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Abstract

An efficient variant of an optimal algorithm is pre-

sented, which, in the context of a large dynamic full-

text information retrieval system, reorganizes data that

has been compressed by an on-the-fly compression

method based on LZ77, into a more compact form,

without changing the decoding procedure. The algo-

rithm accelerates a known technique based on a reduc-

tion to a graph-theoretic problem, by reducing the size

of the graph, without affecting the optimality of the so-

lution. The new method can thus effectively improve

any dictionary compression scheme using a static en-

coding method.

1. Introduction and Background

1.1 Compression in Information Retrieval

systems

Large Information Retrieval (I R) systems are dis-

tributed today on C;D-Roms, and even larger systems

will fit, on a single disk if the main files are being stored

in compressed form [14], [2]. Ironically, compression

is becoming increasingly important, driven by the ad-

vent of new storage capability. For data storage, supply

chives demand: the existence of new storage technolo-

gies, coupled with improved data capture methods, has

greatly increased our appetite to put more data in ma-

chine readable form. The largest files in a standard
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IR system are generally the text itself, but the auxil-

iary files such as the concordance and/or various files

of bitmaps are often as large as the text, if not larger,

and should therefore be compressed [5], [6]. We con-

centrate in this work on the compression of text files,

as in [16, 1, 11].

Text compression techniques are often divided into

statistical methods, such as Huffman coding [10] or

arithmetic coding [21], and dictionary methods, based

generally on the work of Lempel and Ziv [22], [23]. The

statistical methods assign codewords to the elements

making up the text, the lengths of these codewords

depending on the frequencies of the corresponding ele-

ments. Dictionary methods replace variable length sub-

strings of the text by (shorter) pointers to a dictionary

in which a collection of such substrings has been stored.

Depending on the application and the implementation

details, each method can outperform the other, as long

as only the compression savings are of concern.

While the primary concern is generally to reduce the

size of the given file as much as possible, the time com-

plexziy of the coding routines may also be a relevant fac-

tor. For certain applications, such as data transmission

over a communication channel, both coding and decod-

ing ought to be fast. For other applications, like the

storage of the various files in a large static full text IR

system, compression and decompression are not sym-

metrical tasks. Compression is done only once, while

building the system, whereas decompression is needed

during the processing of every query and directly affects

response time, One may thus use extensive and costly

preprocessing for compression, provided reasonably fast

decompression methods are possible. For large dynamic

IR systems, however, such as news wires, for which the

text is constantly growing, fast and adaptive methods

are more appropriate than static ones. Our focus here

is on dynamic I R systems.
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1.2 Improving dictionary based compres-

sion

In LZ77 @] and its variants, the dictionary is in fact

the previously scanned text, and pointers to it are of

the form (d, 1), where d is an offset (the number of chara-

cters from the current location to the previous occur-

rence of a sul)string matching the one that starts at the

current location), and 1 is the length of the matching

string. There is therefore no need to store an explicit

dictionary.

One of the problems of LZ77 is how to locate previ-

ous occurrences of substrings in the text. The simple

method of scanning the whole text backwards for each

processed character might be prohibitively slow. Many

alternatives have been suggested, including, among oth-

ers, the use of binary trees [3], hashing [4, 20] and Pa-

tricia trees [9].

The question of how to parse the original text into a

sequence of substrings is a problem common to all dic-

tionary based compression techniques. Generally, the

parsing is done by a greedy method, i.e., at any stage,

the longest matching element from the dictionary is

sought. A greedy approach is fast, but not necessar-

ily optimal. Because the elements of the dictionary are

often overlapping, and particularly for LZ77 variants,

where the dictionary is the text itself, a different way

of parsing might yield better compression. For example,

assume the dictionary consists of the strings D = {abc,

ab, cdef, d, de, ef, f} and that the text is ,$’ = abcdef;

assume further that the elements of D are encoded by

some fixed-length code, which means that Pogz(l Dl)l

bits are used to refer to any of the elements of D; then

parsing S by a greedy method, trying to match always

the longest available string, would yield abc-de-f, re-

quiring 3 codewords, whereas a better partition would

be ab-cdef, requiring only 2.

The various dictionary compression methods differ

also by the way they encode the elements. This is most

simply done by a fixed length code, as in the above

example. A more involved technique [9] uses a static

variable length encoding of the d and t values. Pushing

this idea even further, one may use a dynamic variable

length code, optimally adapting itself to the frequencies

of the occurrences of the different values of c1 and 1:

Brent [4] suggests the use of Huffman coding for the

(d, 1) pairs.

We are concerned here with a way of optimally pars-

ing the text, which may be applied to a process called

recompression. There are many systems today that of-

fer on-the-fly, very fast, compression of files of any kind.

These systems are used to better exploit available disk

space, by compressing any file before writing it to the

disk. But this is only attractive if the time spent on

compression is hardly noticeable, and similarly, decom-

pression must be fast, so that a compressed file may

be read without delay. Recompression is useful in a

situation where a number of files forming the dynamic

IR system have already been compressed by the fast

method, and the user wishes now to reorganize the data

on his disk into a more compact form. Time is less crit-

ical for this reorganization process, but the constraint

is that the new encoded form of the recompressed file

must be compatible with the original encoding, so that

the same decompression method may be used. In other

words, a single decoding routine should be able to pro-

cess a file, regardless of it having been compressed or

recompressed.

The method described below has already been men-

tioned [15, 12], and achieves optima/ recompression in

the sense that once the method for encoding the ele-

ments is given, it finds the optimal way of parsing the

text into such elements. Obviously, different encoding

methods might yield different optimal parsings. Re-

turning to the above example of the dictionary D and

text S, if the elements abc, d, de, ef, f, ab, cdef of D

are encoded respectively by 1, 2, 3, 4, 5, 6 and 6 bits,

then the parsing abc-de-f would need 9 bits for its en-

coding, and for the encoding of the parsing ab-cdef, 12

bits would be needed. The best parsing, however, for

the given codeword lengths, is abc-d-ef, which is nei-

ther a greedy parsing, nor does it minimize the number

of codewords, and requires only 7 bits.

The way to search for the optimal parsing is by reduc-

tion to a well-known graph theoretical problem. This

approach is, however, not recommended in [15] because

of the havy processing involved. In [12], sub-optimal

solutions are suggested to improve the execution time.

The contribution of this paper is an eficient variant of

the optimal algorithm: a pruning technique is applied

to the graph, which generally reduces the number of

both edges and vertices, but still enables the evalua-

tion of an optimal solution for the original graph.

The optimal method and its new variant apply to

any dictionary based compression method with static

(fixed or variable length) encoding. The elements to be

encoded can be of any kind: strings, characters, (d, 1)

pairs, etc, and any combination thereof. The proposed

technique thus improves a very broad range of different

methods, many of which have been published in the

scientific literature or as patents.

In the next section we mention some simple recom-

pression methods and present the new method and

small examples. Examples of encoding functions that

have been used and satisfy the required conditions are

given in Section 3. Finally, Section 4 states the main
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theorems for the analysis.

2. Recompression

Every recompression algorithm corresponds to another

tradeoff between the speed of the encoding process and

the compression efficiency. C;onsider a given location

in the text, to be encoded by a dictionary compres-

sion method. At certain locations, there might be more

than one possible choice for the dictionary element, to be

substituted for the following characters. The algorithm

used for scanning the dictionary (linear search, binary

search, hashing, etc. ) induces an order on the dictio-

nary elements. The range of tradeoff alternatives ex-

tends from finding, relative to the ordering at hand, the

first appropriate element (fastest method, but yielding

inferior compression), through considering the k first

such elements of the dictionary, for some integer k > 1,

and choosing the best element among these, up to scan-

ning all possible alternatives and selecting the locally

optimal element (slower, but giving improved compres-

sion).

2.1 Simple recompression methods

For LZ77 and many of its variants, the (d, 1) =

(distance, lengih) pointers are restricted to d < N for

some fixed N. that is, a string is considered as recurrent

only if its previous occurrence is within a finite window

preceding the current location. A simple recompres-

sion heuristic is therefore to increase N ! which increases

the probability of finding a good earlier match. How-

ever, the compression performance is not necessarily

improved, since [logz N1 bits are used to encode cl.

In [3, 9, 19], the previous occurrences of the current

substring are searched for by means of hashing: the cur-

rent two (or three) characters are hashed to a location

in a hash table, which contains a pointer to the pre-

vious occurrence of a couple (or triplet) of characters

that hashed to the same location. Since hash functions

are not injective, different character pairs or triplets

may hash to the same location. It is thus possible that

the hash table does not provide a pointer to a previous

occurrence, although such an occurrence might exist.

There are several ways to use simple recompression in

this case. LJsing a larger hash table will reduce the num-

ber of collisions and thereby increase the probability of

locating a string if it appeared earlier. Taking this idea

a step further, and if enough memory space is available,

one could get rid of the hashing altogether, and keep,

say, for every possible character pair, a pointer to its

last occurrence.

In the basic LZ77 algorithm, the longest substring is

sought which matches the current characters. In the

implementations using hashingj this is usually approx-

imated by finding first a matching pair or triplet, and

then trying to extend the match as far as possible. This

obviously does not guarantee that the longest match

will be detected. For instance, if the text that has al-

ready been scanned is T = . . .abcde. . .abcx. . . . and the

following characters are abcde, then applying hashing

to the character pair ab will yield, in the better case,

a pointer to the last occurrence of ab, which can only

be extended to form a 3-character match, whereas a 5-

character match would have been possible; in the worse

case, even that 3-character match will be missed, if an-

other character pair, different from ab but yielding the

same hash value, has appeared after abcx in T.

The compression efficiency can be improved, if not

only the last occurrence is remembered, but the k last

occurrences, for some constant k > 1. For example,

one could store pointers to the k last occurrences of

each character, using a cyclic list for each. That is, a

matrix M of IXl x k entries is kept, where IX I is the

size of the alphabet at hand. In addition, an array 1

of size IX [ is used, with l[i] pointing to the currently

used entry in the cyclic list stored in the i-th row of

the matrix. Initially, all entries in 1 are zero. When

a character i is encountered in the text, its location is

stored in M[i, l[i]], and I[i] is incremented (modulo k).

This ensures that up to k previous occurrences can be

referenced, and only if more than k occurrences have

appeared, the most early ones are overwritten. When a

character i is detected, the cyclic list is scanned back-

wards, and for each of the locations given by the list, the

following characters are compared with the characters

following the current location; the longest of the up to

k matching strings is then used. The drawback of this

method is that the same number of memory locations

is reserved for each character, whereas in many appli-

cations, in particular in natural language texts, certain

characters appear much more frequently than others.

Combining this idea of saving multiple references

with the hashing approach above, one could store a

cyclic list of k elements for each entry of the hash ta-

ble, or, which is equivalent, have k different hash tables

of identical size. If a good hashing function is chosen,

the distribution of the hashed addresses will be close

to uniform, even if the single character distribution is

not. In case there is a strong bias even after hashing,

one could use linked lists for each entry of the hash ta-

ble, thus allowing lists of varying length (up to some

predetermined upper limit, induced by the time con-

straints), without wasting memory locations. However,

since hashing functions are non-injective, all the above

lists may now contain pointers to different elements.
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Consider for example the following scheme: assume

the character set consists of the 256 possible $-bit

strings, that a hash table of 214 = 41< entries is used,

and that hashing is to be applied on character pairs.

One could then hash by truncating the least significant

bits of each character, i.e.:

/1([17 . .,alao, b7. . .blbo) = a7. .a1b7.. b1.

If the addresses in the lists are stored in 16-bit words,

one could even remove the ambiguity resulting from the

hashing, by explicitly storing the truncated bits a. b. in

each element of the list. This leaves 14 bits for the

address itself, which is equivalent to setting N, the size

of the window into which back references should point,

to 4A-.

In the next section we consider even better recom-

pression, which recognizes the fact that the longest-

matching-string heuristic not necessarily yields an op-

timal partition.

2.2 Improved optimal recompression

(.~onsicier a text string S consisting of a sequence of

n characters S1 S2 . . . ,$n, each character Si belonging

to a fixed alphabet E, Substrings of S are referenced

by their limiting indices, i.e., S’i . . . ,$j is the substring

starting at the i-th character in S, up to and including

the j-th character. We wish to compress S by means

of a dictionary D, which is a set of character strings

{al, Uz, . . .}, with Ui G X+. The dictionary may be

explicitly given and finite, as in the example in the in-

troduction, or it may be potentially infinite, e.g., for

the Lempel-Ziv variants, where any previously occur-

ring string can be referenced.

The compression process consists of two independent

phases: parsing and encoding. In the parsing phase,

the string S is broken into a sequence of consecutive

sub-strings, each belonging to the dictionary D, i.e., an

increasing sequence of indices i. = O, il, tz, . . . is found,

such that

.,
with S’ij+l S$,yl ED forj=O, l,.... One wayto

assure that at least one such parsing exists is to force

the dictionary D to include each of the individual char-

acters of E. The second phase is based on an cncodzng

function A : D --+ {O, l}*, that assigns to each element

of the dictionary a binary stiing, called its encoding.

The assumption on ~ is that it produces a code which

is uniquely decipherable (U D). This is most easily ob-

tained by a fixed length code, but such a code is only

possible for a finite dictionary, and even then it is only

efficient from the compression point of view if the dis-

tribution of the occurrences of the elements of D in S

is nearly uniform. Compression can often be improved

by the use of variable-length codes, assigning shorter

codewords to elements with higher probability of oc-

currence, A sufficient condition for a code being UD is

to choose it as a prefix code (see Even [8]).

The problem is the following: given the dictionary

D and the encoding function A, we are looking for

the optimal partition of the text string S, i.e., the se-

quence of indices il, iz, . . . is sought, that minimizes

Xjzo l~(s~,+l “ ‘s;3+,)1

To solve the problem, a directed, labeled graph G =

(V, E) is defined for the given text S. The set of vertices

is V = {1, 2, . . . . n, n + 1}, with vertex i corresponding

to the character S, for i < n, and n + 1 corresponding

to the end of the text; E is the set of directed edges: an

ordered pair (i, j), with i < j, belongs to E if and only

if the corresponding substring of the text, that is, the

sequence of characters S%. . . Sj -1, can be encoded as

a single unit. In other words, the sequence S’i . . . S’j _ 1

must be a member of the dictionary, or more specifically

for LZ77, if j > i + 1, the string S’i . . . Sj_l must have

appeared earlier in the text. The label L~j is defined for

every edge (ijj) c E as l.A(Si . . .Sj–l)l, the number of

bits necessary to encode the corresponding member of

the dictionary, for the given encoding scheme at hand.

The problem of finding the optimal parsing of the text,

relative to the given dictionary and the given encoding

scheme, therefore reduces to the well-known problem of

finding the shortest path in G from vertex 1 to vertex

?l +1.

Dijkstra’s [7] algorithm maybe used to find the short-

est path. Its worst case complexity is, depending on

the data structures used, 0( IV12), or O(IEI log \V\) (see

[18]),which would be particularly disturbing for our in-

tended application. However, in our case the directed

graph contains no cycles, since all edges are of the form

(i, j) with i < j. Thus by a simple dynamic coding

method, the shortest path can be found in 0(] El). Nev-

ertheless, when the text includes long runs of repeated

characters (like strings of zeros or blanks), the num-

ber of possibilities to parse these runs, and hence the

number of edges, is quadratic in the number of vertices.

This motivated the search for sub-optimal alternatives

in [12].

We suggest here to adhere to the optimal parsing,

and to circumvent the worst case behavior by combin-

ing the shortest path algorithm with a pruning method

intended to eliminate a priori such parts of the graph,

that cannot possibly be part of an optimal path. The

pruning process may be applied in all cases for which

42



the labeling function L satisfies the triangle inequality,

L,j < L~~ + Lkj for all i, k,j such that i < k < j,

which holds for many practical encoding schemes (SW

next section for examples).

The set of edges E is constructed dynamically by the

algorithm itself. We start with E = 0, and adjoin, in

order, the edges emanating from vertices 1,2, . . .. unless

they fail to pass the following test. When a vertex i is

reached, consider the set of its predecessors Pred(i) =

{~ I (~, i) E ~}. We now scan the substrings of the text
starting at ,$t. suppose that the substring S’t . .. $-.. I is

a member of the dictionary, so that the pair (i, j) is a

candidate to be adjoined to E. Before adding this edge,

check if it is possible to reach vertex j directly from

every vertex in Pred(i), without passing through vertex

i. If so, then there is no need to add the edge (i, j) to E,

since, because of the triangle inequality, there is no loss

in taking the direct edge from the element of Pred(i)

to vertex j. However, if there is even one element in

F)recl(i) that has no direct edge to j, then (i, j) must, be

added to E.

If, after having checked all the edges emanating from

vertex i, none of these have been adjoined to E, then

there is no need to keep the vertex i in the graph, since

it, obviously cannot be part of an optimal path from

1 to n + 1. Thus all the incoming edges on vertex i

may be pruned from the graph, and i itself may also be

eliminated.

The formal definition of the algorithm is given on the

opposite column.

The algorithm seems non-symmetric with regard to

the predecessors and successors of a vertex. This is

because the vertices are scanned sequentially. There-

fore, when processing vertex z, Pred(i) is already de-

fined, but not yet Succ(i) = {j / (i, j) c E}, the set of

i’s successors. The set of the potenttal successors of i,

Succ-(~andidates( i), is defined as the set of those ver-

tices to which there would have been a direct edge if

no pruning were used. Some of these edges might ulti-

mately not be adjoined to the graph. Others might in

a first, stage be added, but might later be deleted.

Note that the triangle inequality is a sufficient condi-

tion for reaching an optimal solution with the improved

algorithm, but when the condition does not hold for ev-

ery triple (i, j, k), one can easily adapt the algorithm to

deal also with these cases: replace the test if (k, j) @ E

in the inner loop by

if (kjj) @ E or Lkj > Lki + L~j.

In other words, even if we can reach j from all the

predecessors k of i, we still might have to add the edge

(i, j) to the graph.

Algorithm prune

{
E

v
for

{

}
}

—0

- {1,..., ?,,7, +1}

i- lton

Pred(i) +--- {k I (k, i) E E}

Succ-Candidates(i) +--- {j I S, . . S,.-I E D}

added_edge t—— FALSE

for all J c Succ-Candidates(z)

{
all. -connected — TRUE

for all k e Pred(z)

{
if (kjj) @ E

then all.connected ~ FALSE

}
if not all_connected then

{
E - EU{(Z, j)}

added-edge + TRUE

}

}
if not added-edge then

v —v \{,}
E _ E \ Pred(t)

}

Figure 1 displays a small example of a graph, cor-

responding to the text abbaabbabab, including all the

vertices and edges. We now assume that LZ77 is used.

The edges connecting vertices i to i+ 1, for i = 1, . . . . n,

are labeled by the character Si. Note that the example

clearly displays the main problem with long recurring

strings: if & Sj_l did occur earlier, so did also all

its substrings Sk S1, for i < k ~ ~ < j, therefore

the the corresponding sub-graph with vertices {i, . . . . j}

is a full graph. For example, the sub-graph on ver-

tices {5, 6,7, 8,9} corresponds to the string abba, and

{9, 10,11, 12} corresponds to the string bab. If such

recurring strings form a major part of the text, the

number of edges might be Q(IVIZ).

After having applied the pruning algorithm, many

edges may have been deleted, as well as some of the ver-

tices. Figure 2 depicts the graph obtained for the same

text as fo’r Figure 1, but with the use of the pruning

algorithm. The character corresponding to the tran-

sition from vertex z to z + 1 is indicated, even if the

corresponding edge has been deleted.

The example also indicates how the algorithm could
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Figure 1: Original graph corresponding

o 06b7

a
b

to text abbaabbabab

W’
Figure 2: Graph for text abbaabbabab after pruning

be improved. Note that since all the successors of 10

are also successors of 9, the triangle inequality in fact

implies that the edge (9,10) could also be eliminated.

The reason this is not done in the algorithm is because

the loop with running index k, passing over the pre-

decessors, is internal to the loop with running index j,

passing over the potential successors. Therefore, when

(9, 10) k adjoined, the set of the successors of 10 is not

known yet. An additional loop checking also such cases

might further improve the algorithm, but is not necess-

arily justified.

The routine evaluating then the shortest path from 1

to n + 1 uses an array SPL(i), for storing the Shortest

Path Length from 1 to i. In iteration i, the values of

SPL(j) for j < i are already known. The algorithm

now scans only those vertices and edges that remain

after the pruning process.

Since for each i and j, the label Lj, is referenced

exactly once by the algorithm, its time complexity is

clearly (2(1.EI).

Shortest path

{

SPL(l) + O

fori _ 2ton+l

if i c V then

{
SPL(i) - w

for all j c Pred(i)

{
t - SPL(j) + Lj,

if SPL(i) < t then SPL(i) _ t

}
}

}

3. Encoding function examples

This section brings examples of encoding functions A

that have been proposed and are used in commercial

compression systems. We show that they obey the tri-

angle inequality, which is a sufficient condition for ap-

plying the above pruning algorithm.
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The first example, based on [19], is a variant of LZ77,

known as LZSS [17], using hashing on character pairs

to locate (the beginning of) recurrent strings, like in

~20]. The output of the compression process is thus a

sequence of elements, each being either a single (un-

compressed) character, or an offset-length pair (d, 1).

The elements are identified by a flag bit, so that a sin-

gle character is encoded by a zero, followed by the 8-bit

AS(YII representation of the character, and the encod-

ing of each (d, P) pair starts with a 1. The sets of pos-

sible offsets and lengths are split into classes as follows:

let, fl~(n) denote the standa;cl

tation of n (with leading zeros

noting the encoding scheme by

As(offset d) =
{

lB7(d)

OBll(d)

m-bit binary represen-

if necessary), then, de-

As:

ifd< 127

if 127< d s 2047

( B,(/- 2)

{

lll?2(/-5)

‘s(length ‘) = (1111 )[(~-7)/’51 l?~((~ - 8) mod 15)

Including the flag-bit, each offset is thus encoded by

9 or 13 bits, and the number of bits used to encode the

length 1 is 2[~1 for ~ <8 and it is 4(&l for 4 ~ 8. It is

of course wasteful to use an encoding of linearly grow-

ing length for the values of 1, but the decoding speed

is enhanced, since only half-byte blocks are processed

(except for ? ~ 4).

Theorem 1 The function As satisfies the trzangle. an-

equaltty.

Proofi Let El and E2 be two consecutive elements en-

coded by the algorithm, where Ei may be either a single

character, or a string of characters encoded by an (off-

set, length) pair (d, 1). Denote by E the concatenation

of El with E2, and assume that E may be encoded

as a single element. Let L(x) be the function giving

the length, in bits, of the encoding As(x), where, as

above, we shall apply L to both the offset or the length

part, or even to an element Ei. We have to show that

L(E) ~ L/( El) + L(E2).

Case 1: Both E, are single characters, then L(E1 ) =

L(E2) = 9. But E is a string of two characters

and will be encoded by an (d, /?) pair. The oflset

part is encoded by at most 13 bits, the /engih part

by exactly two bits (since 1 = 2). Thus L(E) <

13+2 <9+9.

Case 2: One of the Ei is a single character, the other

a string encoded by (d, /). Then there exists a d’

such that E is encoded by (d’, t?+ 1).Thus

L(E1) + L(E2) – L(E) z

9+(9+ L(/)) –(13+L(l+l))2 1,

since the difference in the lengths of the encodings

of consecutive lengths 1 and 1 + 1 never exceeds 4

bits.

Case 3: Both Ei are strings, encoded by (d,, /i), re-

spectively. Then there exists a d’ such that E is

encoded by (d’, /1 + /2).

If both 11 and /2 are smaller than 8, then they are

encoded together by at least 4 bits, but 11 + 12 is

at most 14, so it is encoded by at most 8 bits. If,

say, /1 is smaller than 8, but tz is not, then they

are encoded together by at least L(lz) + 2 bits, but

~1 +!2 is at most 12 + 7, so it is encoded by at most

L(L2) + 4 bits. If both & are larger than 7, then

L(11)+L(P2) > 4(*+*) and

so that L(P1 +/2) – (L(n, +L(12)) ~ 4– ~ <2.

Thus for all values of/1 and /2, L(lI + /2) exceeds

L(41 ) + L(12) by at most 4 bits. Therefore

.L(E1) + -L(E2) – L(E)

> (9+ L(n))+ (9 + L’(LZ)) – (13 + ~(~1 +~2))

> 1.
m

The second example comes from the on-the-fly com-

pression routine recently included in a popular operat-

ing system. It is again based on [20], but uses simpler

hashing and a different encoding scheme AM. Single

characters are again encoded by 9 bits, and the sets of

offsets and lengths are encoded as follows:

{

lB6(d– 1) ifl<d <64

AM- (offset d) = OIBs(d – 65) if64<d~ 320

llBll(d– 321) if320< d< 2368

(o ifl=2

~M(length /) =

{

1~+1 o Bj(l–2–2~)

if2~<t–2<2~+1 >

forj~ 0,1,2,...

Offsets are thus encoded by 8, 11 or 14 bits, and the

number of bits used to encode the lengths f? is 1 for

1 = 2 and 2[log2(l– 1)1 for 1>2.
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Theorem 2 The junctton AM satisfies the triangle in-

equality.

Proof: We use the same notations as for Theorem 1,

L(z) standing now for IAM(z)I, and consider the same

three cases.

Casel: L(E~)+L(E~) =9+9> 14+l~L(d,2)=

L(E).

Case 2: L(E1)+L(E2)– L(E) ~ 9+(8+ L(P)) –(14+

L({ + 1)) ~ 1, since the difference in the lengths

of the encodings of consecutive lengths / and ! + 1

never exceeds ‘2 bits.

Case 3: For the case 11 = lz = 2, we have

L(length 2)+ L(length 2) – L(length 4) = 1 + 1 –

4 = –2. If, say, /1 = 2 and !2 >2, then we note

that, L(12 +2) exceeds L(12) by at most 2 bits, thus

L(length 2) + L(12) – L(12 -t 2) ~ 1 – 2 = –1. If

both Pi are larger than 2, then using the fact that

the logarithmic functions are sub-additive, we get

,L(lI) + L(!z) – L(!I + /2)

~ 2(log2(/1 – l)+log2(12 – 1)

- (log2(/, +/2 -1)+ 1))

> 2(log2(/1 +12 –2) –logz(ll +?2 – 1)+ 1)

(( ))= 2 logz l–~ +1 ~ 1.3562,

the last inequality following from the fact that

logz( 1 – ~) is increasing with n, and we consider

here values n ~ 5. Thus for all values of ?1 and lz,

L(ll +/2) exceeds L(ll) + L(lz) by at most 2 bits.

Therefore

L(E1) + L(E2) – L(E)

~ (8+ L(/1)) + (8+ L(12)) – (14+ L(~I + ~z))
> 0. n

Remark: A newer variant of the second example ex-

tends the size of the window into which a back-reference

may point. The last range of AM (offset d) is then en-

coded by llB12(d – 321) if 320 < d ~ 4416, so that

offsets may be encoded by up to 15 bits. This, however,

affects the triangle inequality. In the special case when

two consecutive strings ab and cd appeared earlier at

distances dl and dz, both s 64, but the concatenated

string abed appeared earlier at a distance d3 >320, en-

coding the string abed requires L(d3, 4) = 15 + 4 bits,

which is larger than L(dl, 2)+ L(d2, 2) = (8+1)+(8+1)

bits, needed to encode the pairs ab and cd individu-

ally. As mentioned above, the Prune algorithm may be

adapted to deal with such cases too.

4. Analysis

One problem in the implementation is to have an easy

way to keep track of the predecessors of each vertex.

If no pruning is used, every preceding vertex may be a

predecessor of the current vertex i, but in fact, when

scanning backwards, we may stop as soon as a vertex is

found which is not connected to i, since the predeces-

sors of a vertex must immediately precede it. When the

pruning algorithm is applied, the fact that the predeces-

sors of a vertex immediately precede it is not necessarily

true. Nevertheless, the predecessors form a contiguous

block, so that while scanning backwards, once at least

one predecessor j of i has been detected, we may con-

tinue sequentially to j – 1, j – 2, etc., and stop as soon

as the first vertex j – k is found, with k > 0, which is

not a predecessor of i.

For the theorems below, we need to differentiate be-

tween two kinds of predecessors and successors of the

vertices. There are two kinds of edges missing from the

graph: those that have not been added at all, and those

that have been added, but were deleted later. Define

Pred ‘(i) as the set of vertices which were predecessors of

i at some stage of the algorithm, and Succ’(i) as the set

of vertices which were successors of i at some stage of

the algorithm. The sets Pred(i) = {j I (j, i) E E} and

Succ(i) = {j [ (i, j) c E} defined earlier refer to the

vertices which are predecessors or successors of i even

after the algorithm has completed its task. Clearly,

Pred(i) ~ Pred’(i) and Succ(i) ~ Succ’(i).

Theorem 3 If prunzng is used, then for each

Succ’(z) consists of consecutive elements, i.e.:

lsucc’(z)\ = k + 3j ~ O such that

succ’(x) ={z+j+l, $+j+2,. ... z+j

node z,

+ k}

Theorem 4 If pruning is used, ihen for each node x >

0, Pred’(x) consists of consecutive elements, i.e.:

lPred’(z)l = k - 3j ~ () such that

Pred’(~) ={m–j–k, . . ..j–2. z,z –j–l}.

The proofs are non-trivial inductions on z. They are

omitted for lack of space and will appear in the full

paper.

The fact that the last theorem is about Pred’(z) and

not about Pred(z) is no real restriction, since anyway,

the stage where the algorithm has to scan the prede-

cessors of a vertex z is prior to the moment where any

edges incident on z may be deleted.
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5. Conclusion

The new technique improves the running time of the

optimal algorithm, and may thus efficiently enhance ah

most all of the dictionary based encoding methods that,

have been suggested. our experimental results show

an additional 20 Y0–40$70 savings obtained by the opti-

mal recompression algorithm, relative to the on-the-fly

methods. Relative to implementations of the greedy

longest-match heuristic, the improvement was, on most

data, only a modest one of a few percent, as predicted

by [13]. However, even a minor improvement might be

worthwhile in certain applications, and has certainly

theoretical value, since one can show that it cannot be

further improved under our constraints of a predeter-

mined decoding procedure. For our application to dy-

namic full-text IR systems, the Prune algorithm may

permit to replace sub-optimal compression heuristics

by an optimal method, without major loss in process-

ing speed.
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