
A Testbed for Information Retrieval Research:
The Utah Retrieval System Architecture

Lee A. Hollaar
Department of Computer Science

University of Utah
Salt Lake City UT 84112

Abstract
The Utah Retrieval System Architecture provides an

excellent testbed for the development and testing of new
algorithms or techniques for information retrieval. URSA tm is
a message-based structure capable of running on a variety of
system configurations, ranging from a single mainframe
processor to a system distributed across a number of
dissimilar processors. It can readily support a variety of
specialized backend processors, such as high-speed search
engines.

The architecture divides the components of a text
retrieval system into two classes: servers and clients. A triple
of servers (index, search, and document access) for each
database provide the capabilities normally associated with a
retrieval system. Possible clients for these servers include a
window-based user interface, whose query language can be
easily modified, a connection to a mainframe host processor,
or AI-based query modification programs that wish to use the
database.

Any module in the system can be replaced by a new
module using a different algorithm as long as the new module
complies with the message formats for that function. In fact,
with some care this module switch can occur while the
system is running, without affecting the users. A monitor
program collects statistics on all system messages, giving
information regarding query complexity, processing time for
each module, queueing times, and bandwidths between every
module.

This paper discusses the background of URSA and its
structure, with particular emphasis on the features that make
it a good testbed for information retrieval techniques.

Introduction
The typical information retrieval system is based on

algorithms or processing techniques particular to that system,
such as a novel high-speed character search or a unique

Copyright 1984, Lee A. Hollaar
Copyright 1985, ACH

Permission to copy without fee all or part o f this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
tide of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

@1985 ACM0-89791-159-8/85/006/0227 $00.75

means of indexing the stored information. Other portions of
the system are designed around that key algorithm,
sometimes using the algorithm in special ways through non-
standard entry points. While this may yield a system with
good performance, it makes it difficult to modify these key
algorithms. More importantly, it is almost impossible to try a
completely new processing technique without a major
rewriting of the system, which can be more time consuming
than developing an entirely new system.

This is particularly troublesome to an experimenter who
wishes to determine how a particular algorithm or technique
performs compared to an established one. In the process of
building the test system incorporating the new technique,
"improvements" to the query language or other parts of the
established system may be made, with the result being a
system with enough differences from the base system that it
is impossible to accurately determine if any perceived
differences in user performance or satisfaction are the result
of the new processing technique or if they come from the
"minor" improvements.

As part of an ongoing research and development
project examining the use of special purpose backend
processors to enhance the performance of information
retrieval and handling systems [4, 5], it was necessary to
implement a complete information retrieval system so that the
operation of a backend search machine could be studied in a
representative environment. Existing information retrieval
systems were either unavailable for the modifications
necessary to accommodate a backend processor, because of
their proprietary nature, or were unsuitable for easy
modification. It became clear that it would be necessary to
develop a new testbed system to serve as a base for
demonstrating the operation of the hardware search machine,
as well as allow the evaluation of other information retrieval
techniques and algorithms.

Designing a New System
As originally proposed, the new testbed system would

consist of a number of subroutines, such as the index or
search routines, with cleanly-defined interfaces to all system
subroutines. Alternative implementations of these
subroutines could be linked together to form variants of the
basic system, differing only in the algorithms used to
implement one subroutine. A subroutine could also be
replaced by a new module which sends the necessary
parameters to a backend processor, such as the hardware
search machine. As far as the rest of the system was
concerned, that module was simply a new way of
implementing the search previously performed by software.

The basic structure of the system was heavily
influenced by previous work on the EUREKA [1] retrieval

227

system project at the University of Illinois at Urbana-
Champaign by the preject director and the project's
consultants. That system ran on a modified PDP-11/40, and
supported databases of about 25 megabytes. It used a
partially inverted file technique, with the index indicating that a
particular document contained the specified term but with no
information about where a particular term occurs within the
document. Scanning of documents was necessary for
queries involving phrases, proximity, or context, although the
index did eliminate the searching of documents with no hope
of matching the query.

Rather than restrict the operation of the new system to
a particular processor or operating system, it was decided to
implement the system in the C programming language.
Because of its ability to efficiently use many machine
features, C can be viewed as a machine-independent
assembly language as much as a high-level programming
language. Most of the system could be written as portable
code, with only certain submodules (such as the ones to
access the data stored on disk) written as machine-specific
code.

Advanced Workstations
At the same time that development of the new testbed

• system was starting, the Department of Computer Science at
the University of Utah was becoming involved with the new
generation of advanced workstations. These differ
substantially from conventional terminals, in that they contain
a powerful programmable computer and have large displays
with excellent resolution. The operating systems supplied
with them allow communications on a local area network,
permitting a single file server to handle a number of diskless
nodes.

Perhaps the feature of these workstations that had the
most visible influence of the design of the new retrieval
system was the ability to divide the screen into multiple
overlapping windows. Each window can be used for a
separate function, such as query entry, document display,
system control, or word processing. More importantly,
information can be moved from one window to another,
allowing retrieved text to be incorporated into a new
document being developed in a word processing window.
The use of a pointing device, such as a mouse, simplifies this
data movement.

This ability to conveniently move information between
windows also eliminates the need for special commands to
save and reissue auedes. Interestina aueries can be moved
into the window corresponding to a file of saved queries, then
moved from that window to the query entry window and
altered using the window editing functions to reissue them.
Specific terms for a query can be moved in from text
previously retrieved.

A Message-Based Approach
The use of advanced workstations, rather than a

mainframe computer with attached terminals, suggested that
a distributable system architecture be used. Rather than
construct the system from a collection of subroutines linked
together to form a monolithic system, each distinct processing
function (index, search, user interface, etc.) exists as a
separate process, communicating either within the same
workstation or across a local network to other modules.

The calling sequence of a subroutine is replaced in the
message-based approach by fixed message formats for

passing data. An underlying communications system routes
the messages to the specified module, queueing them for
processing. For modules running on the same processor, an
interprocess communications facility or even a subroutine call
can be used as the communications system, providing good
performance and low overhead.

If the module initiating the operation (the client) waits
for the module performing the operation (the server) to
complete before continuing its execution, that client is
following the remote procedure call model, which is similar to
a conventional subroutine call. If, instead, the client
continues processing in parallel with the server, it is using
asynchronous communications. While many of the
distributed systems proposed follow one or the other of these
approaches, an examination of the types of message passing
needed for efficient implementation of a retrieval system
indicated that both approaches are necessary.

The Utah Retrieval System Architecture
Based on these considerations, an overall architecture

for the implementation of distributable information retrieval
systems was developed [6]. The Utah Retrieval System
Architecture, or URSA trn, consists of a number of client and
sewer modules, communicating using fixed-format
messages, as well as the high-level communications protocol•
While it was originally designed for information retrieval, other
servers can be added to expand the function of the system.
For example, a relational database server could be added to
provide operations on structured data.

Figure 1 shows the logical structure of the URSA
architecture. The communications network forms the
backbone of the architecture. At the top left of the network
are the primary clients in the system: the user interfaces
running in conjunction with the workstation window
management system. A user interface client function could
also be provided by a mainframe system, controlling a
number of conventional terminals and sending messages to
the network similar to those generated by a workstation. The
pdmary servers for the information retrieval function are on
lower right. For each database in the system, there is a triple
of servers: index, search, and document access. The other
functions shown in the figure will be discussed later.

There can be a number of different physical
implementations of this system architecture. It could be
implemented with the clients and servers fully distributed to
their own machines, emulating the logical model, or it can be
implemented on a single processor, using a multitasking
operating system with interprocess communications. A semi-
distributed approach, with groups of functions being provided
by the same processor (such as one machine handling both
search and document access) is also possible. The most
common configuration used for demonstrations is for the user
interface to run on one workstation, the backend functions on
another, and the network and system control functions on a
third. A fourth processor is used to control the hardware
search function when that enhancement is being used.

Resource Allocation
A key feature of the architecture is the means for

establishing communications between clients and servers.
This function is carried out by the high-level protocol modules.
Whenever a sewer comes online, the communications
system sends a set of messages to a special server, called
the resource allocator or name server. The network address

228

of this name server is the only address that is known a priori
by any server or client. The messages passed by a server to
the resource allocator consist of its network address and
attribute-value pairs describing the services it will perform.
The prime attributes are the basic system function a server
will perform (index, search, etc.) and the name of the
particular database. Secondary attributes may include the
type of processing, such as indexing technique or processing
speed.

When a client first requires a service, it also
communicates with the name server, supplying a set of
attribute-value pairs which describe the service desired. The
resource allocator compares these against the lists for active
servers and, if a match is found, returns the network address
of the proper server to the requesting client. If two or more
servers match the client's request, the address of the latest
server to come online is returned if the servers have identical
attribute lists, or a list describing the differences in attributes
not identical is returned to the client. In the latter case, the
client can select the server that best fills its needs. Finally, if
no server satisfies the client's request, an error return is
given. The client can either indicate an error has occurred or
wait for the desired server to come online.

Error Recovery and Module Substitution. Once
the name server has provided the network address of the
desired server to the communications routines at the client, it
is no longer needed to support that link. However, if the link
ever becomes broken, such as might happen if a server
crashes or a network failure occurs, the resource allocator is
again used as part of the recovery mechanism. First, a new
request for the server address is made, to see if the old
address iS still valid. If it has changed, an attempt is made to
re-establish the link at the new address. If the original server
is no longer available, the resource allocator is used to
determine the address of a replacement server, and a link is
made to this module. Only in the event of no replacement
being available is an error indicated to the client.

Perhaps one of the more interesting features of this
error recovery procedure is the ability to replace one server
with another while the system is operating. All that is
necessary is to start the replacement server, creating an entry
at the name server identical to that of the module to be
replaced. Then when the original server is stopped, the
recovery procedure will redirect the link from the client to the
new server. The client is not aware that a switch has
occurred.

Of course, if the server contains state information
regarding the session, this will be lost and a possible error
may occur unless some special action is taken during the
switching of the modules. For this reason, it is desirable that
as little state information be stored in a server as possible. In
the current implementation, the only server that stores state
information between requests is the index, which saves lists
of documents matching past queries. A planned modification
to the backend structure will have this information stored by a
special server, so they can be accessed by any index server.

The User Interface
The most visible part of the system is the user

interface. It is the major client for the various servers, and
handles the translation of the query into a standard input form
for transmission on the network. It takes the result messages
from the servers and formats them for display.

As with the overall system, the user interface also
consists of a number of separate modules that operate in
parallel and can be distributed. The primary server is the
window manager, which supervises the overall display for the
user interface. Other modules include the query parser,
document display, and online help. "

Window Management. The window management
server provides a uniform display interface for the other
modules of the user interface. It provides one or more blocks
on the screen for the display of text (and, in the future,
graphics) when requested by client. These blocks can

 sER
INTERFACE
0DULES

QUERY
REFORMULATOR

NETWORK
MONITOR

NETWORK

I 1
FUNCTI 0NS

~ DOCUMENT
LOADER I

.•NTELLI6ENT ~ . ~ OTHER IR $YSTE~t$
ATE'WAY

Figure 1 : The URSA High-Level Logical System Model

229

overlap each other, with the active block (the one containing
the cursor that indicates where keyboard entries will be
made) always in the foreground. The window manager is the
only process that directly controls the display screen and the
keyboard.

Even though most advanced workstations provide
some sort of window management system, the development
of a special window management module was necessary for
a number of reasons. While the displays produced by most
window managers are outwardly similar, the system calls
necessary to produce those displays are often quite different.
For the user interface to be portable to a wide variety of
workstations, all display calls must be isolated in a single
module, which can be changed to match the requirements Of
the particular workstation. In its simplest form, this is service
provided by the new window manager: the translation of a
common set of display functions to the calls necessary for a
particular workstation's window manager.

The window management server also handles the
positioning of windows based on a user profile. It provides
customizable editor and menu support, so that these
functions do not have to be included in each client program.
The editor provides the basic cursor control within the window
and handles the movement of information from one window to
another. The functions of the editor can be tailored for a
particular class of windows by providing special handlers. For
example, the keystroke command "move to next paragraph"
can move the cursor to the line following a blank line in a
word' processing window, the start of the next query in a
transcript window of past queries, or initiate a network request
for the next block of text for a document display window.

The inclusion of the editor functions as appendages to
the window management server substantially improve their
performance over having them in each client, because
network communications is not necessary. It also promotes a
more uniform set of editor commands across different types
of windows.

The menu system also acts as a special appendage to
the window server. It is activated when a special mouse
button is pressed or other specified event occurs. Three
types of menus are supported. Permanent menus are always
displayed, unless another window overlaps them, and are
used primarily for invoking special system functions, such as
starting a word processing window: Fixed*position and
dynamic pop-up menus are displayed when the mouse button
is pushed, and cleared when the desired menu item has been
selected. In all cases, the menu system operates on a
special data structure specified for a client program, returning
a specified string as if it had been entered through the
keyboard to the client when a menu item has been selected.
This means that client programs do not need to be modified
to take advantage of the menu system. All that is necessary
is the building of the proper data structures for inclusion in the
menu system.

Query Handling. As would be expected for a retrieval
system, the primary clients of the window server are the
query parser and the document displayer. When a query has
been entered, it is sent to the parser module over the user
interface subnetwork, where it is converted to a standard tree
representation for transmission to the backend servers. The
parsing routines used in this conversion are written using
Lex [8] and Yacc [7], the compiler-compiler system from Unix,
so that the query language can be easily modified. In fact,
less than a week's effort was necessary to replace the normal
system query language with an extended version of the

LEXIS query language [3].

If the user wishes to see the results of query, a
document display process is started and given its own
window. From that point on, the document display function is
separate from query processing. A new query can be issued
without affecting the display of previous results.

Other Funct ions. A number of additional user
interface functions are available, and others can be readily
added. Word processing is handled simply by using the
appropriate editor routines in the window server. An online
help facility exists, operating on a specially formatted version
of the system documentation stored in a private database. It
uses the conventional index, search, and document access
functions to find descriptions on system functions. Because
the help information is displayed in a separate window and
can be browsed while using the other windows, it is possible
to include sample query sessions in the documentation that
the user can try, either by typing the queries into the
appropriate window or using the mouse to move them there.

Other user interface modules can be provided to
handle electronic mail between users, formatting and display
of system or user statistics, control of special server
functions, or any other desired activity. Because of the
modular, distributable structure of the user interface, mirroring
that of the overall system, the inclusion of a new user function
does not affect any other modules.

Backend Functions
The backend functions are what makes the overall

architecture an information retrieval system. For each
database accessible by the user, there are three beckend
functions necessary: an index, a search module, and a
document access handler. While the logical structure of the
system has three different servers for each database, there is
no reason that these servers cannot be combined on a single
machine, or in a single program, either by having a single
server handle the same function for multiple databases, or by
having a server provide more than one function for a single
database (such as a combined search and document access
program).

The Index. The first server that handles a query is the
index. It takes the tree representation of the query and
produces two lists of documents. The hit list contains all
documents which the index determines match the query
based on information known to the index. The maybe list
contains those documents with a chance of matching the
query, but which must be searched to determine if they
should be added to the hit list.

Different indexing schemes result in different
information being placed in hit and maybe lists. For example,
a very complete index would probably place all documents
that match a query on the hit list, leaving the maybe list
empty. No index at all results in an empty hit list, and a
maybe list consisting of all documents in the system for the
first query or the final hit list from a previous query for a
subsequent query. A partially inverted file causes entries to
be placed on both the hit and maybe lists.

Searching. Documents on the maybe list must be
examined to determine if they should be added to the hit list
or can be discarded. The search program is passed the
same parse tree as was passed to the index, along with the
maybe list. When a partial inversion is used, it is responsible
for handling context and proximity operations.

230

Document Access. After a final hit list has been
developed, the user can request the display of the documents
matched by the query. The document access server
cooperates with the document display module in the user
interface by extracting the desired portions of a specified
document and sending them over the network. It also
contains information regarding the context .names present
within the documents in its database, supplying the names to
modules like the query parser.

While it seems that the document access server could
be combined with the search server (and, in many
implementation, they would be), the architecture keeps them
separate because of the different functions provided by each.
This allows a centralized search facility to be coupled with
decentralized storage of the documents to be displayed. It
also can be used to provide an online backup for the
database, by having redundant documents.

Other System Functions
Figure 1 also shows a number of other system

functions that are not necessary for the basic system's
operation, but can provide important enhancements to its
capabilities. The document loader is used to provide new
information to the index, search, and document access
servers for online inclusion into their databases. The
intelligent gateway appears to the user interface as if it were
the conventional triple of database servers, but translates the
queries and forwards them to another information retrieval
system, such as one of the commercial offerings. The results
from the other system are then reformatted to look like the
standard results from the document access server. The
gateway allows users to access other information retdeval
systems without the necessity of learning a new query
language or other commands.

On the left of the figure is a module used to alter a
query to improve either performance or precision-recall. It
intercepts the query between the user interface and the
backend functions, alters it as necessary, and sends it on to
the backend servers. This reformulation can be performed
based on past queries, user profiles, or other AI-type
techniques. This module acts as both a client (of the backend
servers, both by passing on the modified query to those
servers and by used them during the reformulation process)
an~ a server (to the user interface). By opening connections
to the backend servers first, then indicating to the resource
allocator that it is a replacement for those servers, it can
intercept all queries from a particular user interface.

Testbed Features
In addition to its modular structure, allowing the easy

replacement of system functions with ones implementing
different algorithms, data structures, or processing
techniques, and the flexibility in handling new and different
query languages, there are a number of system features that
are specifically provided to aid in experimentation or system
performance measurement.

Message Monitoring
While the system is operating, a log of all messages

can be collected for later examination. Each message is
timastamped when it is issued, when it is placed in the
server's work queue, when the server starts to process it, and
when the result is returned to the client. Using these
timestamps, an analysis program determines the processing

times or throughput of the servers, the network bandwidth
between each pair of modules, and the distribution of
message types over time. Special analysis programs can
look inside certain messages to determine query complexity,
such as the number of terms and the types of operators
specified.

A major difficulty with timestamping messages in a
distributed system is assuring that the timestamps are. all
based on the same clock. In particular, the local clock at
each node in the system cannot be used without correction.
Without this correction, it is possible that the timestamps
might indicate that the result of a message was produced by
the server before the client even sent it! A special protocol,
unseen by the user or by most system modules, exchanges
time information between the various nodes. By determining
the expected network delays and sending the proper
synchronization messages, the time server is able to keep the
clocks on all nodes within about one millisecond of each
other, sufficiently accurate for message logging.

Calibrated Delays
The calibrated delay module operates much as the

query reformulator, intercepting a query before it goes to a
server module, although it does not alter the query. By
delaying the messages between a client and a server for a
given period of time, the apparent response or processing
time for a server can be increased, simulating the
performance of a different algorithm or a larger database.
This time delay can be determined, for instance, by
examining the number of terms or the types of operators in a
query as the message passes through the delay module.

Program Development
The current implementation includes approximately

80,000 lines of C source code (including comments and blank
lines included for formatting) for a single version of the
system. Multiple versions of each module exist as new
features are added, so that approximately 500,000 lines of
code are currently being maintained. All these programs
were written during the last 15 months by a group of ten
graduate and undergraduate students.

Because the system is not a monolithic program, but is
dynamically constructed as different modules are started or
terminated through the use of the resource allocator,
conventional software management systems, such as
Make [2], cannot adequately handle version control. Perhaps
the most typical problem is when the developer of a server is
working on a new version at the same time another
programmer is working a client of that server. If a problem
shows up in response to certain actions from the server, it is
important that the server not change while that problem is
being diagnosed and fixed by the developer of the client. It is
also important that the messages to the server from the client
not change during testing of the server for a given query.
Another interesting case is when underlying support
programs, such as the communications protocol, used by
most proclrams, are chanqed.

Subneting
The solution is to allow the establishment of logical

subnets for different developers, allowing them to run their
own versions of the system modules unaffected by other
users or developers. When a new version of a module i5
ready, it can be added to the normal system library.

231

A logical subnet is developed by selecting a particular
version of each system function, as well as underlying
modules like the communications system and the time server,
and building a temporary library containing them. Also
included in the library is information on how to reach a copy of
the resource allocator specific to the logical subnet. As
servers are started, they communicate with the special
resource allocator rather than the normal system name
server, so that connections are only established to modules in
the developer's private library.

It is common to see two or more programmers working
on system development, each using their own subnets for
program development and testing, possibly at the same time
the demonstration version of the system is running. In fact, it
is possible that two programmers could be working on the
system at the same time, each with portions of their
development system running on the other programmer's
workstation.

System Status
A prototype of the URSA architecture has been

operational since late 1983, and has demonstrated that the
claims made for the architecture hold. Because it was just a
demonstration prototype, little effort was made to make it
efficient or portable. To the extent possible, Apollo routines
such as their window management system and
communications techniques were used. The database used
was the architectural design document, consisting of about 30
different sections, each of one to five pages. It took less than
three months from the start of programming until the
prototype was demonstrated to visitors.

After testing of the prototype, development of a new
implementation was started. That version is now operational.
It uses new communications modules to permit operation
across a variety of networks, including the ARPA internet.
New servers, capable of handling medium-scale (about 25
megabyte) databases have been included. The currently
limitation is imposed by the access overhead of the Apollo
filing system for large random-access flies. It will be removed
when a special-purpose filing system is implemented. The

' portable window manager is now operational on the Apollos,
as well as Sun workstations.

Future Plans
Versions for systems other than the Apollo are also

planned. The backend functions will be ported to a VAX/Unix
system, and the entire system, including the window
management system and user interface, to the Sun
workstation. Since all these processors are connected by the
Computer Science Department's Ethernet, the system will be
able to distributed in any arbitrary way across the different
machines.

A special version of the window management server
will also be developed for the IBM Personal Computer.
Rather than provide overlapping windows, because of the
small screen resolution a means of rapidly changing screens
will be used. Some initial tests have shown that if window
switches can be made almost instantaneously, the

convenience is similar to a more elaborate window system.
The preliminary version will have only the window
management functions running on the PC, with the rest of the
user interface (such as the query parser) running on one of
the other machines on the network. A later version will allow
the complete user interface to run on the PC, connected to
the backend over either an Ethernet or a high-speed serial
link.

Arrangements are now underway for the testing of the
system at two or three locations. This testing should start this
summer, after the training of system personnel at each of
these locations, and take six to nine months. Before the end
of this test period, the decisions about how the system will be
distributed, and the cost of any licenses and maintenance
charges, will be made.

Acknowledgments
The design and implementation of any system of this

magnitude is the work of a number of people. In addition to
the author, who is the project director and lead designer, the
architecture was developed by Shane Robison and Michael
Zeleznik. Mike has also been responsible for the
communications protocol design and implementation, in
addition to being the assistant project director. The
implementation staff included Bob Elens, Steve Voelker, Ellen
Gibson, lan Elliott, Jim Schimpf, Dave Schlegel, Koah-Hsing
Wang, Brad Hutchings, and Kurtis Bleeker. Roger Haskin
and Perry Emrath were consultants on the system design.

References

1. T G Burket and P E Emrath. User's Guide to EUREKA
and EURUP. 79-956, Univ. of Ulinois Dept. of Computer
Science, Feb., 1979.

2. S I Feldman. Make - A Program for Maintaining Computer
Programs. Bell Laboratories, Aug., 1978.

3. E S Gibson. An Extensible and Flexible Query Language
for an Information Retrieval System. Master Th., Univ. of
Utah Dept. of Computer Science,Aug. 1984.

4. R L Haskin and L A Hollaar. "Operational Characteristics
of a Hardware-based Pattern Metcher". ACM Trans. on
Database Systems 8, 1 (March 1983).

5. L A Hollaar. 'q'he Utah Text Retrieval Project".
Information Technology: Research and Development 2, 4
(Oct. 1983), 155-168.

6. L A Hollaar (ed). The Design of an Extensible
Communications-Based Full Text Information Retrieval Sys-
tem. Univ. of Utah Dept. of Computer Science, March, 1984.

7. S C Johnson. Yacc: Yet Another Compiler-Compiler. Bell
Laboratories, July, 1978.

8. M E Lesk. Lex - A Lexical Analyzer Generator. Bell
Laboratories, Oct., 1975.

232

