set) in the given ECRS (the scope).
Analogous operations exist for the difference of
successors and predecessors (bypassed here).

The operation expressions are structured
with the keywords class, set and scope.
Nested expressions are allowed. For example, tlhe
expression below finds all air-pollutant classes that
are superclasses both to at least one carcinogen
and at least one poison :
set_intersection (

union_of_predece ssors (

set: successors (class: carcinogens

scope: haz-compounds)

scope: pollutant -types, pollutant-

families, pollutants)

union_of_predece ssors (

set: successors (class: poison

scope: haz-compounds)

scope: pollutant-types, pollutant-

families, pollutants) )

and gives { HxCXCIX, gas-pollutant, air-pollutant }.

Our deductive operations provide a powerful

yet simple foundation for the treatment of classifi-

cations. The standard interface (recursive Hom-
clauses) for defining deductive queries in da~ta
management prevents end users from using ded-
uctive retrieval [13]. The expressive power is far
better than plain hierarchical expansion of tradi-
tional IR systems. High-level deductive opera-
tions are necessary for practical advanced IR.
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3.3. The Entity Data Retrieval Operation
The entity data retrieval operation has three argu-
ments which resemble those in conventional query
languages (e.g. QUEL [16]) : the retrieve specifi-
cation, the variable binding and the predicate.
However, here they define processing of entity
types and instances instead of relations. This
simplifies retrieval considerably because the user
does not need to know about the (possibly many)
relations storing the data. [6] [13]

The variable binding associates entity tuple
variables with the entity types relevant to a query.
It is expressed as a range-clause, e.g. range w
IS-A daily-weather-observation states that

the variable w varies over the tuples of the instance

Of the entity type daily-weather-observation.

The retrieve specification lists the entity at-

tributes to be output, prefixed by their entity tuple

variables. For example, if one wants to retrieve

the min and max temperatures associated with the

enth y tuple variable W, the expression is retrieve

w. DailyMinTempr w. DailyMaxTemp.

The predicate states the conditions which

must hold when data are output. For example, if

output is required when the tuple associated with

the tuple variable w has a Pressure -value

exceeding 1040, WindSpeed less than 1 mph and

Year and Month -values 1991 and Jan,

respectively, the expression is w h e r e

w. Pressure > 1040 and w.windSpeed < 1

and w. year = 1991 and w.month = jan.

Usual logical operators and parentheses are al-

lowed. The whole query for the min and max

temperatures for high-pressure calm days in

January 1991 is as follows:

retrieve w. DailyMinTemp, w. DailyMaxTemp

range w IS-A daily-weather-observation

where w. Pressure > 1040 and w. WindSpeed

< 1 and w. Year = 1991 and w. Month = jan.

The corresponding SQL-expression depends
on the number of relations storing the data. The
user should know their join semantics

When there occurs a need to refer to the re-
sulting attributes of the operation, aliases (in the
SQL-style, e.g. [16]) can be given in the re -

t rieve -clause. For example, ret ri eve

w. Dai 1 yMinTemp Temp associates the alias Temp

with the result attribute w. Dai- 1 yMinTemp.

One entity data retrieval operation can pro-

cess any number of entity types. Each entity type

is associated with its own distinct entity type vari-

able in the range -clause.

3.4. The Data Conversion Operation The
data conversion operation converts attributes to
new domains, e.g. from inches to meters. It has
the following important generalized properties:
●

●

●

0

●

Any num~er o; attrib~tes or combinations of at-
tributes may be converted at once. Attribute
combinations consist of two or more attributes
(e.g. day, month and year) which together have
a distinct meaning (e.g. date).
One operand attribute may be converted into an
attribute combination or a different attribute in
the result and vice versa.
The user only needs to name the operand and re-
sult attributes and the result domain. The opera-
tion itself checks the derivability of the conver-
sion and forms the conversion function.
The conversion functions may convert the unit
of measurement as well as classify the attribute
values. In the former case the conversion is an
injection : one value in e.g. inches is converted
into exactly one value in meters. In the latter
case the conversion maps many domain values
to the same range value, e.g. dates to year-
months which means that all dates from 010191
to 310191 are mapped to 9101 for Jan, 1991.
The conversion functions are defined in the
database but all need not be defined explicitly.
For example, if the conversion functions f from
miles to feet, and g from feet to meters are de-
fined, any value x in miles can be converted to a
meter value by the compound function g(f(x)).
The operation compounds all implicit conversion
functions automatically.

The expression below converts the pollutant
content in the London database from ounces-in-
cubic-feet (oz-in-fts) to the new domain grams-in-
cubic-meter (gr-in-ms, injective) of the result at-
tribute Poll-cent and classifies pollutants to the
new domain pollutant-family (not injective) of the
result attribute P-group. It also converts the three

attributes day (e.g. 28), month (e.g. feb) and year
(e.g. 91) to one date value (e.g. 910228).

convert hourly -pollution-observationI

columns (Content, gr-in-m3, Poll-cent) ,

(Pollutant, poll-family, P-group) ,

(Day Month Year, date-int, Date)

The conversion functions are defined in the

database ‘by conversion descriptions which give

for a domain all domains into which the former

can be converted, and their conversion functions.

For example, the conversion description (a) in

Fig. 3.1 means that the domain gr-in-ms (for

grams-in-m3) can be converted into the domain oz-
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in-fts (for ounces-in-fts) by the function f(x). The
conversion description (b) shows a conversion de-
scription for the classifications. The inverse rela-
tion of the relation pollutants is the function g:
pollutant + poll-family. For example, g(N02) =
NOX (see Appendix). The conversion descrip-
tions are utilized also by the aggregation operation.

(a) cd(gr-per-m3 , ( (oz-per-ft3, f(x) = x x
0.0009996, injection) })

(b) cd(pollutant, {(poll-family, g(x), function)))

Fig. 3.1. Sample conversion descriptions

3.5. The Data Aggregation Operation The
data aggregation operation has been developed for
aggregating data to different abstraction levels,
e.g. from hourly to daily level. It provides new
properties which expand aggregation possibilities :
● The data can be aggregated in multiple conse-

cutive aggregation levels each of which is de-
fined by several classification attributes.

● The values of the classification attributes can be
reclassified to their hierarchical superclasses at
any level of hierarchy or converted to any other
domain allowed by the conversion functions.

Multiple aggregation levels and classification
attribute reclassification are essential for advanced
IR. Classifications of e.g. chemical compounds
and time intervals are needed, and higher level
sums, averages etc. of lower level minimums, av-
erages, etc. are often requested but not supported
well enough by conventional query languages nor
by commercial fact database software. Conven-
tional query languages, e.g. SQL, provide single
level aggregation but no possibility for reclassify-
ing the class attribute values. The query interfaces
of fact databases seem to support only single level
aggregation on a restricted set of classification at-
tributes and do not seem to provide choices on the
aggregation way (sum, count, ...) [18]. They
support limited classification attribute reclassifica-
tion (e.g. monthly vs. yearly data) [7] [18].

Other properties of the aggregation operation
include the following:
●

●

☛

The aggregation ;ays : rein, max, sum, count
and average are allowed. Weighted aggregation
and standard deviation are easy extensions.
Any number of operand attributes maybe aggre-
gated at once. One attribute maybe aggregated
in several different ways.
The user names the operand attributes to be ag-
gregated and gives stepwise the aggregation
ways and result attribute names on each aggrega-
tion level, e.g. (Content aver Daily Aver-

●

●

b

Cent, max MonthMaxDailyCont ) defines thalt
first the average for the atrnbute content is cal-
culated into the attribute Da i 1 yAve rcont and
then the maximum of the latter is computed into
MonthMaxDailyCont. Such definitions are

called attn”bute aggregation definitions.
For each aggregation level, the user gives an ag-
gregation class former which is a set of one c)r
more~acets consisting of three components : th~e
classification attribute name, the name of th!e
domain into which the classification attribute is
reclassified, and the result attribute name. For
example, (Station gb stat_name Station~(
Pollutant poll_ fam~ly PollGroup) is aln
aggregation class former which classifies all data
for each sensor station and pollutant family to-
gether. The last facet Pollutant poll_famil.y
Poll Group causes that individual pollutants are
classified into pollutant families. The operaticm
checks conversion derivability and forms the
conversion function as explained above. If no
reclassification is needed then the operand and
result attribute names are the same.
The aggregated attributes appear in the result. In
addition, the user can choose any operand
attributes and any classification attributes of the
last aggregation level into the result.
The user can restrict the result by a conjunctive
predicate which may refer to anv o~erand at-
tributes, aggregated and classificati-on &ibutes.

For example, the expression below gives
year-monthly max and min of average daily
contents of pollutant families NOX and SOX:

aggregate (retrieve t. Pollutant Por

t. Content Cent, t .Day Day, t .Month

Mo, t. Year Yr

range t IS-A daily-pollution-

observation

where t. Station = londonl)

columns (Cent aver DAvCI, max MMxDCont ) ,

(Cent aver DAvC2, min MMnDCont )

class (Day day_int D*, Mo month_ch Mo,

Yr year ink Yrr Po poll_family PoFa)

class (Me– month_ch Mo, Yr year_int Yr,,

PoFa poll_family PoFa)

select MMxDCont, MMnDCont, Mo, Yr, PoFa

where PoFa = one_of (SOX, NOX)

The keyword columns precedes the attribute ag-
gregation definitions, the keyword class denotes
each aggregation class former, the keyword se-
1ect denotes the projected attributes, and the
keyword where the predicate, The attibute co nt

is the only aggregation attribute and DAVc 1,
MMxDCont, DAvCZ, and MMnDCont the aggrega-
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tion result attributes through the two aggregation
levels. The aggregation ways are rein, max and 4. INTEGRATED QUERIES

aver. In the first aggregation class former, Day,
Mo ~ yr and Po are the classification attributes, The entity data retrieval, aggregation, and conver-

day int, month ch, year_int and poll- sion operations are defiied at the RA level and can
fam~ly their doma~ns (for reclassification if the be mixed freely with each other and RA in nested

domains differ), and Day, MO, Yr and PoFa the expressions. Deductive operations can also be in-

corres~ondin~ classification result attributes. In tegrated with them via the predicate of type <at-
“

each &ribute aggregation definition (say (cent tribute-name> one-of(<value-set>) which requires

aver DAvC1, max MMxDCont) ), the first pair of that the attribute has some value in the value-set.

an aggregation way and result attribute (e.g. aver We allow that the value-set is formed by a deduc-

)AVC1) always relates to the f~st aggregation class tive expression [13].

Former, the second pair to the second etc.

mien (

(convert

(aggregate

(retrieve pl .Pollutant Pol, pl. Content Colr pl .Hour Hrlr pl . Station

Stl, pl .Day Dayl, pl .Month Mel, pl .Year Yrl

range pl IS-A Hourly_Pollution_obse rvationI

where Stl one_of (union_of_succe ssors (set: metropolitan, urban

scope: gb-typed-stations) ) and

Pol one of (union_of_succes sors (set: gas-pollutant.
scope: pollutant-families, pollutants) ) )

columns (Col sum DCO1, max MxDCol)

class (Stl gb-location Cityl, Dayl day-int Dayl, Mol month-ch Molr Yrl

year-int Yrl, Pol poll-family PoFaml)

class (Cityl gb-location Cityl, Mol month-ch Mel, Yrl year-int Yrl, PoFaml

poll-family PoFaml)

select MxDCol , PoFaml, Citylr Mel, Yrl

where true )

columns (MxDCol, gr-per-m3, MxDColgr), (Mel Yrl, year-month-int, YrMol))

(aggregate

(retrieve p2.Pollutant po2, p2.Content C02, p2.Hour Hr2, p2.Station

St2, p2.Date Da2

range p2 IS-A Hourly Pollution observationII

where St2 one_of(uni~n_of_succ~ssors (set: metropolitan, urban

scope: gb-typed-stations)) and

po2 one_of(union_of_successors (set: gas-pollutant

scope: pollutant-families, pollutants)))

columns (C02 sum DC02, max MxDC02)

class (St2 ger-location City2, Da2 date-int Da2, Pol poll-family PoFaml)

class (City2 ger-location City2r Da2 year-month-int YrMo2, PoFam2 poll-

family PoFam2)

select MxDC02, PoFam2, City2, YrMo2

The query above demonstrates the queries
expressible in our integrated query language. It
gives monthly maximums ofdaily averages of
gas-pollutant content for gas-pollutant families in
cities from the two databases inconsistent form.
Remotedatabase access isnot shown.

5. DISCUSSIONANDCONCLUSIONS

Distributed heterogeneous databases are au-
tonomous and thus usersmustadapt themselvesto

the databases. Here they need well-definedhigh-
level tools. We have demonstrated that our de-
ductive, dataretieval, conversion andaggregation
operations provide firm tools forovercoming data
inconsistency. The operations provide the users,
among others, with rich expressive power, aho-
mogeneous way of query formulation (also in
complex cases), means forachieving unit-of-mea-
surement and abstraction level transparency, a
higher level knowledge representation than rela-
tions, and moduku-q ueryformulation. Theop-
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erations support user adaption to, and coordinated
data access in, heterogeneous environments.

The sample query shows that users may
formulate queries which go up and down in clas-
sifications, retrieve data for the classes found and
filter them by some conditions, aggregate them
and pick some resulting aggregations to go to
other classifications, etc. Obviously, very com-
pact expressions cannot be formed for complex
needs without restricting the user’s expressive
power. The sample expression for complex needs
is not simple for casual end-users. Yet our opera-
tions simplify query expression in heterogeneous
database environments essentially and provide an
expressive power which so far has been available
only for users with advanced programming skills.

Our operations provide important new fea-
tures for fact retrieval : The deductive operations
integrate deductions based on classifications
seamlessly with the other operations so that the
classifications can be utilized effectively and flex-
ibly in retrieval. The entity data retrieval operation
simplifies retrieval by encapsulating the implemen-
tation of high-level entity types. The data conver-
sion operation provides unit-of-measurement
transparency. It supports very versatile conver-
sion (including conversion of compound at-
tributes), checks automatically the derivability of
conversion requests and requires minimal infor-
mation from the user. The data aggregation op-
eration provides abstraction level transparency. It
supports, among others, multiple aggregation
levels and hierarchical reclassification of the clas-
sification attributes defining the aggregation levels.

We are working on hierarchical data struc-
tures which are accessed via entity types with the
same convenience as relations and we are extend-
ing the entity type representation and management
so that the needs for data conversion and aggrega-
tion can be detected, and necessary operation se-
quences synthesized, automatically in the con-
struction of entity instances. All the operations
presented have been implemented in Prolog in a
workstation environment. Details of the opera-
tions are given in [6] [8] [11] [12] [13].
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APPENDIX

air-pollutant

solid-pollutant
Soot
dusk

gas-pollutant
Cox:
NOX
Ozone
Sex:
CFC:

diesel-soot, coal-soot
asbest-dust, ash-dust

co, C02
NO, N02
03
so, S02, S03
C2H5F, C3HC14F, C2C14F2, C2C12F4

HxCXCIX: C2H5C1, C2HC15, C14H9C15

Domains : root = air-pollutant, first level = poll-type,
second level = poll-family, leaf= pollutant
Binarv Relations : pollutant-types: air-pollutantxpoll-type,
pollutant-families: poll-typexpoll-family, pollutants: poll-
familyxpollutant

health-hazard
allergens: ...
carcinogens: diesel-soot, coal-soot, asbest-dust, ash-dust,

C2HC15
poisons: CO, 03, NO, C3HC14F, C14H9C15

Domains : root= health-hazard, first level= hh-type, leaf =

pollutant

~Bin : hh-types: health-hazardxhh-type, haz-

compound~ hh-typexpollutant

gb-sensor-type

metropolitan:

londonl, london2, sheffieldl, . ..

urban: london5, sheffield3, . . .

countryside: cambridgel, ...

Domains: root = sensor-type, first level = station-type, leaf
= gb-stat-name
Binarv Relafi“ens : station-types: sensor-typexstation-type,
gb-typed-stations: station-typexgb-stat-name

ger-sensor-type
metropolitan

stuttgartl, stuttgart2,” miinchenl, ...
urban: heidelberg2, ...
countryside heidelberg3, ...

Domains; root = sensor-type, first level= station-type, leaf
= ger-stat-name
Binarv Relation s : station-types: sensor-typexstation-type,
ger-typed-stations: station-typexger-stat-name

gb-station-location
london: londonl, london2, ...
sheffield: sheffieldl, ...
. ..

Domains : root = gb-station-lot, first level = gb-location,
leaf = gb-stat-name
Binary Relations ; gb-s-locations: gb-station-locxgb-
location, gb-stat-names: gb-locationxgb-stat-name

ger-station-location

Stuttgalt Stuttgart 1, stuttgart2, . ..

Heidelberg: heidelbergl, ...

. . .

Domains : root= ger-station-lot, first level = ger-location,

leaf = ger-stat-name

Binarv Relations : ger-s-locations: ger-station-locxger-

location, ger-stat-names: gb-locationxger-stat-name

great-britain

england
north-england: newcastle, ,..
mid-engkmd: sheffield, Nottingham, ...
. ..

wales . ..
. ..

Domains : root = great-britain, first level = gb-region,

second level = gb-subregion, leaf level= gb-location
~ gb-regions: great-britainxgb-region, gb-
subregions: gb-regionxgb-subregion, gb-locations: gb-
subregionxgb-location

germany
baden-wurttemberg : stuttgart, Heidelberg

schleswig-holstcin: kiel, lubeck

. . .

Domains : root = germany, first level = ger-region, leaf

level = ger-location

13inarv Relations : ger-regions: germanyxger-region, ger-

locationx ger-regionXger-location
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