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ABSTRACT

Recently, some E-commerce sites launch a new interaction box
called Tips on their mobile apps. Users can express their experience
and feelings or provide suggestions using short texts typically sev-
eral words or one sentence. In essence, writing some tips and giving
a numerical rating are two facets of a user’s product assessment ac-
tion, expressing the user experience and feelings. Jointly modeling
these two facets is helpful for designing a better recommendation
system. While some existing models integrate text information
such as item specifications or user reviews into user and item la-
tent factors for improving the rating prediction, no existing works
consider tips for improving recommendation quality. We propose
a deep learning based framework named NRT which can simulta-
neously predict precise ratings and generate abstractive tips with
good linguistic quality simulating user experience and feelings. For
abstractive tips generation, gated recurrent neural networks are
employed to “translate” user and item latent representations into a
concise sentence. Extensive experiments on benchmark datasets
from different domains show that NRT achieves significant improve-
ments over the state-of-the-art methods. Moreover, the generated
tips can vividly predict the user experience and feelings.
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¥ 60 B 10 @26 e Pass on the bison. Lobster tail,
JEWS risotto, beef, duck breast are good

[x[x]x]*]* oM 7 days ago
Morgan G.
Everything was absolutely incredible.
Service. Food. Atmosphere. All

6/21/15
This place is amazing! If | could give more
than 5 stars | would! Not only is the food

iy

impeccable but the service and hospitality is perfect!

top notch. The staff was so attentive and

detail oriented, making it a truly one of a kind =
Praveen K. 1/30/1

experience. It is an intimate restaurant, not
overly crowded with tables. So if you want to
have the Gary Danko experience you need to
make reservations well in advance.

The risotto was excellent. Amazing
service.

Amy L. 9/4114
Great service and food. Definitely not

. a jeans and t-shirt place.

™ | Madhulika G. 7/23/14
You have to make reservations much

in advance

They have options of 3-5 course meals. And | no
all food categories are absolutely delicious.
We each did the four course meal and shared
each course so that we could try as many
things as possible. To start we had the
butternut squash soup and the risotto. Both
fabulous. The risotto was like none | have ever
tasted; creamy without being overly heavy.
And the soup was lite and fit the season well.
Next we had the lobster and potato purée and
the seafood curry. Both amazing. I'm usually

Michelle D. 8/31/14
Service and staff here is one of the
best in all of SF! | was so impressed!

Figure 1: Examples of reviews and tips selected from the
restaurant “Gary Danko” on Yelp. Tips are more concise
than reviews and can reveal user experience, feelings, and
suggestions with only a few words. Users will get conclu-
sions about this restaurant immediately after scanning the
tips with their mobile phones.
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1 INTRODUCTION

With the explosive growth of Internet information, recommenda-
tion systems have been playing an increasingly important role in
on-line E-commerce and applications in a variety of areas, including
music streaming service such as Spotify! and Apple Music, movie
rating such as IMDB?, video streaming service such as Netflix and
Youtube, job recommendation such as LinkedIn3, and product rec-
ommendation such as Amazon. Many recommendation methods
are based on Collaborative Filtering (CF) which mainly makes use

Lhttp://www.spotify.com
http://www.imdb.com
Shttp://www.linkedin.com
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of historical ratings [14, 15, 18, 22, 31, 33, 35]. Recently, some ap-
proaches also consider text information in addition to the rating
data [1, 21, 23, 26, 40, 49]. After some investigations, we observe
that the text information in most recommendation tasks can be
generally classified into two types: item specifications [40-42] and
user reviews [1, 21, 23, 26, 46, 47, 49]. Item specifications are the
text information for describing the attributes or properties of the
items. For example, in article recommendation such as CiteULike?,
it refers to titles and abstracts of papers. In product recommenda-
tion such as Amazon, it refers to product descriptions and technical
specification information. The second type is user reviews which
are written by users to explain why they like or dislike an item
based on their usage experiences. Multi-faceted information can be
extracted from reviews and used as user preferences or item fea-
tures, which otherwise cannot be obtained from the overall ratings
[5]. Although both types of text data are found to be useful for the
recommendation task, they have some inherent limitations. Con-
cretely, the former cannot reflect users’ experience and preference,
and the latter is usually too long and suffers from noise.

Recently, some E-commerce sites such as Yelp® launch a new
interaction box called Tips on their mobile platforms. As shown
in Figure 1, the left column is a review from the user “Monica H”,
and tips from several other users are shown on the right column.
In the review text, Monica first generally introduced the restaurant,
and then narrated her dining experience in detail. In the tips text,
users expressed their experience and feelings plainly using short
texts, such as “The risotto was excellent. Amazing service.”. They
also provide some suggestions to other people directly in several
words, such as “You have to make reservations much in advance.”
In contrast to item specifications and user reviews, tips have sev-
eral characteristics: (1) tips are typically single-topic nuggets of
information, and shorter than reviews with a length of about 10
words on average; (2) tips can express user experience, feelings, and
suggestions directly; (3) tips can give other people quick insights,
saving the time of reading long reviews. In essence, writing some
tips and giving a numerical rating are two facets of a user’s prod-
uct assessment action, expressing the user experience and feelings.
Jointly modeling these two facets is helpful for designing a better
recommendation system.

Existing models only integrate text information such as item
specifications [40-42] and user reviews [1, 21, 23, 26, 46, 47, 49]
to enhance the performance of latent factor modeling and rating
prediction. To our best knowledge, we are the first to consider tips
for improving the recommendation quality. We aim at developing a
model that is capable of conducting the latent factor modeling and
rating prediction, and more importantly, it can generate tips based
on the learnt latent factors. We do not just extract some existing
sentences and regard them as tips. Conversely, we investigate the
task of automatically construing a concise sentence as tips, such
capability can be treated as simulating how users write tips in
order to express their experience and feelings, just as if they have
bought and consumed the item. Therefore, we named this task
abstractive tips generation, where “abstractive” is a terminology
from the research of text summarization [3].

http://www.citeulike.org
Shttp://www.yelp.com
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Generating abstractive tips only based on user latent factors
and item latent factors is a challenging task. Recently, gated recur-
rent neural networks such as Long Short-Term Memory (LSTM)
[12] and Gated Recurrent Unit (GRU) [6] demonstrate high capabil-
ity in text generation related tasks [2, 30]. Moreover, inspired by
[11, 41], neural network based models can help learn more effective
latent factors when conducting rating prediction and improve the
performance of collaborative filtering. We employ deep learning
techniques for latent factor modeling, rating prediction, and abstrac-
tive tips generation. For abstractive tips generation, gated recurrent
neural networks are employed to “translate” a user latent factor
and an item latent factor into a concise sentence to express user
experience and feelings. For neural rating regression, a multilayer
perceptron network [28] is employed to project user latent factors
and item latent factors into ratings. All the neural parameters in the
gated recurrent neural networks and the multilayer perceptron net-
work as well as the latent factors for users and items are learnt by a
multi-task learning approach in an end-to-end training paradigm.

The main contributions of our framework are summarized below:

e We propose a deep learning based framework named NRT
which can simultaneously predict precise ratings and gen-
erate abstractive tips with good linguistic quality simulat-
ing user experience and feelings. All the neural parameters
as well as the latent factors for users and items are learnt by
a multi-task learning approach in an end-to-end training
paradigm.

e We are the first to explore using tips information to im-
prove the recommendation quality. In essence, writing
some tips and giving a numerical rating are two facets
of a user’s product assessment action, expressing the user
experience and feelings. Jointly modeling these two facets
is helpful for designing a better recommendation system.

e Experimental results on benchmark datasets show that
our framework achieves better performance than the state-
of-the-art models on both tasks of rating prediction and
abstractive tips generation.

2 RELATED WORKS

Collaborative filtering (CF) has been studied for a long time and
has achieved some success in recommendation systems [27, 37].
Latent Factor Models (LFM) based on Matrix Factorization (MF) [15]
play an important role for rating prediction. Various MF algorithms
have been proposed, such as Singular Value Decomposition (SVD)
and SVD++ [14], Non-negative Matrix Factorization (NMF) [18],
and Probabilistic Matrix Factorization (PMF) [31]. These methods
map users and items into a shared latent factor space, and use a
vector of latent features as the representation for users and items
respectively. Then the inner product of their latent factor vectors
can reflect the interactions between users and items.

The recommendation performance will degrade significantly
when the rating matrix is very sparse. Therefore, some works con-
sider text information for improving the rating prediction. Both
item specifications and user reviews have been investigated. In or-
der to use the item specifications, CTR [40] integrates PMF [31] and
Latent Dirichlet Allocation (LDA) [4] into a single framework and
employs LDA to model the text. Collaborative Deep Learning (CDL)
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[41] employs a hierarchical Bayesian model which jointly performs
deep representation learning for the specification text content and
collaborative filtering for the rating matrix. For user review texts,
some research works, such as HFT [23], RMR [21], TriRank [10],
and sCVR [26], integrate topic models in their frameworks to gen-
erate the latent factors for users and items incorporating review
texts. Moreover, TriRank and sCVR have been explicitly claimed
that they can provide explanations for recommendations. However,
one common limitation of them is that their explanations are simple
extractions of words or phrases from the texts. In contrast, we aim
at generating concise sentences representing tips, which express
the feeling of users while they are reviewing an item.

Deep Learning (DL) techniques have achieved significant success
in the fields of computer vision, speech recognition, and natural
language processing [8]. In the field of recommendation systems,
researchers have made some attempts by combining different neu-
ral network structures with collaborative filtering to improve the
recommendation performance. Salakhutdinov et al. [32] employ a
class of two-layer Restricted Boltzmann Machines (RBM) with an
efficient learning algorithm to model user interactions and perform
collaborative filtering. Considering that the training procedure of
Auto-Encoders [25] is more straightforward, some research works
employ auto-encoders to tackle the latent factor modeling and
rating prediction [34, 39, 44]. Recently, He et al. [11] combine gen-
eralized matrix factorization and multi-layer perceptions to find
better latent structures from the user interactions for improving
the performance of collaborative filtering. To model the temporal
dynamic information in the user interactions, Wu et al. [43] propose
a recurrent recommender network which is able to predict future
behavioral trajectories.

3 FRAMEWORK DESCRIPTION
3.1 Overview

The goal of recommendation, similar to collaborative filtering, is
to predict a rating given a user and an item. Additionally, in our
proposed task, our model also generates abstractive tips in the form
of a concise sentence. At the operational stage, only a user and an
item are given. There is no given review texts and obviously no
tips texts.

At the training stage, the training data consists of users, items,
tips texts, and review content. Table 1 depicts the notations and
key concepts used in our paper. We denote the whole training
corpus by X = {U,I,R,C,S}, where U and I are the sets of
users and items respectively, R is the set of ratings, C is the set of
review documents, and S is the set of tips sentences. As shown in
Figure 2, our framework contains two major components: neural
rating regression on the left and abstractive tips generation on the
right. There are two crucial latent variables : user latent factors
U € RFuX™M and item latent factors V. € RKoX" wwhere m is the
number of users, and n is the number of items. k,, and k, are the
latent factor dimension for users and items respectively. For neural
rating regression, given the user latent factor u and the item latent
factor v, a multi-layer perceptron network based regression model
is employed to project u and v to a real value via several layers of
non-linear transformations.
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Table 1: Glossary.
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Description

training set

vocabulary

set of users

set of items

set of ratings

set of reviews

set of tips

context for tips decoder

OLORND X
5

U user latent factors

v item latent factors

E word embeddings

H neural hidden states

u user latent factor

v item latent factor

w mapping matrix

b bias item

(C] set of neural parameters
Tu,i rating of user u to item j
oy sigmoid function

S softmax function
tanh hyperbolic tangent function

For abstractive tips generation, we design a sequence decoding
model based on a gated recurrent neural network called Gated
Recurrent Unit (GRU) [6] to “translate” the combination of a user
latent factor u and an item latent factor v into a sequence of words,
representing tips. Moreover, two kinds of context information gen-
erated based on u and v are also fed into the sequence decoder
model. One is the hidden variable from the rating regression com-
ponent, which is used as sentiment context information. The other
is the hidden output of a generative model for review texts. At the
operational or testing stage, we use a beam search algorithm [13]
for decoding and generating the best tips given a trained model.
All the neural parameters and the latent factors for users, items,
and words are learnt by a multi-task learning approach. The model
can be trained efficiently by an end-to-end paradigm using back-
propagation algorithms [29].

3.2 Neural Rating Regression

The aim of the neural rating regression component is to conduct
representation learning for the user factor u and the item factor v
mentioned above. In order to predict a rating, we need to design a
model that can learn the function f;(-) which can project u and v
to a real-valued rating 7:

F=fr(u,v) (1)

In most of the existing latent factor models, f;(-) is represented
by the inner product of u and v, or adds a bias item for the corre-
sponding user and item respectively:

F=ulvaby, +by+b

()

It is obvious that the rating is calculated by a linear combination of
user latent factors, item latent factors, and bias. The learnt latent
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Figure 2: Our proposed framework NRT for rating regression and abstractive tips generation.

factors may not capture the complex structure implied in the user
historical interactions. Recently, some research works on repre-
sentation learning from different fields, such as computer vision
[9, 16], natural language processing [17, 24], and knowledge base
completion [36], demonstrate that non-linear transformations will
enhance the representation ability. Moreover, most latent factor
models assume that users and items or even text information are in
the same vector space and share the same latent factors. Actually,
user, item, and text information are different kinds of objects with
different characteristics. Modeling them in the same vector space
would lead to limitations.

As shown in left part in Figure 2, we let user latent factors
U € Rk«X™ and jtem latent factors V € RKeX" in different vector
space, where k; and k,, are the latent factor dimension for users
and items respectively. m and n are the number of users and items
respectively. In order to model the relationship between users and
items, one may consider to use a neural tensor network [36] to
describe the interactions between users and items, such as u Wv,
where W € RkuXdxko However, our investigation shows that such
tensor network has too many parameters resulting in difficulty for
handling large-scale datasets commonly found in recommendation
applications. Therefore, we employ a multi-layer perceptron net-
work to model the interactions between users and items, and map
user latent factors and item latent factors into real-valued ratings.

Specifically, we first map latent factors to a shared hidden space:

h" =o(W),u+ W, v+by) (3)

where W7 , € R4¥ku and W, € R%*ko are the mapping matrices

for user latent factors and item latent factors respectively. b;l e R4
is the bias term. d is the dimension of the hidden vector h". The
superscript r refers to variables related to the rating prediction
component. o(-) is the sigmoid activation function:

1
1+e*

©

o(x) =

348

This non-linear transformation can improve the performance of the
rating prediction. For better performance, we can add more layers
of non-linear transformations into our model:

hj = U(W;lh,hlr—l + blru) (5)

where W;l n € R9% js the mapping matrix for the variables in the
hidden layers. [ is the index of a hidden layer. Assume that h] is
the output of the last hidden layer. The output layer transforms hj
into a real-valued rating 7:

F=W! bl +b" (6)

where W} € RY and b" € R.

In order to optimize the latent factors U and V, as well as all the
neural parameters ©, we formulate it as a regression problem and
the loss function is formulated as:

1 .
erm Z (ru,i_ru,i)2

uel,iel

™)

where X represents the training set. ry, ; is the ground truth rating
assigned by the user u to the item i.

3.3 Neural Abstractive Tips Generation

Generating abstractive tips only based on user latent factors and
item latent factors is a challenging task. As mentioned above, ab-
stractive tips generation is different from review content summa-
rization and explainable topic words extraction. At the operational
stage, the input only consists of a user and an item, but without any
text information. After obtaining the user latent factor u and the
item latent factor v from the matrices U and V, we should design
a strategy to “translate” these two latent vectors into a fluent se-
quence of words. Recently, gated recurrent neural networks such as
Long Short-Term Memory (LSTM) [12] and Gated Recurrent Unit
(GRU) [6] demonstrate high capability in text generation related
tasks [2, 30]. Inspired by these works and considering that GRU
has comparable performance but with less parameters and more
efficient computation, we employ GRU as the basic model in our
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sequence modeling framework. The right part of Figure 2 depicts
our tips generation model.

The major idea of sequence modeling for tips generation can be
expressed as follows:

p(stlst,s2, ..., 5t-1, Cerx) = 6(h3) (8)
where s; is the ¢-th word of the tips s. Ccsx denotes the context
information which will be described in the following sections. ¢(-)
is the softmax function and defined as follows:

()
K _x®
I
h3 is the sequence hidden state at the time ¢ and it depends on the
input at the time ¢ and the previous hidden state hj_;:

hi = f(h_y,s1) (10)
Here f(-) can be the vanilla RNN, LSTM, or GRU. In the case of

GRU, the state updates are processed according to the following
operations:

¢(xV) = ©)

r; = o(Wg,s: + W) hi | +bj)

z; = 0(Wg,s, + Wy hi | +b3)

g}: = tasnh(\)ilihst + W“;lsh (r§ ?h?_l) + b;)
hi=z;ohi +(1-z})og]

(11)

where s; € E is the embedding vector for the word s; of the tips
and the vector is also learnt from our framework. rj is the reset
gate, z; is the update gate. © denotes element-wise multiplication.
tanh is the hyperbolic tangent activation function.

As shown in Figure 2, when t = 1, the sequence model has no in-
put information. Therefore, we utilize the context information Ce;x
to initialize hy. Context information is very crucial in a sequence
decoding framework, which will directly affect the performance
of sequence generation. In the field of neural machine translation
[45], context information includes the encoding information of
the source input and the decoding attention information from the
source. In the field of neural summarization [19, 30], the context is
the encoded document information. In our framework, the corre-
sponding user u and item i are the input from which we design two
kinds of context information for tips generation: predicted rating
#u,i and the generated hidden variable for the review text hy.

For the input, we just find the user latent factor and the item
latent factor from the matrices U and V:

u=U(,u),v=V(1i (12)

For the context of rating information, we can employ the output
of the rating regression component in Section 3.2. Specifically, after
getting the predicted rating 7, ;, for example, 7, ; = 4.321, we cast
it into an integer 4, and add a step of vectorization. Then we get
the vector representation of rating 7, ;. If the rating range is [0, 5],
we will get the rating vector fy, ;:

f4.i = (0,0,0,0,1,0)7 (13)

ty,i is used as the context information to control the sentiment of
the generated tips.

Another context information is from review texts. One should
note that review texts cannot be used as the input directly. The
reason is that at the testing state, there are no review information.
We only make use of reviews to enhance the representation ability
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of the latent vectors U and V. We develop a standard generative
model for review texts based on a multi-layer perceptron. For review
content ¢, ; written by the user u to the item i, the generative
process is defined as follows. We first map the user latent vector u
and the item latent factor v into a hidden space:

h¢ = O'(W;hu + W;hv + b;) (14)

It is obvious that we can also add more layers of non-linear trans-
formation into the generative hidden layers. Assume that h is the
output of the last hidden layer. We add the final generative layer
to map h]CL into a |V|-size vector &, where V is the vocabulary of
words in the reviews and the tips:

¢ =¢(Wy hi +b) (15)
where wa e RIVIXd and be e RIVI ¢(+) is the softmax function
defined in Equation 9. In fact we can regard ¢ as a multinomial
distribution defined on V. Therefore, we can draw some words
from ¢ and generate the content of the review ¢, ;. We let ¢ be
the ground truth of ¢, ;. c(¥) is the term frequency of the word
k in ¢y, ;. We employ the likelihood to evaluate the performance
of this generative process. For convenience, we use the Negative
Log-Likelihood (NLL) as the loss function:

£8==3" ™ loge® (16)
k=1

One characteristic of the design of our model is that both the
rating and review texts are generated from the same user latent
factors U and item latent factors V, i.e., U and V are shared by the
subtasks of rating prediction and review text generation. Thus, in
the training stage, both of U and V receive the feedback from all the
subtasks, which improves the representation ability of the latent
factors.

After obtaining all the context information C¢sx = {F, hi }, we
integrate them into the initial decoding hidden state hj using a
non-linear transformation:

hy = tanh(W; ,u+ W;, v+ W7, &+ W? hi +b2)  (17)

where u is the user latent factor, v is the item latent factor, t is the
vectorization for the predicted rating 7, and hj is the generated
hidden variable from the review text. Then GRU can conduct the
sequence decoding progress. After getting all the sequence hidden
states, we feed them to the final output layer to predict the word
sequence in tips.

$t+1 = ¢(W} hy +Db%) (18)

where WZS e RVl and bs € RIVI. ¢(-) is the softmax function
defined in Equation 9. Then the word with the largest probability
is the decoding result for the step ¢ + 1:

o _ a(wi)
wy,, = argmax$,

w; €

(19)

At the training stage, we also use NLL as the loss function, where
I,y is the vocabulary index of the word w:

L5=- Z logé(l‘”)
weTips

(20)
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Algorithm 1 Beam search for abstractive tips generation

Input: Beam size ff, maximum length 7, user id u, item id v, and
tips generation model G.
Output: f best candidate tips.
1: Initialize 1 = 0, z[0: f — 1] = 0, O, =0, 7 =0,t=0;
2: Get user latent factor and item latent factor:
u=U(;,u) and v =V(;,v)
3. whilet <7 do
4. Generate f new states based on II: {§; }5_1 =G1)
5. forifrom0to ff do

6: Uncompleted sequence s; « II(i)

7: Top-f words {wo, w1, ..., wg_1} < f-argmax §2Vi)
w; €

8: for each word w; do

9 Concatenation: Il .inseart(s; + wj)

10: Likelihood: 7, .inseart(x[i] + log §£iwj))

1 end for

122 end for
13:  Get the top-f sequences with largest likelihood:
{s}o'Bfl, {1}571 = - argmax [
selly,lem,
w D rewfm=0m-=0
15: te—t+1
16: end while
17: return II, 7.

At the testing stage, given a trained model, we employ the beam
search algorithm to find the best sequence s* having the maximum
log-likelihood.

s* = arg max Z log (M)

seS WES

(21)

The details of the beam search algorithm is shown in Algorithm 1.

3.4 Multi-task Learning

We integrate all the subtasks of rating prediction and abstractive
tips generation into a unified multi-task learning framework whose
objective function is:

J = min@(/lrﬂ+/1c£C+As£$+/1n(IIUII§+IIVII§+||®||§)) (22)

> Vo Iy

where L” is the rating regression loss from Equation 7, L€ is the
review text generation loss from Equation 16, and L is the tips

generation loss from Equation 20. © is the set of neural parameters.

Ar, Ae, As, and Ay are the weight proportion of each term. The
whole framework can be efficiently trained using back-propagation
in an end-to-end paradigm.

4 EXPERIMENTAL SETUP

4.1 Research Questions

We list the research questions we want to investigate in this paper:

e RQ1: What is the performance of NRT in rating prediction
tasks? Does it outperform the state-of-the-art models? (See
Section 5.1.)
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Table 2: Overview of the datasets.

Books Electronics Movies&TV Yelp-2016
users 603,668 192,403 123,960 684,295
items 367,982 63,001 50,052 85,533
reviews 8,887,781 1,684,779 1,697,533 2,346,227
V| 258,190 70,294 119,530 111,102

e RQ2: What is the performance of NRT in abstractive tips
generation? Can the generated tips express user experience
and feelings? (See Section 5.2)
e RQ3: What is the relationship between predicted ratings
and the sentiment of generated tips? (See Section 5.3)
We conduct extensive experiments to investigate the above re-
search questions.

4.2 Datasets

In our experiments, we use four standard benchmark datasets
from different domains to evaluate our model. The ratings of these
datasets are integers in the range of [0, 5]. There are three datasets
from Amazon 5-core®: Books, Electronics, and Movies & TV.
“Books” is the largest dataset among all the domains. It contains
603,668 users, 367,982 items, and 8,887,781 reviews. We regard the
field “summary” as tips, and the number of tips texts is same with
the number of reviews.

Another dataset is from Yelp Challenge 2016”. It is also a large-
scale dataset consisting of restaurant reviews and tips. The number
of users is 684,295, which is the largest among all the datasets.
Therefore this dataset is also the most sparse one. Tips are included
in the dataset. For samples without tips, the first sentence of review
texts is extracted and regarded as tips.

We filter out the words with low term frequency in the tips and
review texts, and build a vocabulary V for each dataset. We show
the statistics of our datasets in Table 2.

4.3 Evaluation Metrics

For the evaluation of rating prediction, we employ two metrics:
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).
Both of them are widely used for rating prediction in recommender
systems. Given a predicted rating 7, ; and a ground-truth rating
ry,i from the user u for the item i, the RMSE is calculated as:

[1 .
RMSE = | uz; (ru.i = Fui)?

where N indicates the number of ratings between users and items.
Similarly, MAE is calculated as follows:

1 .
MAE = Nuz;|ru,i _ru,il

(23)

(24)

For the evaluation of abstractive tips generation, the ground
truth sy, is the tips written by the user for the item. We use ROUGE
[20] as our evaluation metric with standard options®. It is a classical
Chttp://jmcauley.ucsd.edu/data/amazon

"https://www.yelp.com/dataset_challenge
8ROUGE-1.5.5.pl -n 4 -w 1.2 -m -2 4 -u -c 95 -r 1000 -f A -p 0.5 -t 0
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evaluation metric in the field of text summarization [3, 20]. It counts
the number of overlapping units between the generated tips and
the ground truth written by users. Assuming that s is the generated
tips, gn is n-gram, C(gy) is the number of n-grams in § (s or s),
Cm(gn) is the number of n-grams co-occurring in s and s, then
the ROUGE-N score for s is defined as follows:

ROUGEN(s)= ) Cmlgn)l ), _Clon)  (25)

When § = s, we can get ROUGE, ..4j;, and when § = s, we
get ROUGEpresicion- We use Recall, Precision, and F-measure of
ROUGE-1 (R-1), ROUGE-2 (R-2), ROUGE-L (R-L), and ROUGE-SU4
(R-SU4) to evaluate the quality of the generated tips.

4.4 Comparative Methods

To evaluate the performance of rating prediction, we compare our
model with the following methods:

e RMR: Ratings Meet Reviews [21]. It utilizes a topic mod-
eling technique to model the review texts and achieves sig-
nificant improvements compared with other strong topic
modeling based methods.

e CTR: Collaborative Topic Regression [40]. It is a popular
method for scientific articles recommendation by solving
a one-class collaborative filtering problem. Note that CTR
uses both ratings and item specifications.

o NMF: Non-negative Matrix Factorization [18]. It only uses
the rating matrix as the input.

e PMF: Probabilistic Matrix Factorization [31]. Gaussian
distribution is introduced to model the latent factors for
users and items.

e LRMEF: Learning to Rank with Matrix Factorization [35].
It combines a list-wise learning-to-rank algorithm with
matrix factorization to improve recommendation.

e SVD++: It extends Singular Value Decomposition by con-
sidering implicit feedback information for latent factor
modeling [14].

e URP: User Rating Profile modeling [22]. Topic models are
employed to model the user preference from a generative
perspective. It still only uses the rating matrix as input.

For abstractive tips generation, we find that no existing works
can generate abstractive tips purely based on latent factors of users
and items. In order to evaluate the performance and conduct com-
parison with some baselines, we refine some existing methods to
make them capable of extracting sentences for tips generation as
follows.

LexRank [7] is a classical method in the field of text summa-
rization. We add a preprocessing procedure to prepare the input
texts for LexRank, which consists of the following steps: (1) Re-
trieval: For the user u, we first retrieve all her reviews C,, from the
training set. For the item i, we use the same method to get C;. (2)
Filtering: Assuming that the ground truth rating for u and i is ry, ;,
then we remove all the reviews from C, and C; whose ratings are
not equal to ry, ;. The reviews whose words only appear in one set
are also removed. (3) Tips extraction: We first merge Cy and C; to
get Cy, i, then the problem can be regarded as a multi-document
summarization problem. LexRank can extract a sentence from C ;
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Table 3: Baselines and methods used for comparison.

Acronym  Gloss Reference
NRT Neural rating and tips generation Section 3
Rating prediction
RMR Ratings meet reviews model [21]
CTR Collaborative topic regression model [40]
NMF Non-negative matrix factorization [18]
PMF Probabilistic matrix factorization [31]
LRMF List-wise learning to rank for item ranking [35]
SVD++ Factorization meets the neighborhood [14]
URP User rating profile modeling using LDA [22]
Tips generation
LexRank  Pagerank for summarization [7]
CTR; CTR for tips topic extraction [40]
RMR; RMR for tips topic extraction [21]

as the final tips. Note that we give an advantage of this method
since the ground truth ratings are used.

CTR contains a topic model component and it can generate topics
for items. So the topic related variables are employed to extract
tips: (1) We first get the latent factor 6; for item i, and draw the
topic z with the largest probability from ;. Then from ¢, which
is a multinomial distribution of z on V, we select the top-50 words
with the largest probability. (2) The most similar sentence from
Cy,i is extracted as the tips. This baseline is named CTR;. Another
baseline method RMR; is designed in the same way.

Finally, we list all the methods and baselines in Table 3.

4.5 Experimental Settings

Each dataset is divided into three subsets: 80%, 10%, and 10%, for
training, validation, and testing, receptively. All the parameters
of our model are tuned with the validation set. After the tuning
process, we set the number of latent factors k = 10 for LRMF, NMF,
PMF, and SVD++. We set the number of topics K = 50 for the
methods using topic models. In our model NRT, we set K = 300
for user latent factors, item latent factors, and word latent factors.
The dimension of the hidden size is 400. The number of layers
for the rating regression model is 4, and for the tips generation
model is 1. We set the beam size f = 4, and the maximum length
n = 20. For the optimization objective, we let the weight parameters
Ay = A¢c = A5 = 1, and A;; = 0.0001. The batch size for mini-batch
training is 200.

All the neural matrix parameters in hidden layers and RNN lay-
ers are initialized from a uniform distribution between [—0.1,0.1].
Adadelta [48] is used for gradient based optimization. Our frame-
work is implemented with Theano [38] on a single Tesla K80 GPU.

5 RESULTS AND DISCUSSIONS
5.1 Rating Prediction (RQ1)

The rating prediction results of our framework NRT and compara-
tive models on all datasets are given in Table 4. It shows that our
model consistently outperforms all comparative methods under
both MAE and RMSE metrics on all datasets. From the comparison,
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Table 4: MAE and RMSE values for rating prediction.

Books Electronics Movies Yelp-2016

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
LRMF 1.939 2.153 2.005 2.203 1.977 2.189 1.809 2.038
PMF 0.882 1.219 1.220 1.612 0.927 1.290 1.320 1.752
NMF 0.731 1.035 0.904 1.297 0.794 1.135 1.062 1.454
SVD++  0.686 0.967 0.847 1.194 0.745 1.049 1.020 1.349
URP 0.704 0.945 0.860 1.126 0.764 1.006 1.030 1.286
CTR 0.736 0.961 0.903 1.154 0.854 1.069 1.174 1.392
RMR 0.681 0.933 0.822 1.123 0.741 1.005 0.994 1.286
NRT 0.667* 0.927* 0.806" 1.107* 0.702* 0.985° 0.985" 1.277*

*Statistical significance tests show that our method is better than RMR [21].

we notice that the topic modeling based methods CTR and RMR are
much better than LRMF, NMF, PMF, and SVD++. The reason is that
CTR and RMR consider text information such as item specifications
and user reviews to improve the representation quality of latent
factors, while the traditional CF-based models (e.g. LRMF, NMF,
PMF, and SVD++) only consider the rating matrix as the input. Sta-
tistical significance of differences between the performance of NRT
and RMR, the best comparison method, is tested using a two-tailed
paired t-test. The result shows that NRT is significantly better than
RMR.

Except jointly learning the tips decoder, we did not apply any
sophisticated linguistic operations on the texts of reviews and tips.
Jointly modeling the tips information is already very helpful for
recommendation performance. In fact, tips and its corresponding
rating are two facets of product assessment by a user on an item,
namely, the qualitative facet and the quantitative facet. Our frame-
work NRT elegantly captures this information with its multi-task
learning model. Therefore the learnt latent factors are more effec-
tive.

5.2 Abstractive Tips Generation (RQ2)

Our NRT model can not only solve the rating prediction problem,
but also generate abstractive tips simulating how users express
their experience and feelings. The evaluation results of tips gen-
eration of our model and the comparative methods are given in
Table 5~Table 8. In order to capture more details, we report Recall,
Precision, and F-measure (in percentage) of ROUGE-1, ROUGE-2,
ROUGE-L, and ROUGE-SU4. Our model achieves the best perfor-
mance in the metrics of Precision 