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ABSTRACT 
Fine-grained Sketch-based Image Retrieval (Fine-grained SBIR), 
which uses hand-drawn sketches to search the target object 
images, has been an emerging topic over the last few years. The 
difficulties of this task not only come from the ambiguous and 
abstract characteristics of sketches with less useful information, 
but also the cross-modal gap at both visual and semantic level. 
However, images on the web are always exhibited with 
multimodal contents. In this paper, we consider Fine-grained SBIR 
as a cross-modal retrieval problem and propose a deep multimodal 
embedding model that exploits all the beneficial multimodal 
information sources in sketches and images. In our experiment 
with large quantity of public data, we show that the proposed 
method outperforms the state-of-the-art methods for Fine-grained 
SBIR. 

CCS CONCEPTS 
• Information systems → Multimedia and multimodal 
retrieval 

KEYWORDS 
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1 INTRODUCTION 
To capture the important property of objects at the fine-grained 
level, such as pose, viewpoint and shape, Fine-grained 
Sketch-based Image Retrieval (Fine-grained SBIR) is proposed 
recently. It focuses on finding the correspondences between 
sketches and images at the instance level, since the insistent 
demand of better in-depth understanding for sketches. The 
difficulty of Fine-grained SBIR is the inherently visual and 
semantic gap between different modalities of sketches and images. 
An image is generally exhibited in a form with different modalities 
(i.e., visual and semantic), such as a web image with textual 
description. However, sketches are less informative, and their 
inherent abstractness and ambiguities cannot be well handled only 
by exploiting the visual information [1, 2]. 

The first work for Fine-grained SBIR was proposed by [3], 
which first learned the mid-level sketch representation, and then 
used the graph matching to discover the pose correspondence 
between sketches and images. However, these hand-crafted 
features cannot bridge the cross-domain gap in deep level. [4] 
formulated a cross-domain framework to learn the cross-domain 
feature space to conduct Fine-grained SBIR using fine-grained 
visual attributes and instance-level pair-wise annotations. [5] 
introduced a specific database of shoes and chairs and developed a 
deep triplet-ranking model for the instance-level SBIR. However, 
such methods are either based on visual contents without 
considering semantic attributes, or limited to small-scale datasets. 
Recently, [6] proposed a large-scale database, “sketchy database”, 
as a benchmark dataset for Fine-grained SBIR and tested several 
popular cross-domain convolutional network architectures. In the 
real SBIR environment, the multimodal information of annotated 
images is usually ignored. Thus much closer attention has been 
given to the methods that rely on exploiting multimodal attributes. 

To capture both the visual and semantic similarities between 
sketches and images at the fine-grained level, we introduce a deep 
multimodal embedding model for Fine-grained SBIR. Our model is 
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an end-to-end learning framework to optimize the retrieval 
performance by mining all the possible beneficial multimodal 
information in sketches and annotated images. The model first 
map three modalities of sketches, images and textual descriptions 
into a shared common space through deep neural network and 
then the correspondence correlations between query sketches and 
their images/descriptions are maximized in that space through a 
special combination of multimodal ranking loss and classification 
loss. This is a novel and meaningful way that incorporates the 
sketch-image visual comparisons and the sketch-description 
semantic comparisons to enhance the performance of Fine-grained 
SBIR. Our experiments on a large-scale benchmark dataset 
demonstrate the superiority of our proposed model over the other 
existing competitive methods for Fine-grained SBIR. 

 

Figure 1: The basic framework of our proposed model. 

2 DEEP MULTIMODAL EMBEDDING MODEL 
Our architecture is a combination of Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs). The 
CNN maps sketches and images to their feature vectors and the 
RNN maps the textual descriptions to the feature vectors in a 
shared space. Then two objective functions are combined to 
constraint the correlations of sketch-image pairs in that space. 

2.1 Convolutional Neural Network for Visual 
Embedding 

We use the CNN for sketches and images to map them to their 
intermediate vectors. Comparing to traditional visual descriptors 
like HOG [7], such representations are closer to image semantics 
due to the supervised learning. The CNN takes a raw fixed-sized 
image as the input and produces a fixed-length vector after 
stacked layers of operations, such as convolution, nonlinear 
transformation and pooling. The feature map in the lower layer is 
computed and then transmitted to the higher layer to acquire the 
better representation. Since sketches and images belong to the 
visual domain but different modalities, such two CNN 
architectures for them are identical but they are trained without 
sharing parameters. Specifically, given a set of images 
[ 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁]  and sketches [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁]  and let 
𝑝𝑖 ∈ 𝑅𝑚×𝑛  and 𝑠𝑖 ∈ 𝑅𝑚×𝑛  be an image and a sketch of size 
𝑚 × 𝑛 , the embedding function for these two CNNs can be 
formulated as: 

 [𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑁] = 𝐶𝑁𝑁𝐼([𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁]|𝜃𝐼) 
     [𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑁] = 𝐶𝑁𝑁𝑆([𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑁]|𝜃𝑆)    (1) 

where 𝑃𝑖 ∈ 𝑅𝑑 and 𝑆𝑖 ∈ 𝑅𝑑 are the learnt intermediate vectors 
for the given image and sketch; and 𝜃𝐼  and 𝜃𝑆  are the 
parameters for the image CNNI and sketch CNNS. Following the 
prior work of [6], we take GoogLeNet [8] as the embedding neural 
network for visual sketches/images, and the 1,024-way average 
pooling layer output after the last inception module is taken as the 
embedded intermediate feature vectors for both images and 
sketches. 

To obtain better discriminative feature vectors that can 
preserve fine-grained details, we use the annotated quintuple 
{(𝑠𝑖 , 𝑝𝑖

+, 𝑡𝑖
+,  𝑝𝑖

−, 𝑡𝑖
−)}𝑖

𝐾 as the supervised information to train 
the neural networks. Each quintuple consists of a query sketch 
𝑠 and two images 𝑝+and 𝑝− with their descriptions 𝑡+and 𝑡−, 
which are named as the positive and negative sample. For 
Fine-grained SBIR, the positive samples are selected from the 
target image set that shares both the fine-gained visual similarity 
and semantic similarity to the query sketch, while the negative 
ones are selected from the residual irrelevant sets. Thus there are 
two branches of CNNs for images. Since the positive and negative 
images are in the same modality, their CNNs share the same 
architecture and parameters. 

2.2 Recurrent Neural Network for Semantic Embedding 
RNN has been widely used in natural language processing due to 
its effectiveness in learning significant patterns of sequential data. 
Thus we use RNN to model the textual descriptions for annotated 
images. Given the textual descriptions [𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑁] of the 
images [ 𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑁] , the goal is to learn the semantic 
embedding function which can be defined as: 

     [𝑇1, 𝑇2, 𝑇3, … , 𝑇𝑁] = 𝑅𝑁𝑁𝑇([𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑁]|𝜃𝑇)   (2) 
where 𝑇𝑖 ∈ 𝑅𝑑  is the learnt intermediate vectors for the i-th 
image textual description in the embedding space; and 𝜃𝑇 
denotes the parameters of the semantic embedding function 
RNNT(·). Thus we first extract the deep semantic representation for 
each image textual description from the RNN-based sentence 
embedding model Skip-thought [9], which is pre-trained on a large 
novel corpus from the BookCorpus dataset [10]. The Skip-thought 
model aims at learning deep sentence vector representations, 
which are good at mapping similar sentences that share semantics 
and syntactics to similar vector representations. Its advantage is 
that the training is unsupervised by using the continuity of 
surrounding sentences, and the vocabulary of words can be easily 
extended online. This model follows the encoder-decoder 
framework, in which the encoder learns the feature vectors of 
sentences and the decoder learns to generate the surrounding 
sentences. Given the triplet adjacent sentences (Si-1, Si, Si+1), let Xt 
be the word2vector representation of the t-th word in the sentence 
Si and M be the numbers of words in the sentence. For encoder, a 
GRU is used and a hidden state hti is produced at each time step, 
which can be formulated as: 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1,  𝑋𝑡]) 
𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1,  𝑋𝑡]) 

             ℎ̃𝑡 = tanh(𝑊 ∙ [𝑟𝑡 ∙ ℎ𝑡−1,  𝑋𝑡])            (3) 
ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 

where 𝑧𝑡 is the update gate vector; 𝑟𝑡 is the reset gate vector; 
and ℎ̃𝑡 is the state update vector at the time step t. Thus hMi can 
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be interpreted as the feature vector for the full sentence Si. For the 
decoder, two GRUs are used, in which one is for generating the 
previous sentence Si-1 and the other for generating the next 
sentence Si+1. These two GRUs are trained separately without 
sharing any parameters. Since they share the same computation 
pattern, we only formulate the decoding process of the next 
sentence Si+1 as follows. 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1,  𝑋𝑡−1,  ℎ𝑖]) 
𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1,  𝑋𝑡−1,  ℎ𝑖]) 

           ℎ̃𝑡 = tanh(𝑊 ∙ [𝑟𝑡 ∙ ℎ𝑡−1,  𝑋𝑡−1,  ℎ𝑖])        (4) 
ℎ𝑖+1

𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 
where ℎ𝑖+1

𝑡  is the hidden state of the decoder at the time step t, 
and its computation is analogous to the encoder except that the 
computation is conditioned on the feature vector  ℎ𝑖  of the 
sentence Si. The sum of log-probabilities for the previous and next 
sentences is used as the objective function to guide the training for 
the triplet adjacent sentences (Si-1, Si, Si+1). 

     ∑ log𝑃(𝑤𝑖+1
𝑡 |𝑤𝑖+1

<𝑡 , ℎ𝑖) +t ∑ log𝑃(𝑤𝑖−1
𝑡 |𝑤𝑖−1

<𝑡 , ℎ𝑖) 𝑡    (5) 
where w1

i ,…, wM
i denotes the words in the sentence Si. Thus the 

loss function of the Skip-thought model can be achieved by 
summing up all the training triplets. We follow the combine-skip 
pattern in [9], use the learnt encoder as the feature extractor, and 
extract the 4,800-way vector as the deep semantic feature for each 
description. Such deep semantic representations are then taken 
into three layers of fully connected neural network to learn the 
semantic embedding function in an end-to-end manner. The 
intermediate vectors from the second layer are taken as the 
embedding vectors in the shared space. Similar to the visual 
embedding, two subnets for positive and negative samples (𝑡+and 
𝑡−) in the annotated quintuple share the same architecture and 
parameters. 

2.3 Objective Function 
In the learning process of deep multimodal embedding model, we 
aim at learning the embedding functions that map the input 
sketches, images and textual descriptions into a common space, in 
which the images and textual descriptions that are relevant to 
query sketches are closer than those irrelevant ones. Specifically, 
given the intermediate feature vectors 𝜓 = {(𝑆𝑖 , 𝑃𝑖

+, 𝑇𝑖
+,  𝑃𝑖

−,

𝑇𝑖
−)}𝑖

𝐾  in that space of annotated quintuples, the goal can be 
formulated as: 

𝐷𝐹(𝑆𝑖 , 𝑃𝑖
+, 𝑇𝑖

+) < 𝐷𝐹(𝑆𝑖 , 𝑃𝑖
−, 𝑇𝑖

−) 
     𝐷𝐹(𝑆𝑖 , 𝑃𝑖

+, 𝑇𝑖
+) = ||𝑆𝑖 − 𝑃𝑖

+||2 + ||𝑆𝑖 − 𝑇𝑖
+||2     (6) 

 𝐷𝐹(𝑆𝑖 , 𝑃𝑖
−, 𝑇𝑖

−) = ||𝑆𝑖 − 𝑃𝑖
−||2 + ||𝑆𝑖 − 𝑇𝑖

−||2 
To achieve this goal, we extend the classic ranking loss to 

adjust itself to three modalities that have the stronger ability to 
characterize cross-modal sketch-image correlations, named as 
multimodal ranking loss, which is formulated as: 

𝐿𝑅𝐴𝑁𝐾 = ∑ 𝑚𝑎𝑥(0, 𝑚 + 𝐷𝐹(𝑆𝑖 , 𝑃𝑖
+, 𝑇𝑖

+) − 𝐷𝐹(𝑆𝑖 , 𝑃𝑖
−, 𝑇𝑖

−)) 𝑖𝜖𝝍 (7) 
where m is the margin to control the relative distance between the 
positive and negative pairs. The optimization for the objective 
function will adjust the parameters to obtain the desired feature 
embedding function that satisfies the ranking order. We also 
utilize the classification loss to capture the category-level 
semantics of sketches and images in that embedding space. The 
classical “Softmax” loss function is used for each input modality 

when training. Let 𝜙 = {(𝑆′
𝑖 , 𝑃′

𝑖
+

, 𝑇′
𝑖
+

,  𝑃′
𝑖
−

, 𝑇′
𝑖
−

)}𝑖
𝐾  be the 

output of the last fully connected layer in the deep neural network 
for sketches, images and textual descriptions and 𝑠𝑙(∙)be the 
Softmax loss function. Thus, the overall classification loss can be 
formulated by combining all the predictions as follows: 

𝐿𝐶𝐴𝑇𝐸𝐺𝑂𝑅𝑌 = ∑ 𝑠𝑙(𝑆′
𝑖) + 𝑠𝑙(𝑃′

𝑖
+

)𝑖𝜖𝜙 + 𝑠𝑙(𝑇′
𝑖
+

) + 𝑠𝑙(𝑃′
𝑖
−) + 𝑠𝑙(𝑇′

𝑖
−) (8) 

Thus the overall objective function of our deep multimodal 
embedding model is a combination of classification loss and 
multimodal ranking loss, which is formulated as follows: 

  𝑚𝑖𝑛: 𝑐𝐿𝑅𝐴𝑁𝐾 + (1 − 𝑐)𝐿𝐶𝐴𝑇𝐸𝐺𝑂𝑅𝑌 + 𝜆||𝜃||2
2     (9) 

where 𝜃 denotes the parameters of embedding neural networks; 
the last addend is a regularization term; and the parameter c is a 
constant to control the impact of two loss functions. After 
adequate training, the deep multimodal embedding model can 
capture both the object category-level semantics and fine-grained 
details, such as pose, viewpoint and shape. We take the 
intermediate feature vectors in the embedding space as the feature 
representation for sketches, images and textual descriptions. In the 
testing time, given the embedded intermediate features of a query 
sketch 𝑆𝑖 and a database image 𝑃𝑖 with the textual description 
𝑇𝑖 , we compute the distance value between them as: 

      𝐷(𝑆𝑖 , 𝑃𝑖 , 𝑇𝑖) = ||𝑆𝑖 − 𝑃𝑖||2 + ||𝑆𝑖 − 𝑇𝑖||2      (10) 
Thus the distance between query sketches and each annotated 

image in the whole database can be measured at both visual and 
semantic level. The ranking list of relevant images is obtained by 
sorting the distance values of sketch-image pairs. 

3 EXPERIMENT AND ANALYSIS 
To evaluate our approach, we use a public benchmark dataset, i.e., 
large-scale Sketchy database [6]. It has 12,500 photos and 75,471 
sketches of 125 object categories. Each category contains 100 
images and each photo has at least 5 well-drawn sketches along 
with the textual descriptions. 1,250 photos and their sketches are 
selected for testing and the rest for training. We use the same 
evaluation metrics as [6], i.e., Recall@K, which can be regarded as 
the percentage of sketches whose true-match photos are ranked in 
the Top-K and quantified by the cumulative matching accuracy at 
various ranks. The positive samples for each sketch is set as the 
true-matched images and textual descriptions. The negative ones 
are obtained from both intra-category and inter-category of 
images. We keep the sampling ratio between the intra- and 
inter-category at 5:1, and the margin m of multimodal ranking loss 
is set to 00. 

Our deep multimodal embedding model aims at fusing 
beneficial multimodal information in sketches and annotated 
images, and analyzing their underlying correspondence 
correlations to further enhance Fine-grained SBIR. To investigate 
the contribution of each component, we introduce two evaluation 
patterns: 1) investigating the impact of semantic embedding for 
Fine-grained SBIR: we introduce a baseline of GN Triplet, which is 
similar to our approach but only uses visual comparisons; 2) 
comparing the effect of each component of objective function: we 
set the constant parameter c in the objective function to 0, 0.5 and 
1. When c=0, only the classification loss is used. When c =1, we 
only use the multimodal ranking loss. When c = 0.5, both the 
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classification loss and multimodal ranking loss are utilized. The 
related experimental results are shown in Table 1. 

It can be found from Table 1 that the best performance for 
Fine-grained SBIR can be obtained in the evaluation pattern of our 
full deep multimodal embedding model Ours (c=0.5). This confirms 
the obvious advantage of our whole framework for Fine-grained 
SBIR. Comparing Ours (c=0/0.5/1) with GN Triplet (c=0/0.5/1), the 
improved Rank@K value proves the positive impact of introducing 
the semantic comparisons between sketches and textual 
descriptions of images. It can be concluded that the Fine-grained 
SBIR performance can be further enhanced through mining all the 
possible beneficial multimodal information sources in annotated 
images, rather than only considering the unimodal visual 
information in images. Furthermore, comparing the different 
settings for the particular parameter c, the best performance can 
be achieved when c is set to 0.5 while the modest performance is 
obtained when c is set to 0. The main reason is that the 
classification loss can only capture the category-level semantics 
and cannot preserve the fine-grained details for Fine-grained SBIR. 
The multimodal ranking loss can do it better because it’s based on 
the relative similarities of the input quintuple, which is usually 
judged by the fine-grained information. However, by combining 
such two kinds of loss function, we can learn better embedding 
function that capture both the category-level semantics and the 
fine-grained details to further improve Fine-grained SBIR. 

To give full exhibition to the superiority of our model, we have 
performed a comparison between our model and several 
state-of-the-art approaches. These methods include: (1) deep 
ranking networks: GN Triplet (GN Triplet (c=0.5)), GN Siamese, GN 
Triplet w/o Cat (GN Triplet (c=1)), and AN Siamese; (2) 
recognition-based networks: GN Cat (GN Triplet (c=0)), SN w/Label 
and SN; (3) traditional hand-crafted feature: GALIF [11]; and (4) 
Simple baselines by chance: Chance and Chance w/Label. More 
detailed implementation information of these methods can be 
found in [6]. The recall value of different ranking positions, 
Rank@K (K=1, 2, 3, …, 10), are presented in Figure 2. Similar 
conclusion can be drawn as above. It’s worth noting that some of 
these methods can achieve the high recall over 90% within the 
top-10 retrieval results, such as GN Triplet, GN Triplet w/o Cat, and 
GN Siamese. However, after introducing the semantic comparisons 
between sketches and textual descriptions of images, the recall 
value can be further improved, especially at the high ranking 
position, i.e., Top-1. Meanwhile, the deep-learning-based 
approaches significantly outperform the basic methods with 
hand-crafted features like GALIF, which mainly attributes to the 
effort of supervised training. 

4 CONCLUSIONS 
In this work, we present a deep multimodal embedding model to 
support more precise Fine-grained SBIR for large-scale annotated 
images. Our model can encode multimodal information into a 
common space through deep neural networks, and exploit the 
fine-grained cross-modal correspondences among the attributes of 
different modalities in sketches and annotated images in that 
space. An interesting future direction is to extend our method to 
multimodal retrieval, where more semantic information will be 

used along with sketches to more precisely retrieve target object 
images from all the different modalities. 

Table 1: The experimental results in different patterns. 
Patterns Rank@1              Rank@5 Rank@10 
Human 0.5427 - - 
GN Triplet (c=0) 0.1263 0.4457 0.6630 
GN Triplet (c=1) 0.2278 0.5326 0.6630 
GN Triplet (c=0.5) 0.3710 0.8090 0.9451 
Ours (c=0) 0.1343 0.4672 0.6486 
Ours (c=1) 0.2710 0.5926 0.7480 
Ours (c=0.5) 0.4216 0.8360 0.9728 

 

 
Figure 2: The experimental comparison results of Recall@K. 
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