
P . T r e e s : S t o r a g e E f f i c i e n t M u l f l w a y T r e e s

David M. Arnow, Aaron M. Te~nbaum, and Cormhf Wu

Department of Computer sad Information Scimwe
Brook3yn Coile4e

City University of New York

ABSTRACT

A new variation of high order multiway tree structures, the P-tree is presented. P-trees
have average access costs that are significantly bet ter than those of B-trees and are no worse
(and of ten better) in storage utilization. Unlike compact B-trees, they can be maintained
dynamically, and unlike dense multiway trees and B-trees, their associated insertion algo-
ri thm, which is also presented, is cheap and involves (at most) a very localized rearrange-
ment of keys.

1. Introdnction

Tree structures are widely used in storing data to permit efficient access, insertion
and deletion operations. In organizing data on secondary storage media, the choice of
viable tree structures is severely restricted because of the great difference in speed of
memory- to-memory and device-to-memory operations, and the need for high space utiliza-
tion. Any viable tree structure m u s t satisfy several requirements:

a) Pr imary memory usage must be limited: the number of node images required by the
associated maintenance algorithms must be limited to a small fixed number or , in the
case of a high order balanced tree, limited to the height of the tree;

b) Both efficiency in transfering nodes between secondary and primary memory and
a reasonable storage utilization are required: thus, only high order trees can be con-
sidered;

c) I t must be possible to access all nodes from the root with few node visits: again, high
orders are required (to provide high branching factors) as well as possible rearrange-
ments of the tree structure;

Perm/ssion to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

©1985 ACM0.89791-159-8/85/006/0111 $00.75

II1

P-Trees: Storage Efficient Multtway Trees

Because of their strong viability under these circumstances, the B-tree of high order
or a variation has become the tree structure of choice in the implementation of data base
systems and in the organization of external files. An algorithm for inserting keys into B-
trees and further discussions of their properties may be found in the references [2, 3, 6,
9]. With few exceptions ([4], for example), the possibility of using alternative, high-
order trees has been largely ignored. In particular, because of their poor worst-case
access properties, M-trees [defined below], have generally not been studied.

An M-tree is the following generalization of the binary search tree:

I. Let D be the degree (or order) of the tree. In each node in the tree there are D
pointers, numbered 1 through D, which are null or which point to child nodes. The
i-th child of a node is the child node pointed to by its 'i-th pointer. In each node
there are up to D-1 keys.

II. The order requirement is that (1) in any node the i-th key is less than the (i+ 1)-th
key and (2) all the keys in the i-th child of a node are greater than the (i-1)-th key of
the node,, if it exists, and less than the i-th key of the node, it if exists.

III. There are three types of nodes (See Figure 1.):

Internal nodes have D-1 keys and D children.
Leaves have fewer than D-1 keys and no children.
Semi-leaves have D-1 keys and fewer than D children.

Figure 1: M-Tree Terminology

(I)
100 200 300

($1) ($2)

2 21 51 151 181 191

1 91115 22 31 34 152 161
(L2) (St) (SS) (Ol)

(s3) ~i)

201 251 291 501 505

211 212 213 261
(S6) (~)

I is an internal node.
$1, $2, $3, $4, $5 and $6 are semi-leaves.
LIT L2~ D1 and D2 are]eaves.

To insert a key, K, into an M-tree:

(1) A search is made for K in the M-tree, terminating (unsuccessfully)either
when a leaf is reached or when a semileaf is reached under the following cir-
cumstances:

a) i is the smallest positive integer such that the i-tb key in the semileaf is greater
than K (if no such i exists, then i is set to D);

112

P-Trees: Storage Efficient Multiway Trees

b) the i-th pointer is null.

(2) Leaf case: The key is inserted into the leaf in such a way as to preserve the order con-
dition. If the leaf node now has D-1 keys then it becomes a semi-leaf. The insertion
is complete.

(3) Semlleaf case: A new leaf node is allocated, the i-th pointer reset to point to it, and
the new key is inserted into the new leaf. (At this point, if the parent of the new
leaf has D children it is no longer a semileaf, but an internal node.) The insertion
is complete.

Recently, a comparative study of M-trees, B-trees and compact B-trees [1] demon-
strafed that the average search costs of M-trees are competitive and often better than
those of B-trees. At low orders, average storage utilization for M-trees is superior to that
of B-trees, but because M-tree storage utilization is extremely, adversely dependent on
order, this advantage does not persist at the high orders required in practical situations.
This is contrary to the conventional wisdom that B-trees are space-poor and time-efficient.
The strong average case access performance of random M-trees is intriguing. Can the
storage utilization (and hopefully the worst case access behaviour) of M-trees be
improved without disrupting the above properties7

In this paper, we answer that question affirmatively by presenting a new, promis-
ing variation of high order multiway tree structures that could potentially be employed to
manage large collections of information on rotational storage media, and avoid the poor
storage utilization of M-trees at high orders. :

2. Drip Trees

In a certain sense, the critical point of any of the tree insertion algorithms occurs
at the moment it is necessary to insert a key into a full node. In the case of the B-tree,
the node is split and the median key is moved up. Consider an insertion into an M-
tree which results in an "attempt" to insert the key into a leaf that is full. Normally, a
new node would be created (i.e. an extra block of secondary storage would be allo-
cated) and the new key would become the sole occupant of the extra block. Since the
order of the tree is presumably high, such singly occupied blocks would proliferate,
thus causing the storage utilization problem. Since it is these sparsely populated leaves of
M-trees that cause the disasterous space utilization statistics of high order M-trees, it is
necessary to seek ways to pack the data found in these underpopulated nodes into
denser structures. One possibility is to associate an overflow node with every full leaf in
the event of such an insertion. A refinement of this approach leads to the idea of drip
trees.

The definition of drip trees includes parts I, II, and HI of the definition of M-trees (see
above). In addition:

A semileaf may contain one or more drip regions, which are sets of contiguous
pointers. (When a leaf node becomes a semileaf, all its pointers form one drip region.
The drip regions are modified by subsequent insertions, as explained below.) Not all

113

P.Trees: Storage Efficient Multlway Trees

pointers in a semileaf need be contained in a drip region. The i-th key in a node is said to
be "in" a drip region if the i-th and (i+ l)-th pointers are both in the same drip region.
Let N be the number of pointers in a drip region, and let m = N die 2. Then the m-th
pointer of the drip region is either null or points to a leaf node, which is termed a drlp
node. All other pointers in a drip region are null.

Viewing the tree in Figure I as a drip tree, the following observations can be made:

(1) I is still an internal node.

(2) $I, $2, $3, $4, $5 and $6 are still semi-leaves. $1 has no drip region. $2, $4, $5,
and $6 each have one drip region, delimited by pointers I and 4. $3 has one drip
region, delimited by pointers 3 and 4.

(3) LI and L2 are leaves, but not drip nodes, while D1 and D2 are leaves and are drip
nodes.

To insert a key into a drip tree (See Figure 2.):

Steps I and 2 are identical to steps 1 and 2 of the M-tree insertion procedure, above.

(3) Semi-leaf ease: If the i-th pointer is not in a drip region, then the actions taken are
the same as those in step 3 of the M-tree insertion procedure, above. If the i-th
pointer is in a drip region:

a) The set of keys consisting of those in the drip region and the new key is con-
sidered: the median of these is inserted into the drip node (if no drip node
exists then one is allocated) and the others are redistributed in the drip region.
Both operations are carried out in a way to preserve the order condition. If the
drip node has fewer than D-1 keys then the insertion is complete.

b) If the drip node has D-I keys (i.e. is full): The drip node becomes a semi-
leaf. The pointer to this node ceases to be part of the drip region (in its
parent). The set of pointers to the left of this pointer and the set of pointers to
the right of this pointer become separate drip regions, unless either set is null
or consists of only one pointer; in that case the pointer (if any) is no longer part
of any drip region.

The storage utilization for such a tree must be greater than 33%, regardless of order,
because for every full node (an internal node or a semileaf) there are at most two nodes
(leaves) which are not full. On the average, the storage utilization for drip trees is much
better.

Although this marked improvement over storage utilization in M-trees (the average of
which tends to zero with high orderl) is heartening, this "drip" approach will lead to
pathologically structured trees. To see this, consider the point when a semi-lea/
node with one all-encompassing drip region has a single full drip node. Half of the keys

114

P-Trees: Storage Efficient Mnltlway Trees

Figure 2: The Drip Tree of Figure 1 After Inserting 8, 55, 163. and 153

Ix~ 200 3.0ol

2 21" 51 L t151 181 191 t t20"1 ~1 291[

~~~2~~5~ [ 8  II 15 "~152 161 163 "211(~ 2 1 3 ~ ) 2 1 2  2131 

(D3) 034) 
Insertinn of 8 into $4 mused drip node D3 to be created with 
key 9 "dripping" down. Insertion of 55 into S1 mused new 
leaf L3 to be created. Insertion of 163 into the former drip 
node D2 caused it to become a semileaf ($7). Subsequent 
insertion of 153 into $7 resulted in the new drip node ]34. 

making up the two nodes reside in the drip node. H the input has been random and if the 
order is (as it must be) high, then the keys in the drip node cover, on the average, half of 
the key space that is covered by the parent node. This means that very nearly half of the 
keys whose search paths lead through the parent will also g o  through this first child, 
while the other half of those keys will be distributed over the other children. This will 
clearly lead to an excessively unbalanced tree, somewhat reminiscent of  a poplar tree, 
or, in cases of very large data sets, of a douglas fir. 

3, P-Trees 

This pathological tendency can be curbed by amending, in the drip tree insertion 
procedure above, step 3b, which handles the full drip node case, to produce a new type of 
tree, the P-tree: 

If the drip node has D-1 keys (i.e is full): 

i) The parent drip region contains four or more pointers: the drip region is divided into 
two drip regions, the number of pointers of which differ by at most one. A new 
node is allocated so that both drip regions have a drip node in their center. The keys 
in the original drip region and the original drip node, and the new key are redistri- 
buted over the two drip regions and their drip nodes so that the parent node stays full, 
the number of keys in the two drip nodes differ by at most one, and the order condi- 
tion is preserved. (See Figure 3.a.) 

If5 



P-Trees: Storage Efficient Multlway Trees 

ii) The parent drip region contains three pointers: two new nodes are allocated and the 
two null pointers of the drip region are set to point to them. The keys in the drip 
region and the drip node and the new key are redistributed over the three child 
nodes and the drip region so that the parent stays full, the number of keys in any two 
of the child nodes differ by at most one, and the order condition is preserved. The 
three child nodes are now leaves, but not drip nodes, and the three pointers in the 
parent cease to constitute a drip region. (See Figure 3.b.) 

ifi) The parent drip region contains two pointers: a new node is allocated and the null 
pointer of the drip region is set to point to it. The key in the drip region and the keys 
in the drip node and the new key are redistributed over the two child nodes and the 
drip region so that the parent stays full, the number of keys in the two child nodes 
differ by at most one, and the order condition is preserved. The two child nodes are 
now leaves, but not drip nodes, and the two pointers in the parent cease to 
constitute a drip region. (Similar to Figure 3.b.) 

116 



P.Trees :  Storage Efficient Muit iway Trees  

Figure 3: Percolations (Local Redistributions of Keys) 

(a) U21113111411/51 ~ 61~] 71 ~81~ 

\ 
/62 63 64 65 66 67 681 

The insertion of the key 69 into a drip region of >3 pointers yields: 

~21[[ 31[[ 41[[51~ 65 H 66~ 8i~ 

I \ 
~1 62 63 ~ ~7 6s 69 7~1 

Initially, the parent has one drip region (bold), which includes the 
keys 61, 71, and 81. After insertion and percolation, the parent has 
two drip regions: one which includes the key 65, the other which 
includes the key 81. 

(b) ~21 ]]31J141 ~ sl ~ sl~ 
\ 

C52 53 54 55 56/ 

The insertion of the key 57 into a drip region of 3 pointers yields: 

U211131114111531156/// 

Initially, the parent has one drip region in question, which includes 
the keys 51 and 61. After the insertion and percolation, the pointers 
in what was the drip resion are no lonser part of a drip re~ion. 

Intuitively, the effect  of  this percolation-like (hence the name "P-tree") redistribution 
is two-fold: 

(1) Growth  in the breadth,  as distinct f rom depth, is encouraged. A cursory examination 
of  the P-tree algorithm reveals that it is impossible for  a node to have grandchildren 
before  it has at least log2D children. 

(2) Assignment is made,  as uniformly as possible, of subtrees of  a tree to different subre- 
gions of  key space, without  damaging storage utilization. 

4. Some Properties of  P-Trees  

Storage Utilization. The storage utilization of  P-trees exhibits an oscillatory dependence 
on order ,  with the best orders being of  the form 2 "~ and the worst  orders being of  

the form 2N+2N'm=3X2~'I (in both cases N is an integer and is greater  than 0). To see 

117 



P-Trees: Storage Emclent Muittway Trees 

trees. In fact, for "good" orders (i.e. powers of 2), the average storage utilization of P- 
trees is better than that of  B-trees. 

Table 2 presents the search cost vs. file size for order-16 P-trees and B-trees. 
Although ordinary M-trees are occasionally worse than B-trees in this respect, P- 
trees consistently have a superior average search time cost than B-trees. Furthermore, 
of the set of P-trees sampled for each category, the a~ess cost of the worst P-tree was con- 
sistently superior to the average access cost for B-trees. Although not presented here, simi- 
lar results were found for orders ranging from 3 to 32, file sizes from 1,000 to 20,000, and 
sample sizes of up m 1,000. 

Table 1: 
Average  Storage Utilization for P-trees, M-trees and B-trees 

(10000 keys) 
Order P-tree B-tree M-tree 

3 81 67 84 
4 83 68 72 
6 81 68 57 
8 82 68 49 

12 68 68 38 
16 77 68 32 
24 65 69 <24  
32 72 69  -- 

Table 2: 
Access Costs For Order 16 P-trees and B-trees 

(sample size = 20) 
File Size Average P-tree Worst P-tree Average B-tree 

1000 2.73 2.73 2.91 
2000 2.90 2.93 3.26 
3000 3.02 3.08 3.92 
4000 3.15 3.20 3.92 
5000 3.25 3.30 3.93 

10000 3.58 3.59 3.95 

6. P-Trees and Compact  B-trees: A Practical Hybrid Structure 

Rosenberg and Snyder [7, 8] have shown that optimal storage B-trees, which they 
termed "compact B-trees", are near optimal in access time cost. Although Rosenberg 

I18 



P.Trees: Storage Ef/Icient Multlway Trees 

this, we explore the worst case storage utilization by considering the circumstances 
under which a node can be less than 50% full: 

(1) it is the sole child of a full parent, in which case the storage utilization of the two 
nodes together is better than 50%. 

(2) it is a node that resulted from a three-way split of a full drip node that belonged to a 
drip region of three pointers. 

Thus, storage utilization can't possibly be less than 33% and if the three-way splits can 
be avoided, then storage utilization will exceed 50%. The latter can be accomplished by 
insisting that the order be of the form 2 N. The greatest number of three-way splits will 
occur when the order is of the form 2'~+2 N'l. (For example, (24) - >  (12,12) --> (6,6,6,6) 
--> (3,3,3,3,3,3,3,3).) As seen in the next section, the average storage utilization is much 
better, though also somewhat dependent on order. 

Access Costs. Figure 4 shows the canonical worst case structure for a P-tree. It is apparent 
that the worst case access cost for an order D P-tree of N keys is N/((D-1)]og2D), as com- 
pared with N/(D-1) for M-trees. Although the dependence on file size is still linear (as 
in the case of an M-tree), the height-decreasing factor, log2D , suggests that the average 
case should be significantly improved as well. The results of the next section indicate 
that this is indeed the case. 

Fisure 4: Canonical Worst Case Order 8 P-lree 

(four nodes per level) 

$. Empirical Comparison With Other Structures 

Simulations suggest that the average case storage utilization and the average case search 
cost of P-trees are quite good. Table 1 presents the average storage utilization vs. order 
for P-trees, M-trees, and B-trees with 10,000 keys. Whereas the average storage utilization 
of B-trees is essentially order-independent, the average storage utilization for P-trees, 
while showing some dependence on order is generally good and is competitive with B- 

119 



P-Trees: Stora3e Efficient Muitiway Trees 

and Snydcr provided an algorithm for transforming an existing B-tree into a compact one, 
there is no known efficient algorithm for compactness-preserving insertion. The pro- 
gramme that they suggested included periodic compactiQn, perhaps concurrently with 
backups. Between compactions, insertions and deletions into the structure are to be car- 
ried out in the usual B-tree fashion. Other work [5] indicates that periodic reorgani- 
zation of B-tree files is not unacceptable and, in fact, can be cost-effective. 

Unfortunately, recent work [1] makes it clear that unless the structure is very non- 
volatile, the use of compact B-trees provides no genuine improvement in storage utilization. 
This is because of the rapid decline to near-pessimal levels in storage utilization exhibited 
by high order compact B-trees as a result of  insertions. Even if the structure is growing 
very slowly, the use of compact B-trees doubles insertion cost and at high order pro- 
vides little search cost advantage over that of  a random B-tree. 

These considerations, along with the properties of the P-tree suggest the use of a 
hybrid arrangement: periodically compact the data structure into compact B-tree form, as 
suggested by Rosenberg and Snydcr, but instead of letting it grow as a B-tree between 
compactions, let it grow as a P-tree. The consequences of this are as follows: 

(1) Storage Utilization will fall rapidly with insertion into the compact structure, but will 
not reach near-pessimal levels. Rather, it will "bottom out" at 67%. 

(2) Insertion Cost will be low because P-tree insertion only involves local rearrange- 
ments, rather than the multiple splits of B-tree insertion into a compact B-tree. 

(3) Access Cost: average case access costs will be good because both compact B-trees and 
P-trees are excellent in that regard. Worst case access costs will be much less of a 
danger than they would to "pure" P-trees, since the periodic compaction would 
smooth out any pathological structures. 

Thus, P-trees and compact B-trees appear to solve each other's problems without the 
introduction of any new difficultiesl 

7. References 

(1) Arnow, D.M. and Tenenbaum, A.M., (1984) An empirical comparison of B-trees, 
multi-way trees and compact B-trees. Prec.  of ACM BSIGMOD, 33-46. 

(2) Bayer, R. and McCreight, E., (1972) Organization and maintenance of large ordered 
indexes. Acts Informatlea I, 173-189. 

(3) Comer, D., (1978) The ubiquitous B-tree. Computing Surveys 11,2, 121-138. 

(4) Culik, K., Ottmann, Th., and Wood, D., (1981) Dense Multiway Trees. ACM TODS 
6,3, 486-512. 

(5) Gudes, E. and Taut, S., (1980) Experiments with B-tree reorganization. Prec.  of 
ACM SIGMOD, 200-206. 

(6) Knuth, D.E., (1973) The Art  of  Computer Programming, Vo]. 3. Addison-Wesley, 
Reading, Mass. 

120 



P-Trees: Storage Efllelent Multlway Trees 

(7) Rosenberg, A.L. and Snyder, L., (1979) Compact B-trees. Prec. of ACM_ SIGMOD, 
43-51. 

(8) Rosenberg, A.L. and Snyder, L., (1981) Time- and space-optimality in B-trees. ACM 
TODS 6,1, 174-193. 

(9) Yao, A.C., (1978) On random 2,3 trees. Aeta Informatica 9,3, 159-170. 

121 


