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In practical retrieval environments the assmmption is normally made that the 

terms assigned to the documents of a collection occur independently of each other. 

The term independence assumption is unrealistic in many cases, but its use leads to 

a simple retrieval algorithm. More realistic retrieval systems take into account 

dependencies between certain term pairs and possibly between term triples. In this 

study, methods are outlined for generating dependency factors for term pairs and 

term triples and for using them in retrieval. Evaluation output is included to 

demonstrate the effectiveness of the suggested methodologies. 

1. Term Dependency Models 

From a decision-theoretic viewpoint, the information retrieval task is con- 

trolled by two prohabilistic parameters which specify for each document of a collec- 

tion the probability of relevance, and the probability of nonrelevance, with respect 

to a particular query. The larger the probability of relevance, and the smaller the 

probability of nonrelevance, the greater is the retrieval probability for the given 

item. 

Consider in particular an item ~ in the data base represented by binary attri- 

butes (Xl,X2,,.,mXn), where x i takes on the values I or 0 depending on whether the 

ith attribute is or is not assigned to item ~o For each item ~ and each query Q, it 

is in principle possible to generate the two parameters P(x~rel) and P(x~nonrel), 

representing the probabilities that a relevant and a nonrelevant item, respectivelyj 

has vector representation ~. Using decision theoretic considerations, it is easy to 

show that an optimal retrieval rule will rank the docoments in decreasing order 

according to the expression 

P(xlnonrel) (i) 

That is, given two items x and v, x should be retrieved ahead of ~ whenever the 

value of expression (i) for x exceeds the corresponding value for ~. [I-5] 
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The probablistic approach is of course useless in retrieval, unless methods can 

be found for estimating the probabilities P(~Is) for each item in the classes s of 

relevant and nonrelevant items, respectively. These probabilities will necessarily 

depend on the occurrence characteristics of the individual attributes x. in the z 
relevant and nonrelevant items of the collection. The class variable s will be 

dropped in the remainder of this study whenever possible because the development is 

identical for the relevant and nonrelevant classes of documents. The computation 

must be carried out separately for the two classes to obtain the retrieval function 

of expression (I). 

An exact formulation for P(~) which takes into account term dependencies of any 

order (that is, between term pairs, triples, quadruples, etc.) is given by the 

Bahadur-Lazarsfeld expansion (BLE) as follows: [5,6] 

n x t l-x t [ ~PiPJ ~'(xi-pi)(xj-pj) 
P(~) = t:l ~ Pt (l-Pt) l+i<j ~ Pij\[_--_ ¢l_Pi~(l[pj ) 

(xi-Pi) (x ~-p i ) (xk'Pk) 

+ i,j~,k Pijk jTipTp l pi)Cz pj)(l pk ) + 

+ ...... (x1"Pl)(x2-P2)'"(Xn-Pn) ] 
j plp ..,PnCl,pi Cl,p2 .,.(l_p  a 

(2) 

where Pk is the probability of occurrence of attribute k in the class under con- 

sideration, that is, Prob(Xk=l), and Pij' Pijk" etc., represent the second, third, 

and higher order correlations between term pairs x.x.,z3 triples xixjx k, and higher 

order subsets of terms. Specifically, 

E[ (xi-Pi)(xi-p~)] E(x.x.)-p.p= = .................. 1! • , 

Pij \I PiPj(l-Pi) (I-pj) ~ PiPj(l-Pi) (I-pj) 

Pi~ - PiP~ 
= - (3) 

\I PiPJ (l-Pi) (I-pj) 
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and Pijk = 

E[(xl-Pi)(x~-P~)(xk-Pk)] 

~PiPjPk (I-Pi)(I-pj)(I-Pn ) 

E(xix~x k) - E(xix~)Pk - E(XiXk)Pl - E(X~Xk)Pi + 2Pip~p k 

\I PiPJPk(l-Pi)(l-pj )(l-pk) 

Pi~k - Pi~Pk - PikP~ - P~kPi + 2PiP~Pk (4) 
= . . . . .  

PiPjPk(I-Pi)(I-pj)(I'Pk ) 

where Pij denotes the occurrence probability of the pair xix j, Pijk denotes the pro- 

bability of the triple xixjx k, and so on. Corresponding expressions apply to the 

higher-order correlations. 

The BLE expansion (2) cannot be used in practice unless the term occurrence 

probabilities Pi" Pij' Pijk' etc., can be obtained for all term combinations in both 

the relevant and nonrelevant document sets. In practice it is clearly impossible to 

compute the correlation coefficients for an exponential number of term combinations. 

Hence it becomes necessary to use some approximation to the exact formulation of 

expression (2). A great variety of simplified formulations may serve for this pur = 

pose among which the following may be of greatest interest. 

a) The document terms could be assumed to occur independently of each other. This 

reduces expression (2) to the first term only. In particular, for the indepen- 

dent case  

p(~) = P(x I) • p(x 2) .... P(x n) = 
n x t l-x t 

Pt (l-Pt) 
t=l 

(S) 

h) 

where x i is again assumed equal to 1 or 0 depending on whether term x i occurs 

in item~ or not, and Pi = P(xi=l) and hence (l-Pi) = P(xi=0). 

Additional terms beyond the first might be incorporated into the BLE expres- 

sion. However instead of computing and storing an exponential number of higher 

order correlationss only the most important second and third order correlations 

could be used. 

This i m p l i e s  t h a t  v i a b l e  methods must be a v a i l a b l e  f o r  choos ing  the  more impor-  

t a n t  dependent term pairs and triples. Furthermore, special provisions must be 

involved to insure that only positive probability values are generated. 

Indeed, when the BLE expression (2) is used in a truncated, incomplete form, 
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negative sums can be generated when the value of the negated terms exceeds that 

of the nonnegated terms. For example, when the joint occurrence probabilities 

Pij for pairs of terms are close to zero, but the individual probabilities Pi 

and pj are positive, expression (3) shows that Pij becomes negative. Simi- 

larly, Pijk and the other higher-order correlations can become negative under 

corresponding assumptions. 

c) A different, simplified term dependence model might be used that is not based 

on the use of the BLE expression. The well-known tree dependence syst~ which 

has been used experimentally in previous studies represents such a model. [7- 

9] In the tree dependence model each term is assumed to be dependent on at 

most one other term, Such a situation may be represented by a precedence tree 

where a given node in the tree is dependent only on the immediately preceding 

parent node on the next higher tree level. In the illustration of Fig. 1p 

nodes e,b~c,d, and h are dependent only on a; in addition, f and g are depen- 

dent on e, and i and j are dependent on h. The root node a is assumed to be 

independent of the other nodes. 

By analogy with the independent case of expression (5), the occurrence proba- 

bility P(x) of each item x in the relevant and nonrelevant document classes may be 

expressed as a product of conditional, as opposed to simple probabilities in the 

tree dependence model. Thus 

P(x) = P(x a) [lIE P(xu'Xv)] (6) 

where term a is the root of the tree and v is the parent of u in the tree, the pro- 

duct being taken over all the edges E of the precedence tree. For the precedence 

tree of Fig. 1, expression (6) reduces to 

P(~) = P(Xa)P(XelXa)P(XblXa)P(xcixa)P(XdlXa)P(Xh{X a) 

P(xflxe)P(Xg~Xe)P(xilXh)P(xjlxh ) 

The tree dependence model exhibits a number of advantages over the exact model 

provided by the BLE expression. Most obviously, the tree dependence expression (6) 

is more easily computed than the BLE expansion (2). Furthermore, since expression 

(6) represents a simple product of probabilities, the result remains positive when 

the original conditional probabilities are positive. The basic tree model does, 

however, suffer from the fundamental restriction that at most (n-l) pairwise depen- 

dencies are included in he dependence equation (6) for n originally available terms. 

The BLE system may then be expected to outperform the basic tree model in most 

retrieval environments. 
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A number of studies of the tree dependence system indicate, however, that the 

differences between the basic tree dependence and the BLE models may not be very 

substantial [10] :  

a) In particular, it is known that for any term pair (u ,v )  which is not 

directly represented by an edge in the precedence tree, the corresponding 

correlation coefficient Puv (see expression (3)) can be computed in the 

tree dependence model as the product of the pairwise correlations for all 

term pairs on the unique path from u to v in the tree. Considering, for 

example, the pair (f,b) in Fig. l, the unique path from f to b in Fig. 1 

covers edges (f,e), (e,a), and (a,b). Hence one has 

Pfb  = P f e  " Pea " Pab " 
(7) 

This formula makes possible the effective inclusion of any term pair into 

the tree ~ependence model, whether the pair is represented by an edge in 

the tree, or not. 

b) In addition, the tree dependence model may be extended by including cer- 

tain dependencies between term triples. In particular, each time an edge 

is implicitly added to the precedence tree using the extension of equation 

(7), a triangle is formed which translates into a dependence between those 

terms. For example, by adding the edge (e,b) in the example of Fig. 1 the 

triangle (e,a,b) is formed. It is known that whenever a triangle is used 

in the basic tree dependence system, improved results are obtained pro- 

vided that the added edge does not produce a cycle of length greater than 

3 in the graph (that is, a dependency between more than 3 terms). [i0] 

These extensions to the tree dependence system should render the tree model 

equivalent to the BLE system when the higher order dependencies beyond size 3 which 

normally appear in the BLE expression are all negligible. The experiments described 

in the remainder of this study are designed to investigate this question. 

2. Identification of Term Dependencies 

In the  t r e e  dependence model p r o v i s i o n  i s  made for  the  use of ( n - l )  pa i rwise  

term dependencies f o r  any g iven  se t  of u o r i g i n a l l y  a v a i l a b l e  te rms.  A d i r e c t  com- 

p a r i s o n  between the  BLE process  and the  t r e e  dependence system thus  becomes p o s s i b l e  

by i n c l u d i n g  in  the  BLE expansion p r e c i s e l y  ( n - l )  of the  more impor tan t  term p a i r  

dependenc ies .  An obvious method fo r  i d e n t i f y i n g  the  most impor tan t  pa i rwise  depen- 

denc ies  c o n s i s t s  in  c o n s t r u c t i n g  a ~Md~tttm ~ t r e e  (MST) in  which the  nodes 

a re  used to  r e p r e s e n t  the  i n d i v i d u a l  te rms ,  and the  branches  between p a i r s  of nodes 

de s igna t e  the pa i rwise  s i m i l a r i t i e s ,  or dependencies .  [11] An MST inc ludes  p r e c i s e l y  

(n-l) branches, chosen so as to cover the whole tree while maximizing the sum of the 

pairwise similarities. A typical spanning tree for the term nodes used earlier in 

Fig. i is shown in Fig. 2. It may be seen that the same pairwise dependencies are 
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included in the trees of Figs. 1 and 2. However no precedence order is defined for 

the nodes in the spanning tree. 

To construct a maximum spanning tree for a set of entities, it is necessary to 

identify the most important similarities between pairs of entities. A criterion for 

measuring the similarity, or the amount of dependence, between pairs is the expected 

m u t u a l ~  measure (EMIM), defined as 

P(xi,x~) 
= ~ P(x.,x.) log }(xi)P(xj) (8) X(xi'x)i x.=0,1 z j 

1 
x.=0,1 
3 

where the sum is taken over all four combinations of values of x i and xj (either 0 

or i), and P(xi,xj), P(xi), and P(xj) are computed as the proportion of documents in 

the collection containing respectively both terms x i and xj, or x i or xj alone, 

[7] A result of 0 log 0 in expression (7) is defined as 0. The EMIM value for 

term triples may be similarly defined as 

Z(xi,xj,x k) = 
x. =0 ,I 
I 

x. =0 ,i 

Xk=O ,1 

P(xi,xl,x k) 
P(xi,x j,x k) log P(xi)P(x i)P(xk) (9) 

where the stun is now taken over all eight combinations of values for which 

and x k are either 0 or I, and P(xi,xj,x k)_ is the proportion of documents in Xi'X j 

the collection containing all three terms. 

The construction of the MST, or of the dependency tree, for a given set of n 

nodes requires the generation of n2/2 EMIM values for distinct pairs of nodes. How- 

ever, these values can be generated consecutively, by first identifying the maximum 

similarity between a given node a and any of the other nodes; this is followed by 

the determination of the maximum similarity between the next node, say b, and all 

nodes other than a, next between node c and all other nodes except a and b, and so 

on, until all nodes are covered. Thus at most (n-l) pairwise similarities need be 

processed at any one time during the construction of the spanning tree. To build a 

precedence, as opposed to a spanning tree, it is necessary in addition arbitrarily 

to choose some node as the root of the tree; this node is then considered to be 

independent of any other (father) node. 
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3. The BLE Term Dependence Process 

The MST construction process identifies the term pairs, and by extensions the 

term triples, which must be taken into account in the computation of the BLE expan- 

sion (expression (2))° Since P(~) is computed separately for the relevant and non- 

relevant documents of a collection, relevance information must be available o2 docu- 

ments with respect to queries. For experimental purposes one may assume that the 

relevance of each document with respect to each query is determined a priori outside 

the retrieval system (the retrospective case). In practice, a relevance feedback 

process may be used in which the system users stipulate the relevance of certain 

items retrieved in earlier searches of the collection; alternatively, an estimation 

process may serve to obtain approximations to the occurrence probabilities of terms 

in the relevant items, given the corresponding term occurrence statistics in the 

whole collection. [12,13] 

The availability of relevance assessments of docmnents with respect to queries 

makes it possible to compute the term occurrence characteristics for single terms 

(or term pairs and triples) in the relevant and nonrelevant documents of the collec- 

tion. A typical term occurrence table characterizing the occurrence properties of 

two terms, x. and x. in the relevant documents of a collection is shown in Table i. l j 
A corresponding table can be constructed for term occurrences in the nonrelevant 

documents of the collection. The entries a,b,c, and d in Table 1 represent the 

number of relevant documents which include both terms, only one of the terms, or 

neither term, respectively. 

The occurrence characteristics of the terms in the relevant and nonrelevant 

documents of a collection may now be used to generate the various coefficients 

required for the computation of P(xlrel) and P(xlnonrel), In principle, the compu- 

tation of P(x) for a given document ~ should involve all terms x. in the document 
1 

collection, since each x. is equal to either 0 or I in each document. In practicel 
1 

the computation of P(x) with respect to a given query can be simplified by using for 

the evaluation of expression (2) only those document terms which also occur in each 

particular query under consideration. In these circumstances, it is sufficient to 

use term occurrence frequencies of the type shown in Table I for only the auerv 

terms, or query term pairs and triples. 

The query term occurrence probabilities for the relevant documents may be 

obtained in the following way: [7-9] 
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a+b + 0.5 
P~xiJrelj' ' ~ = a+b+c+d + 1.0 

Pj 

and 

a÷c + 0.5 
= P(xj[rel) = a+b÷c+d + 1,0 

Pi j  = P ( x i  and x j [ r e l )  = a ,~  0.5 a+b+c+d + 1.0 

Corresponding formulas apply to the occurrences of query terms in the nonrelevant 

documents of a collection, and to the occurrences of term triples in both the 

relevant and the nonrelevant document terms. The use of the constants (0.5 and 1.0) 

in the numerators and denominators in (9) is designed to prevent the generation of 

inaccurate probability values when either the numerators or the denuminators in (9) 

are very small. 

The occurrence probabilities of the query terms in the relevant and nonrelevant 

documents with respect to each query are now used to generate the factors pi ~ of 

expression (3), and also the term importance values P(x[rel) and P(~{nonrel~ of 

expression (2). This is done by summing for each document ~ the factors of expres- 

sion (2) corresponding to the query term appearing in document ~. 

In a probabilistic retrieval system, the documents must be ranked at the output 

in decreasing order according to the function 

P(xlrel) = (I0) 
g(~) = P(~Inonrel) = v" 

In principle, g(x) may turn out to be negative when the BLE expansion is injudi- 

ciously truncated. The generation of negative values can, however, be avoided by 

taking special precautions when the values of either u or v in expression (10) ere 

negative or very small. Tn such a case the quotient g(x) may not furnish a reliable 

criterion for the document importance with respect to the query. In the experiments 

described in this study, special methods are invoked when the values of u or v are 

smaller than a given threshold T, taken as 1 • 10-9; g(~ is then defined in accor- 

dance with the rules of Table 2. In particular, for the case represented in the 

upper right-hand corner of Table 2, where the probability of relevance (u) exceeds 

the threshold~ but the probability of nonrelevance (v) is negative, g(x) is defined 

as uW/v I computed in accordance with the formula of expression (5); that is, only 

the independent part of the BLE equation is taken into account. For the other cases 

specified on lines 2 and 3 of Table 2. u/v is defined as the expected similarity 

value obtained by using an a priori probability of relevance of 0.02. That is g(x) 
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is then computed as (0.02/(I-0.02)) = 0.0204. A ranking procedure also illustrated 

in Table 2 is used to distinguish the several items which may exhibit identical 

query-document similarities of 0.0204. In particular documents with a high proba- 

bility of occurrence in the relevant items of a collection will be retrieved ahead 

of others whose probability of occurrence is low in the relevant items. 

The following sequence of processing steps represents a summary of the methods 

used in generating a ranked retrieval output using the truncated BLE expansion sys- 

tem: 

a) a maximum spanning tree representing the more important pairwise term 

dependencies is generated for the terms included in a given document col- 

lection~ 

b) relevance assessments are obtained for all documents with respect to a 

given set of user queries; 

c) expanded queries are generated by taking the original query terms and 

adding all terms that are immediately adjacent in the MST; for example, 

given query (b,g,i), the MST of Fig. 2 produces an expanded query consist- 

ing of terms (a,b,e,g,h,£) as in Fig. 3(b). 

d) the pairwise term dependencies p.. are obtained for all term pairs i and j Ij 
included in the expanded query such that each pair (i,j) is represented by 

an edge in the spanning tree; for the previously used example, this 

includes the pairs (atb), (a,e), (a,h), (e~g) and (h,i) shown in Fig. 

3(c)~ 

e) term triples can be identified by selectively adding edges to the reduced 

spanning tree identified in part (d); in particular a triple may be 

defined whenever all three terms occur in the expanded query, and two of 

the three possible edges appear adjacently in the MST; for the case illus- 

trated earlier the added edges (a,g), (b,e), (e,h), (b,h), and (a,i) 

create the triples (a,e,g), (a,b,e), (a,e,h), (a,b,h) and (a,h,i); ~he 

correlation factor Pijk of expression (8) may be computed for each such 

triple; 

f) for each document ~ ,  the factors P(~rel) and P(~]nonrel) are computed by 

smming the values of expression (2) for all query terms included in docu- 

ment ~; all documents are then ranked in decreasing order according to 

expression (10). 

In the experiments covered in th i s  study, the BLE expansion was computed fo r  

each expanded query using f i r s t  only the s ing le  terms, then the s ing le  terms with 

dependent term pairs, and finally the single terms with added pairs and triples. 
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4. The Tree Dependence Process 

The process used to obtain the document ranking for the tree dependence model 

is substantially similar to that described earlier for the BLE model, except that 

the probabilities P(Elrel) and P(~Inonrel) for each item ~ are computed using the 

tree dependence formula (6) instead of the BLE formula (2). In particular a maximum 

spanning tree is constructed as before for the terms included in a given document 

collection, based on the computation of the EMIM valses (expression (7)) for pairs 

of terms. A particular term x i is then randomly chosen as the root of the depen- 

dence tree. [8] The dependence tree is then used to expand the query in a manner 

identical with that previously explained for the BLE case. For example, starting 

with query terms (c,j), the tree expansion process illustrated in Fig. 4 yields an 

expanded query consisting of (a,c,f,g,h,j). This query expansion leads to the iden- 

tification of  term pairs (f,j). (a.c), (c.g). and (c,h) as shown in Fig. 4(c). 

Finally, three added edges yield the triples (a,c,h), (a,c,g) and (c,g,h) 

represented in Fig. 4(d). 

The document importance factors P(~rel) and P(~lnonrel) may be generated for 

the tree dependence in a manner analogous to that described earlier for the BLE 

method. For each term pair in the expanded query included in the precedence tree, a 

term occurrence table similar to that shown for the BLE case in Table i can be gen- 

erated. Such a table specifies the occurrence characteristics for each pair 

(x.,x.), where x. represents the immediate predecessor (the father node) of x. in 
i ]i 3i I 

the dependence tree. The statistics in Table I apply to query term occurrences in 

the relevant documents; similar tables can be constructed for term occurrences in 

the nonrelevant items of a collection. 

The occurrence statistics of the query terms in the relevant and nonrelevant 

documents may now be used as before to generate the coefficients needed to evaluate 

the doctrment importance factors P(X) of equation (6). Specifically, the parameters 

Pi and r i are defined as follows: 

a+0.5 
Pi = P(xi=iIxji =I) = a+c + 1.0 

a+0.5 
l-Pi = P(xi=Olxji=l) = 1 - a+c + 1.0 

h + 0 . 5  
ri = P(xi=llxji=0) = b÷d + 1.0 

(ii) 

b+0.5 
l-r i = P(xi=01xji=0) = i - b+d 1.0 + 

The added factors of 0.5 and 1,0 in expression (ii) are used again to prevent the 

generation of near-zero probability values. 
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To compute the probability P(xlrel) for a given document ~ using the definition 

of expression 46), it is then simply necessary to choose one of the four formulas in 

411) for each edge (xi,xji) in the expanded query depending on the particular values 

of x. and x.. in document x. When the parent x.. of a given query term x. does not 

appear in the expanded query, then P(xi[xji) is defined as P(xi)| that is, such a 

term is considered to be independent of the other query terms. In that case, the 

data of Table 1 are used to define P(xi=1) as (a+b)/(a+b+c+d), and P(xi=O) as 

(c+d)/(a+b+c+d). For the sample query used as an illustration, terms a and f do not 

have a predecessor in the tree, Hence the expression for P(x) is obtained as 

p(~) = p(x a) P(XclX a) p(xglx c) P(XhlX c) p(xf) P(xj[xf) 

Equivalently, log P(~) can be computed as the sum of the logarithms of the 

corresponding probabilities. 

Following the computation of P(~[rel) and P(~[nonrel) for each doument ~ with 

respect to a given query, the documents are once again ranked in decreasing order 

according to the value of g(~) in expression (i0). A comparison of the query expan- 

sion methods illustrated in Figs. 3 and 4 for the BLE and the tree dependence 

methods shows that precisely the same terms are added to the queries in both cases. 

This implies that the dependent term pairs used by both methods are also identical. 

The formulas used to compute P(~) are, however, different for the BLE and tree 

dependence cases since a distinction is made in the tree dependence case between 

terms that exhibit a predecessor in the tree and those that do not. 

The same term triples are also identified by both methods. However the order 

in which the triples are incorporated into the term dependence expressions may 

differ. For the BLE system, the triples are added in decreasing order according to 

their EMIM values (expression (8)). In the tree dependence case, it is known that 

an optimal ordering of the term triples is determined by the values of Wij k, where 

P(i.~.k} 
Hi: kJ = ~ P(i,j,k) log P(i) P(jli) P(k[i) (12) 

i,j,k=0,1 

and (j,k) is the edge added to the two originally existing edges (i,j) and (i,k) to 

form the triple (i,j,k). [10] The ordering of the term triples according to the 

EMIM and W values (expressions (8) and (12)) should be similar in most cases. The 

BLE and tree dependence methodologies are therefore directly comparable. 

5. Experimental Results 

The term dependence methodologies using either the BLE or the tree dependence 

methods are compared in a number of experiments performed with a document collection 

in biomedicine (Medlars I033). A summary of the collection and query statistics 
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appears in Table 3. It may be seen that the average number of terms describing the 

1033 documents and the 30 expanded queries is approximately the some (55.8 and 48.6, 

respectively). The average number of term pairs obtained from the expanded queries 

is 42.6 and the average number of term triples is 177.1. The previously mentioned 

results for the tree dependence model are valid only for term triples that do 

produce dependencies among four or more terms. [10] This implies that the added 

term triples should not exhibit common term pairs. For the experiments described in 

this study no triples were added that included common term pairs. With that res- 

triction, the average number of triples obtained from the expanded queries decreases 

from 177.1 to 18.4 as shown in Table 3. 

The experimental results are presented in terms of recall-precision tables giv- 

ing average precision values at various levels of the recall for the 30 sample 

queries. [14] At the bottom of each table t h e  percentage of improvement is given 

in each case over a base run using the truncated BLE expression (5) with the term 

independence assumption (no added pairs or triples). Table 4 contains a comparison 

of the base run with a standard cosine vector matching process using objectively 

determined frequency-based term weights. The loss of thirty percent in average pre- 

cision between the BLE run based on term independence and the cosine matching system 

is due to the retrospective nature of the probabilistic retrieval runs. Specifi- 

cally, the computation of the probability values pi,Pij.Pijk, etc. used in the 

experiment involves full knowledge of the relevance of all documents with respect to 

all queries. In these circumstances exact probability values can be obtained, lead- 

in K to an optimal term weighting system. On the other hand for the vector matching 

system, no assumption is made about the relevance of documents with respect to 

queries. The retrospective case thus represents an upper-bound of the performance 

obtainable under ideal operating conditions. 

The retrospective search results using a truncated BLE formula (expression (2)) 

are covered in Table 5, and the corresponding tree dependence experiments (expres- 

sion (6)) appear in Table 6. The BLE run with term independence is used as a stan- 

dard (case I) in each Table. It may be seen that for the BLE experiments the addi- 

tion of term pairs and term triples provides improvements over the base case ranging 

from about ten percent for term pair addition to 17 percent for the addition of 

pairs and triples. Case 3 of Table 5 covers the addition of the four best term tri- 

ples (added in decreasing order of the EMIM value of expression (9)) in addition to 

the term pairs. 

Comparable tree dependence results are included in Table 6. The improvement 

over the base case involving term independence exceeds 38 percent when all dependent 

term pairs are included in the computation. However, the further addition of term 

triples does not provide additional advantages except at the very high recall end of 

the performance range when the recall exceeds 90 percent. 

It appears from these results that the tree dependence method must be preferred 

over the BLE implementation used in ths study, because the tree dependence system is 

easier to implement and produces better results. It must be remembered, however, 
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that the restrictions on the available term pairs and triples in the BLE system, 

imposed by the maximum spanning tree process is not inherent in the use of the stan- 

dard BLE formula (2). It may well be that additional improvements can be obtained 

for the BLE method when pairs and triples are considered that are not specified 

within the MST. No such improvements are, of course, available for the tree depen- 

dence system since the term dependencies are then necessarily tied to the precedence 

tree. Further experiments using different implementations of the BLE system remain 

to be carried out. 

6 .  Summary 

An a t t e m p t  i s  made i n  t h i s  s t u d y  to  compare two m e t h o d o l o g i e s  f o r  t h e  use  of 

t e r m  dependence  i n f o r m a t i o n  i n  a r e t r i e v a l  e n v i r o n m e n t ,  The methods  examined i n  

this study represent one possible approach among many that could have been used. 

The tree dependence system described in section 4 could, for example, be replaced by 

a simple query tem weighting process which does not explicitly consider any depen- 

dent term pairs and triples. [8] Such a term weighting process may be based on 

the construction of global term occurrence tables giving the number of relevant and 

nonrelevant documents in a collection in which each query term occurs. Typical 

statistics of this kind valid for query tem x. are shown in Table 7. The number of 
z 

relevant and nonrelevant documents with respect to the given query identified in 

Table 7 is R and N-R, respectively. Correspondingly, the number of relevant and 

nonrelevant items containing query term qi is r (out of R) and f-r (out of N-R). 

The data of Table 7 may now be used to define a term weight w for each query 
q£ 

term qi which increases with the number of term occurrences in the relevant docu- 

ments, and decreases with the number of term occurrences in the nonrelevant items. 

In p a r t i c u l a r  

(N-R-f+r) (N-R-f+r)IN 
= - L -  log + log Wqi N-R N 

N N 

_ (R-r)/(N-R) f-r log (f,r)/N R-r log (13) 
N f. N-R N-R N-f ...~_ 

N ° N N N-R 

Following the computation of the term weights for all query terms in accordance with 

the formula of equation (13), the documents (z = Xl,X2,...,xn) can be ranked in 

decreasing order according to the value of the inner product between document vec- 
n 

tors and weighted query vectors, that is, ~ x..w . It is claimed that this pro- 
i=l z qi 

cess produces retrieval results that are equivalent to what is obtainable by using 

the tree dependence process described earlier. [8] 

Many additional modifications in the experimental design may be made in an 

attempt to evaluate the use of term dependencies in information retrieval. The 
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following 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

possibilities may be of greatest interest: 

the relevance assessments of documents with respect to queries may be 

obtainable directly from the user population by implementing an interac- 

tive search syst~, based on relevance feedback; 

the expanded queries may be generated in various ways, for example, by 

adding to the queries all terms located within a distance of 2 (instead of 

a distance of i) from the original query terms in the spanning tree; 

a different maximum spanning tree program may be used; for example, a new 

MST could be built for each query using only the terms included in that 

query; alternatively, two maximum spanning trees might be used, one 

obtained from terms occurring in the relevant items and the other from 

terms in the nonrelevant documents; 

the  term p a i r s  used in  the  BLE or  the  t r e e  dependence e x p r e s s i o n s  may be 

chosen in various ways, for example by defining a threshold for the EMIM 

values and adding only those pairs whose EMIM value exceeds the given 

threshold; 

the  term t r i p l e s  t o  be added to  the  p r o c e s s  can a l s o  be o b t a i n e d  in  a 

v a r i e t y  of ways,  f o r  example by adding only  t r i p l e s  t h a t  do no t  e x h i b i t  a 

commond edge (a common term p a i r )  in  the  graph s t r u c t u r e ,  or by us ing  t r i -  

p l e s  whose s i m i l a r i t y  v a l u e  exceeds  a g iven  t h r e s h o l d ;  

the adjustments made in the BLE computation to account for small or nega- 

tive probability values may be different from those used in the present 

experiments; in particularj different values may be chosen for the entries 

of Table 2; 

d i f f e r e n t  document c o l l e c t i o n s  may be used as a t e s t  bed f o r  the  e x p e r i -  

m e n t s ,  

Some of the variations suggested in the foregoing list will be incorporated in 

future experiments designed to validate the use of term dependencies in information 

retrieval° 
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Typical Spanning Tree for Ten Terms 
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a) Initial Query Terms 
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b c j 

b) Expanded Query Terms 
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e) Term Pairs Identified 
in MST 

d) Term Triplets Identified 
by Adding Edges 

Determination of Term Pairs and Triples Using HST 

Fig. 3 
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i j 

a) Initial Query Term.s 
(c,j) 
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i j 

b) Expanded Query Te~s 
(a,b,f,g,h,j) 
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\ 
J 

a 

h 
g h 

c) Term Pairs Identified in 
Precedence Tree 

[(f,j),(a,c),(c,g),(c,h)] 

d) Term Triplets Identified 
by Adding Edges 

[ (a,e,h),(a,c,g),(c,g,h)] 

Determination of Term Pairs and Trips Using 
Precedence Trips 

Fig. 4 
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x. =i x. =0 
1 i 

x .=i 
3 

(or xji=l) 

x. =0 
] 

(or xji=O) 

a c 

b d 

Term Occurrence Characteristics of Query Terms x. and x. 
m 3 

in the Relevant Documents 

Table 1 

T<v O<v<T v<0 

T<u 

O~u<T 

u<0 

u/v u/v u'/v' 
(independent) 

.0204(3) .0204(2) .0204(i) 

.0204(6) .0204(5) .0204(4) 

Ranking Provisions of Documents for Small g(~) = u/v 

(Items (i) are ranked ahead of items (j) for i < j) 

Table 2 

Relevant Nonr elevant 
Items Items 

qi=l 

qi=0 

r f-r 

R-r N-f-R+r 

R N-R N 

f 

N-f 

Occurrences of Query Term x i in the Relevant 
and Nonrelevant Documents 

Table 7 
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Medlars (1033 items in biemedicine) 

Number of documents 1033 

Average number of terms per document 55.8 

Number of queries 30 

Average number of query terms (original) 10.7 

Average number of query terms (expanded) 48.6 

Average number of relevant documents per query 23.2 

Average number of term pairs determined 
from expanded queries 

Average number of term triples determined 
from expanded queries 

Average number of term triples without 
common edges (triples not leading to 
dependencies for four or more terms) 

42.6 

177 . I  

18 .4  

Statistics for Experimental Collection 

(Medlars 1033 documents, 30 queries) 

Table 3 
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BLE retrospective runs on med1033 

i) Independent Case: uses EXP_SlM 
2) Cosine aim with term frequency weights 

recall precision for cases: 
level 1 2 
0.00 0.9685 0.8958 
0.05 0.9619 0.8288 
0 .I0 0.9265 0 °7809 
0.I 5 0.8946 0.7359 
0.20 0.8874 0.7007 
0.25 0.8685 0.6733 
0.30  0.8487 0.5886 
0 .35  0.8276 0.5517 
0.40 0.8025 0.5227 
0.45 0.7563 0.4721 
0.50 0.7206 0.4456 
0.55 0.6816 0.4156 
0.60 0.6551 0.3864 
0.65 0.6056 0.3657 
0.70  0.5426 0 .3278 
0 .75  0.5086 0.3018 
0 .80  0 .3984 0 • 2650 
0 .85 0.3080 0 .2042 
0 .90  0 .2210 0 .1542 
0 .95  0.1647 0.1027 
1.00 0.1261 0 .0869 

Percentage change from base case 

Recall Base Case 
level case 2 

0 o00 0.9685 -7.5 
0.05 0.9619 -13.8 
0.I0 0.9265 -15.7 
0.15 0.8946 -17.7 
0.20  0 .8874  -21 .0  
0.25 0.8685 -22.5 
0 .30  0.8487 -30 .6  
0 .35  0 .8276 -33 .3  
0.40 0.8025 -34.9 
0.45 0.7563 -37.6 
0.50 0.7206 -38.2 
0.55 0.6816 -39.0 
0.60 0.6551 -41.0 
0.65 0.6056 -39.6 
0 .70  0,5426 -39 .6  
0 .75 0.5086 -40 .7  
0 .80  0 .3984 - 3 3 . 5  
0 .85  0.3080 -33 .7  
0 .90  0 .2210 - 3 0 . 2  
0 .95  0.1647 -37 .6  
1.00 0.1 261 -31,1 

Average  Change:  -30.4% 

Comparison of Probabilistic Retrieval Using BLE with Vector Processing 

(retrospective case, term independence assumption) 

Table 4 
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BLE retrospective runs 

i) Independent case: 
2) Pairs no triples 
3) All pairs, best 4 (emim) triples 
4) All pairs all triples 

recall precision for cases: 
level i 2 3 4 

0.00 0 . 9 6 8 5  0 . 9 8 3 3  1 . 0 0 0 0  1,0000 
0.05 0 .9619  0 . 9 6 0 6  0 . 9 9 4 4  0.9944 
0 .10 0 . 9 2 6 5  0 . 9 3 0 2  0 . 9 5 7 8  0.9700 
0.15 0 .8946  0 . 9 2 9 3  0 . 9 3 3 7  0,9460 
0.20 0 , 8 8 7 4  0 . 9 1 0 0  0 , 9 2 6 8  0.9396 
0.25 0.8685 0.8970 0.9113 0.9214 
0.30 0.8487 0.8705 0.8818 0.8957 
0.35 0.8276 0.8473 0.8641 0.8834 
0,40 0.8025 0.8270 0.8519 0.8728 
0.45 0.7563 0.7815 0.8121 0.8417 
0.50 0.7206 0.7425 0.7716 0.7938 
0.55 0.6816 0.7230 0.7441 0.7618 
0.60 0.6551 0.6918 0.7221 0.7377 
0.65 0.6056 0.6620 0.6902 0.7064 
0.70 0.5426 0.6288 0,6466 0o6661 
0.75 0.5086 0.5684 0.5913 0.6371 
0.80 0.3984 0.5347 0.5573 0.5747 
0.85 0.3080 0.4323 0.4599 0.4742 
0.90 0.2210 0.3157 0.3025 0.3225 
0.95 0.1647 0.1756 0.1786 0.2128 
1.00 0.1261 0,1349 0.1371 0.1484 

Percentage change from base case 

Recall Base Cases: 
level case 2 3 4 

0.00 0.9685 1.5 3.3 3.3 
0.05 0.9619 -0.1 3.4 3.4 
0 .I0 0.9265 0.4 3.4 4.7 
0.15 0.8946 3.9 4.4 5.7 
0.20 0.8874 2.5 4.4 5.9 
0.25 0.8685 3.3 4.9 6.1 
0.30 0.8487 2.6 3.9 5.5 
0.35 0.8276 2.4 4.4 6.7 
0.40 0.8025 3.1 6.2 8.8 
0.45 0.7563 3.3 7.4 II.3 
0.50 0.7206 3.0 7 .i i0.2 
0.55 0.6816 6 .i 9.2 ii .8 
0.60 0.6551 5.6 10.2 12,6 
0.65 0.6056 9.3 14.0 16.6 
0.70 0.5426 15.9 19.2 22.8 
0.75 0.5086 11.8 16.3 25.3 
0.80 0.3984 34.2 39.9 44°3 
0.85 0.3080 40 .4  49.3 54.0 
0.90 0.2210 42.9 36.9 45.9 
0.95 0.1647 6.6 8.4 29.2 
1.00 0.1261 7.0 8.7 17.7 

Average Changes 9.8% 12.6% 16.7% 

Probabilistic Retrieval using BLE (retrospective case) 

Table 5 
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Tree retrospective runs 

1) Independent case 
2) Tree r e t r o  a l l  pa i r s  no t r i p l e s  
3) Tree retro all pairs 4 triples (no cycles) 
4) Tree retro all pairs all triples (no cycles) 

r e c a l l  p rec i s ion  for  cases:  
level 1 2 3 4 

0.00 0.9685 0.9958 1.0000 0.9939 
0.05 0.9619 0.9958 1.0000 0.9939 
0.10 0.9265 0,9875 0.9886 0,9902 
0.15 0.8946 0.9832 0.9796 0.9810 
0.20 0.8874 0.9773 0.9755 0.9810 
0.25 0.8685 0.9747 0,9755 0.9687 
0.30 0,8487 0.9630 0.9588 0.9551 
0.35 0.8276 0.9492 0.9521 0.9476 
0.40 0.8025 0.9378 0.9447 0.9254 
0.45 0.7563 0.9192 0.9316 0.9117 
0°50 0.7206 0.9084 0.9146 0.8943 
0.55 0.6816 0.8807 0.8873 0.8575 
0.60 0.6551 0.8742 0.8773 0.8348 
0.65 0.6056 0.8472 0.8380 0.7857 
0.70 0.5426 0.8221 0.7921 0.7376 
0.75 0.5086 0.7806 0.7341 0.6999 
0.80 0.3984 0.7247 0.6598 0.6333 
0.85 0.3080 0.6421 0.5798 0.5650 
0,90 0.2210 0.5010 0.4716 0.4553 
0.95 0.1647 0.3078 0.3380 0.3643 
1.00 0.1261 0.1992 0.2042 0.2135 

Percentage change from base case 

Recall Base Cases: 
level case 2 3 4 

0.00 0.9685 2.8 3.3 2.6 
0.05 0.9619 3.5 4.0 3.3 
0,10 0.9265 6.6 6.7 6.9 
0.15 0.8946 9.9 9 .5  9.7 
0.20 0.8874 10.1 9.9 10.5 
0.25 0.8685 12.2 12.3 ii .5 
0.30 0.8487 13.5 13.0 12.5 
0.35 0.8276 14.7 15.0 14.5 
0,40 0.8025 16.9 17.7 15.3 
0.45 0.7563 21.5 23.2 20.5 
0.50 0.7206 26 oi 26 ,,9 24.1 
0.55 0.6816 29.2 30.2 25.8 
0.60 0.6551 33,4 33.9 27.4 
0.65 0.6056 39.9 38.4 29.7 
0.70 0.5426 51,5 46.0 35.9 
0.75 0.5086 53.5 44.3 37.6 
0.80 0.3984 81.9 65.6 59.0 
0.85 0.3080 108.5 88.2 83.4 
0.90 0.2210 126.7 113.4 106.0 
0.95 0.1647 86.9 105,2 121.2 
1,00 0 .I  261 58 o0 61.9 69.3 

Average Change: 38.4% 36.6% 34.6% 
P r o b a b i l i s t i c  Re t r i eva l  Using Tree Dependence ( r e t r o s p e c t i v e  case) 

Table 6 


