
Succinct Data Structures in Information Retrieval: Theory
and Practice

Simon Gog
Institute of Theoretical Informatics, Karlsruhe

Institute of Technology
Am Fasanengarten 5

76131 Karlsruhe, Germany
gog@kit.edu

Rossano Venturini
Department of Computer Science,University of

Pisa
Largo Bruno Pontecorvo 3

I-56127 Pisa, Italy
rossano.venturini@unipi.it

ABSTRACT
Succinct data structures are used today in many information
retrieval applications, e.g., posting lists representation, lan-
guage model representation, indexing (social) graphs, query
auto-completion, document retrieval and indexing dictio-
nary of strings, just to mention the most recent ones. These
new kind of data structures mimic the operations of their
classical counterparts within a comparable time complexity
but require much less space. With the availability of several
libraries for basic succinct structures – like SDSL, Succinct,
Facebook’s Folly, and Sux – it is relatively easy to directly
profit from advances in this field.

In this tutorial we will introduce this field of research by
presenting the most important succinct data structures to
represent set of integers, set of points, trees, graphs and
strings together with their most important applications to
Information Retrieval problems. The introduction of the
succinct data structures will be sustained with a practical
session with programming handouts to solve. This will allow
the attendees to directly experiment with implementations
of these solutions on real datasets and understand the po-
tential benefits they can bring on their own projects.

1. MOTIVATION
The current growth and availability of massive amounts of

data gathered and processed by applications – Web search
engines, textual and biological databases, just to cite a few –
has changed the algorithmic requirements of basic processing
and mining tools and provide ample motivation for a great
deal of new theoretical and practical research on algorithms
and data structures.

Not surprisingly, the last decades have seen a massive re-
search in the field of the so-called succinct and compressed
data structures. These new kind of data structures mimic
the operations of their classical counterparts within a com-
parable time complexity but requiring much less space. These
solutions usually resort to a careful combination of ideas

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914802

born both in algorithmic and data compression fields. As a
concrete example consider trees which are probably among
the most used data structure in practice. Everybody is fa-
miliar with the classical way to represent the structure of a
tree in memory: each node is connected to its children by
means of pointers. This representation immediately allows
simple navigational operations on the tree. One can also
augment the structure with auxiliary information in order
to answer queries such as: Who is the parent of a given
node? How many nodes are in a given subtree? Who is
the lowest common ancestor of a given pair of nodes? and
so on. The main drawback of this solution is its space oc-
cupancy which can be very optimistically estimated in 32
bits per node. Not surprisingly the problem of repesenting
trees space efficiently has been one of the first problems to
be addressed. The current best succinct tree representation
requires provably no more than 2 bits per node and is able to
answer in constant time a large set of queries [9]. The prac-
tical consequence of the use of this succinct data structure
is immediate: applications can store in main memory trees
whose sizes would be prohibitive with the classical represen-
tation.

These efficient tree representations are just an example
of succinct data structures and, even if the research field
is relatively new, a large fraction of classical data structures
have their succinct counterpart [1, 2, 6, 10, 14, 25, 31]. Most
of these results are of practical interest and several imple-
mentations exist, for example we mention SDSL1, Succinct2,
Facebook’s Folly3, and Sux4.

Several authors are successfully applying the ideas at the
basis of the succinct data structures to solve problems in
other fields of research. Information retrieval community
profits a lot from these data structures as there exist several
applications in which they play a central role, e.g., post-
ing lists representation [22, 28, 29, 35], language model rep-
resentation [34], indexing (social) graphs [8], query auto-
completion [21], document retrieval [15, 16, 19, 26, 30] and
indexing dictionary of strings [11, 18, 36], just to mention
the most recent ones.

The tutorial will introduce this field of research by pre-
senting the most important succinct data structures to rep-
resent set of integers, set of points, trees, graphs and strings
together with their most important applications to Informa-

1https://github.com/simongog/sdsl-lite
2https://github.com/ot/succinct
3https://github.com/facebook/folly
4http://sux.di.unimi.it

1231

http://dx.doi.org/10.1145/2911451.2914802
https://github.com/simongog/sdsl-lite
https://github.com/ot/succinct
https://github.com/facebook/folly
http://sux.di.unimi.it

tion Retrieval problems. The introduction of the succinct
data structures will be sustained with a practical session
with programming handouts to solve. This will allow the
attendees to directly experiment with implementations of
these solutions on real datasets and understand the poten-
tial benefits they can bring on their own projects.

2. OBJECTIVES AND RELEVANCE TO THE
IR COMMUNITY

Indexing is the key to efficient query processing in the vast
majority of IR applications. The use of inverted indexes in
web search engines is probably one of the most prominent
examples in Information Retrieval.

While index compression is a relatively old and established
method in IR and covered by all relevant text books the new
data structures which combine compression and efficient ex-
ecution of operations – like random access – are a relatively
new field of which many IR researchers are not yet aware of.
However, this field of research is highly relevant for IR as,
for example, we have already seen that techniques from the
succinct data structure field are able to improve inverted in-
dexes systematically [29, 35]. Succinct data structures often
extend the functionality of traditional structures or reduce
query time. For example, while inverted indexes are re-
stricted in handling phrase queries, new document retrieval
frameworks based on succinct structures allow to efficiently
answer top-k queries for phrases of arbitrary length [19], and
it is also possible to determine the document frequency of
any phrase in constant time by just spending at most 2 bits
per element in the collection [32]. Unfortunately, succinct
structures per se are not easy to implement from scratch
and especially the implementation of the latter two results
is very complex. However, as more and more implemen-
tations of basic succinct structures become available via li-
braries, it is possible to combine these pieces to obtain more
advanced solutions. While other fields like Bioinformatics
already actively profit from using succinct structures after
engineering the theoretical proposals to their applications,
e.g., the FM-Index is used in DNA read mapping, the IR
community does not yet fully exploit the new possibilities of
succinct structures. With this tutorial we do not only inform
the audience about succinct data structures but also point
out engineering challenges and encourage the participants to
use the potential of these solutions in IR. Therefore the ob-
jectives of this tutorials are (1) to introduce the audience to
the world of succinct data structures, (2) to teach the basic
techniques of succinct structures, (3) to present the practical
impact of the structures to selected applications in IR, and
(4) to show the participants how they can implement their
own succinct structures on top of existing basic structures
provided by the succinct data structure library.

3. DETAILED SCHEDULE
The tutorial is subdivided in two parts. The goal of the

first part is to describe the most important succinct data
structures. We will present the theoretical achievements in
this field of research by focusing our attention to the ones
that have demonstrated their relevance in practice. The
introduction of each of these solutions will be sustained by
presenting a selection of Information Retrieval problems in
which they have an immediate application.

The goal of the second part is to present ready-to-use im-

plementations of these data structures. This is done by in-
troducing the Succinct Data Structure Library (SDSL).This
library covers all the data structures presented in the pre-
vious part and has one of the presenters as its creator and
one of its main developers. The speakers will also prepare a
set of programming handouts which will allow the attendees
to experiment with the learned concepts. The ultimate ob-
jective of the tutorial is to demonstrate to the attendees the
potential benefit that succinct data structures can bring in
their applications at a tiny implementation cost.

Schedule of the tutorial.

• Part I

– Introduction to succinct data structures;

– Basic operations on binary vectors [25, 31];

– Elias-Fano representation [4, 5, 8, 27, 28, 29, 35];

– Succinct representations of trees and range mini-
mum/maximum queries [3, 9, 12, 33];

– Wavelet trees [2, 13, 17, 24];

– Compressed Full-Text indexes [7, 25];

– Structures for IR [8, 11, 14, 20, 21, 23].

• Part II

– Overview about SDSL components and concepts;

– Detailed presentation of components via small code
examples;

– Exploration of practical performance of structures;

– Presentation of benchmarking facilities;

– Programming handouts.

4. ACKNOWLEDGEMENT
This tutorial was partially supported by the EU H2020 Pro-
gram under the scheme INFRAIA-1-2014-2015: Research
Infrastructures grant agreement #654024 SoBigData: So-
cial Mining & Big Data Ecosystem.

References
[1] J. Barbay. Succinct and compressed data structures for

permutations and integer functions. In Encyclopedia of
Algorithms. 2015.

[2] J. Barbay and J. I. Munro. Succinct encoding of permu-
tations: Applications to text indexing. In Encyclopedia
of Algorithms. 2008.

[3] D. Benoit, E. Demaine, J. I. Munro, R. Raman,
V.Raman, and S. S. Rao. Representing trees of higher
degree. Algorithmica, 43(4):275–292, 2005.

[4] P. Elias. Efficient storage and retrieval by content and
address of static files. Journal of the ACM, 21:246–260,
1974.

[5] R. M. Fano. On the number of bits required to imple-
ment anassociative memory. Memorandum 61, Com-
puter Structures Group, Project MAC, 1971.

[6] P. Ferragina, R. González, G. Navarro, and R. Ven-
turini. Compressed text indexes: From theory to prac-
tice. ACM Journal of Experimental Algorithmics, 13,
2008.

1232

[7] P. Ferragina and G. Manzini. Indexing compressed text.
Journal of the ACM, 52(4):552–581, 2005.

[8] P. Ferragina, F. Piccinno, and R. Venturini. Com-
pressed indexes for string-searching in labeled graphs.
In Proceedings of the 24th International Conference on
World Wide Web (WWW), pages –, 2015.

[9] P. Ferragina and S. S. Rao. Tree compression and in-
dexing. In Encyclopedia of Algorithms. 2008.

[10] P. Ferragina and R. Venturini. Indexing compressed
text. In Encyclopedia of Database Systems, pages 1442–
1448. 2009.

[11] P. Ferragina and R. Venturini. The compressed per-
muterm index. ACM Transactions on Algorithms,
7(1):10, 2010.

[12] J. Fischer and V. Heun. Space-efficient preprocessing
schemes for range minimum queries on static arrays.
SIAM Journal on Computing, 40(2):465–492, 2011.

[13] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When
indexing equals compression: Experiments with com-
pressing suffix arrays and applications. ACM Transac-
tions on Algorithms, 2(4):611–639, 2006.

[14] S. Gog, T. Beller, A. Moffat, and M. Petri. From the-
ory to practice: Plug and play with succinct data struc-
tures. In Proceedings of the 13th International Sympo-
sium Experimental Algorithms (SEA), pages 326–337,
2014.

[15] S. Gog and G. Navarro. Improved single-term top-k
document retrieval. In Proceedings of the Seventeenth
Workshop on Algorithm Engineering and Experiments,
ALENEX, pages 24–32, 2015.

[16] S. Gog and M. Petri. Compact indexes for flexible top-
k retrieval. In Combinatorial Pattern Matching - 26th
Annual Symposium, CPM, pages 207–218, 2015.

[17] R. Grossi, A. Gupta, and J. S. Vitter. High-order
entropy-compressed text indexes. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 841–850, 2003.

[18] R. Grossi and G. Ottaviano. Fast compressed tries
through path decompositions. ACM Journal of Exper-
imental Algorithmics, 19(1), 2014.

[19] W. Hon, R. Shah, and J. S. Vitter. Space-efficient
framework for top-k string retrieval problems. In 50th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 713–722, 2009.

[20] W. Hon, R. Shah, and J. S. Vitter. Space-efficient
framework for top-k string retrieval problems. In Pro-
ceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 713–722,
2009.

[21] B. P. Hsu and G. Ottaviano. Space-efficient data struc-
tures for top-k completion. In Proceedings of the 22nd
International World Wide Web Conference (WWW),
pages 583–594, 2013.

[22] R. Konow, G. Navarro, C. L. A. Clarke, and A. López-
Ortiz. Faster and smaller inverted indices with treaps.
In Proceedings of the 36th Annual International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval (SIGIR), pages 193–202, 2013.

[23] G. Navarro. Spaces, trees and colors: The algorithmic
landscape of document retrieval on sequences. ACM
Computing Surveys, 46(4):article 52, 2014. 47 pages.

[24] G. Navarro. Wavelet trees for all. Journal Discrete
Algorithms, 25:2–20, 2014.

[25] G. Navarro and V. Mäkinen. Compressed full text in-
dexes. ACM Computing Surveys, 39(1), 2007.

[26] G. Navarro and Y. Nekrich. Top-k document retrieval
in optimal time and linear space. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1066–1077, 2012.

[27] D. Okanohara and K. Sadakane. Practical entropy-
compressed rank/select dictionary. In Proceedings of
the Nine Workshop on Algorithm Engineering and Ex-
periments, ALENEX, 2007.

[28] G. Ottaviano, N. Tonellotto, and R. Venturini. Optimal
space-time tradeoffs for inverted indexes. In Proceedings
of the 8th Annual International ACM Conference on
Web Search and Data Mining (WSDM), pages –, 2015.

[29] G. Ottaviano and R. Venturini. Partitioned elias-fano
indexes. In Proceedings of the 37th Annual Interna-
tional ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 273–
282, 2014.

[30] M. Patil, S. V. Thankachan, R. Shah, W. Hon, J. S.
Vitter, and S. Chandrasekaran. Inverted indexes for
phrases and strings. In Proceeding of the 34th Inter-
national ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR, pages 555–
564, 2011.

[31] N. Rahman and R. Raman. Rank and select operations
on binary strings. In Encyclopedia of Algorithms. 2008.

[32] K. Sadakane. Succinct data structures for flexible text
retrieval systems. J. Discrete Algorithms, 5(1):12–22,
2007.

[33] K. Sadakane and G. Navarro. Fully-functional suc-
cinct trees. In Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 134–149, 2010.

[34] E. Shareghi, M. Petri, G. Haffari, and T. Cohn. Com-
pact, efficient and unlimited capacity: Language mod-
eling with compressed suffix trees. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP, pages 2409–2418, 2015.

[35] S. Vigna. Quasi-succinct indices. In Proceedings of the
Sixth ACM International Conference on Web Search
and Data Mining (WSDM), pages 83–92, 2013.

[36] S. Yata. Marisa trie, https://code.google.com/archive/
p/marisa-trie/. 2011.

1233

https://code.google.com/archive/p/marisa-trie/
https://code.google.com/archive/p/marisa-trie/

	Motivation
	Objectives and relevance to the IR community
	Detailed schedule
	Acknowledgement

