
Deep Learning for Extreme Multi-label Text Classification
Jingzhou Liu

Carnegie Mellon University
liujingzhou@cs.cmu.edu

Wei-Cheng Chang
Carnegie Mellon University
wchang2@andrew.cmu.edu

Yuexin Wu
Carnegie Mellon University
yuexinw@andrew.cmu.edu

Yiming Yang
Carnegie Mellon University

yiming@cs.cmu.edu

ABSTRACT
Extreme multi-label text classi�cation (XMTC) refers to the prob-
lem of assigning to each document its most relevant subset of class
labels from an extremely large label collection, where the number
of labels could reach hundreds of thousands or millions. �e huge
label space raises research challenges such as data sparsity and
scalability. Signi�cant progress has been made in recent years by
the development of new machine learning methods, such as tree
induction with large-margin partitions of the instance spaces and
label-vector embedding in the target space. However, deep learning
has not been explored for XMTC, despite its big successes in other
related areas. �is paper presents the �rst a�empt at applying deep
learning to XMTC, with a family of new Convolutional Neural Net-
work (CNN) models which are tailored for multi-label classi�cation
in particular. With a comparative evaluation of 7 state-of-the-art
methods on 6 benchmark datasets where the number of labels is up
to 670,000, we show that the proposed CNN approach successfully
scaled to the largest datasets, and consistently produced the best
or the second best results on all the datasets. On the Wikipedia
dataset with over 2 million documents and 500,000 labels in partic-
ular, it outperformed the second best method by 11.7% ∼ 15.3% in
precision@K and by 11.5% ∼ 11.7% in NDCG@K for K = 1,3,5.

1 INTRODUCTION
Extreme multi-label text classi�cation (XMTC), the problem of
�nding each document its most relevant subset of labels from an
extremely large space of categories, becomes increasingly important
due to the fast growing of internet contents and the urgent needs for
organizational views of big data. For example, Wikipedia has over
a million of curator-generated category labels, and an article o�en
has more than one relevant label: the web page of “potato” would be
tagged with the class labels of “Solanum”, “Root vegetables”, “Crops
originating from South America”, etc. �e classi�cation system for
Amazon shopping items, as another example, uses a large hierarchy
of over one million categories for the organization of shopping
items, and each item typically belongs to more than one relevant
categories. Solving such multi-label classi�cation problems in an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 ACM. 978-1-4503-5022-8/17/08. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077136.3080834

extremely large scale presents open challenges for machine learning
research.

Multi-label classi�cation is fundamentally di�erent from the tra-
ditional binary or multi-class classi�cation problems which have
been intensively studied in the machine learning literature. Binary
classi�ers treat class labels as independent target variables, which
is clearly sub-optimal for multi-label classi�cation as the dependen-
cies among class labels cannot be leveraged. Multi-class classi�ers
rely on the mutually exclusive assumption about class labels (i.e.,
one document should have one and only one class label), which is
wrong in multi-label se�ings. Addressing the limitations of those
traditional classi�cation methods by explicitly modeling the depen-
dencies or correlations among class labels has been the major focus
of multi-label classi�cation research [7, 11, 13, 15, 42, 48]; how-
ever, scalable solutions for problems with hundreds of thousands
or even millions of labels have become available only in the past
few years[5, 36]. Part of the di�culty in solving XMTC problems
is due to the extremely severe data sparsity issue. XMTC datasets
typically exhibit a power-law distribution of labels, which means
a substantial proportion of the labels have very few training in-
stances associated with them. It is, therefore, di�cult to learn the
dependency pa�erns among labels reliably. Another signi�cant
challenge in XMTC is that the computational costs in both training
and testing of mutually independent classi�ers would be practi-
cally prohibiting when the number of labels reaches hundreds of
thousands or even millions.

Signi�cant progress has been made in XMTC recently. Several
approaches have been proposed to deal with the huge label space
and to address the scalability and data sparsity issues. Most of these
approaches fall into two categories: target-embedding methods
and tree-based ensemble methods. Let us brie�y outline below
the key ideas of these two categories and discuss the third cate-
gory in addition, i.e., the deep learning methods which have made
signi�cant impact in multi-class classi�cation problems but have
not been explored in XMTC. Comparing the accomplishments and
limitations of these three categories of work leads to the design of
our proposed work in this paper and the aimed contributions.

1.1 Target-Embedding Methods
Target-embedding methods aim to address the data sparsity issue
in training XMTC classi�ers by �nding a set of low-dimensional
embeddings of the label vectors for training instances in the target
space. Suppose the training data is given as n pairs of feature vec-
tors and label vectors {(xi ,yi)}ni=1 where xi ∈ RD andyi ∈ {0, 1}L ,
D is the number of features and L is the number of labels. Notice

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

115

that L can be extremely large in XMTC, which means that learn-
ing a reliable mapping from arbitrary x to relevant y is di�cult
from limited training data. Instead, if we can e�ectively compress
the label vectors from L-dimension to L̂-dimension via a linear or
nonlinear projection, then we can use standard classi�ers (such as
Support Vector Machines) to e�ciently learn a reliable mapping
from the feature space to the compressed label space. For classify-
ing a new document we also need to project the predicted embed-
ding of y back to the original high-dimensional space. �e projec-
tion of target label vectors to their low-dimensional embeddings
is called the compression process, and the projection back to the
high-dimensional space is called the decompression process. Many
variants of the target embedding methods have been proposed
[3, 6, 9, 10, 14, 19, 20, 24, 40, 46, 50]. �ese methods mainly di�er
in their choices of compression and decompression techniques[36]
such as compressed sensing[19, 24], Bloom �lters[10], Singular
Value Decomposition[39], landmark labels[3], output codes[50],
etc. Among those methods, SLEEC [5] is considered representa-
tive as it outperformed competing methods on some benchmark
datasets. We will provide more precise descriptions of this method
in Section 2 as it is a strong baseline in our comparative evaluation
(Section 4) in this paper.

1.2 Tree-based Ensemble Methods
Another category of e�orts that has improved the state of the art of
XMTC in recent years are the new variants of tree-based ensemble
methods [1, 36, 41]. Similar to those in classical decision-tree learn-
ing, the new methods induce a tree structure which recursively
partitions the instance space or sub-spaces at each non-leaf node,
and has a base classi�er at each leaf node which only focuses on
a few active labels in that node. Di�erent from traditional deci-
sion trees, on the other hand, the new methods learn a hyperplane
(equivalent to using a weighted combination of all features) to split
the current instance space at each node, instead of selecting a single
feature based on information gain (as in classical decision trees) for
the spli�ing. �e hyperplane-based induction is much less greedy
than the single-feature based induction of decision trees, and hence
potentially more robust for extreme classi�cation with a vast fea-
ture space. Another advantage of the tree-based methods is that the
prediction time complexity is typically sublinear in the training-set
size, and would be logarithmic (as the best case) if the induced
tree is balanced. For enhancing the robustness of predictions, most
tree-based methods learn an ensemble of trees, each of which is
induced based on a randomly selected subset of features at each
level of the tree. �e top-performing method in this category is
FastXML [36], for which we will provide a detailed description in
Section 2 as it is a strong baseline in our comparative evaluation
(Section 4).

1.3 Deep Learning for Text Classi�cation
It should be noted that all the aforementioned methods are based
on bag-of-word representations of documents. �at is, words are
treated as independent features out of context, which is a fundamen-
tal limitation of those methods. How to overcome such a limitation
of existing XMTC methods is an open question that has not been
studied in su�cient depth. Deep learning models, on the other

hand, have achieved great successes recently in other related do-
mains by automatically extracting context-sensitive features from
raw text. �ose areas include various tasks in natural language un-
derstanding [37], language modeling [33], machine translation[38],
and more. In multi-class text classi�cation in particular, which
is closely related to multi-label classi�cation but restricting each
document to having only one label, deep learning approaches have
recently outperformed linear predictors (e.g., linear SVM) with
bag-of-word based features as input, and become the new state-
of-the-art. �e strong deep learning models in multi-class text
classi�cation include the convolutional neural network by [25]
(CNN), the recurrent neural network by [27] (RNN), the combina-
tion of CNN and RNN by [49], the CNN with a�ention mechanism
by [2, 43] and the Bow-CNN model by [21, 22]. Although some
of those deep learning models were also evaluated on multi-label
classi�cation datasets [21], those methods are designed for multi-
class se�ings, not taking multi-label se�ings into account in model
optimization. We will provide more details about the CNN-Kim
[25] and Bow-CNN [21] models in Section 2 as the representative
deep learning models (which are applied to but not tailored for
XMTC) in our comparative evaluation (Section 4).

�e great successes of deep learning in multi-class classi�cation
and other related areas raise an important question for XMTC
research, i.e., can we use deep learning to advance the state of the
art in XMTC? Speci�cally, how can we make deep learning both
e�ective and scalable when both the feature space and label space
are extremely large? Existing work in XMTC has not o�ered the
answer; only limited e�orts have been reported in this direction,
and the solutions have not scaled to extremely large problems
[26, 34, 44, 47].

1.4 Our New Contributions
Our primary goal in this paper is to use deep learning to enhance
the state of the art of XMTC. We accomplish this goal with the
following contributions:

• We re-examine the state of the art of XMTC by conducting
a comparative evaluation of 7 methods which are most
representative in target-embedding, tree-based ensembling
and deep learning approaches to XMTC, on 6 benchmark
datasets where the label space sizes are up to 670,000.

• We propose a new deep learning method, namely XML-
CNN, which combines the strengths of existing CNN mod-
els and goes beyond by taking multi-label co-occurrence
pa�erns into account in both the optimization objective
and the design of the neural network architecture, and
scales successfully to the largest XMTC benchmark datasets.

• Our extensive experiments show that XML-CNN consis-
tently produces the best or the second best results among
all the competing methods on all of the 6 benchmark datasets.
On the Wikipedia dataset with over 2 million documents
and 500,000 labels in particular, our proposed method out-
performs the second best method by 11.7%∼15.3% in preci-
sion@K and by 11.5%∼11.7% in NDCG@K for K = 1,3,5.

�e rest of the paper is organized as follows. Section 2 outlines
six existing competitive methods which will be used (together with
our XML-CNN) in our comparative evaluation. Section 3 describes

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

116

the new XML-CNN method. Section 4 reports our extensive experi-
ments and results, followed by conclusion in Section 5.

2 EXISTING COMPETITIVE METHODS
We outline six methods, including the most representative methods
in XMTC and some successful deep learning methods which are
designed for mutli-class text classi�cation but also applicable to
XMTC with minor adaptations. Later in Section 4 we will compare
those methods empirically against our proposed XML-CNN method
(Section 3).

2.1 SLEEC
SLEEC [5] is most representative for target-embedding methods in
XMTC. It consists of two steps of learning embeddings and kNN
classi�cation. SLEEC learns L̂-dimensional embeddings zi ∈ RL̂
for the original L-dimensional label vectors yi ∈ {0, 1}L that non-
linearly capture label correlations by preserving pairwise distances
between only closest label vectors, i.e. d(zi ,zj) ≈ d(yi ,yj) only if i
is among j’s k nearest neighbors under some distance metric d(·, ·).
�en regressors V ∈ RL̂×D are learned such that Vxi ≈ zi with `1
regularization on Vxi , which results in sparse solutions.

At prediction time, for a novel document x∗ ∈ RD SLEEC per-
forms a kNN search for its projection z∗ = Vx∗in the L̂-dimensional
embedding space. To speed up the kNN search, SLEEC groups
training data into many clusters, and learns embeddings for each
separate cluster, then kNN search is performed only within the
cluster this novel document belongs to. Since clustering high di-
mensional data is usually unstable, an ensemble of SLEEC models
are induced with di�erent clusterings to boost prediction accuracy.

2.2 FastXML
FastXML [36] is considered the state-of-the-art tree-based method
for XMTC. It learns a hierarchy of training instances and optimizes
an NDCG-based objective at each node of the hierarchy. Speci�cally,
a hyperplane parameterized by w ∈ RD is induced at each node,
which splits the set of documents in the current node into two
subsets; the ranking of the labels in each of the two subsets are
jointly learned. �e key idea is to have the documents in each
subset sharing similar label distribution, and to characterize the
distribution using a set-speci�c ranked list of labels. �is is achieved
by jointly maximizing NDCG scores of the ranked label lists in the
two sibling subsets. In practice, an ensemble of multiple induced
trees are learned to improve the robustness of predictions.

At prediction time, each test document is passed from the root
to a leaf node in each induced tree, and the label distributions in all
the reached leaves are aggregated for the test document. Suppose
T trees are induced, H is the average height of the trees, and L̂ is
the average number of labels per leaf node. �e prediction cost
is approximately O(TDH + T L̂ + L̂ log L̂), which is dominated by
O(TDH) when L̂ is small. If the trees are near balanced, then H =
logN ≈ logL, and prediction cost is approximately O(TD logL),
which is logarithmic in the number of labels.

2.3 FastText
FastText [23] is a simple yet e�ective deep learning method for
multi-class text classi�cation. A document representation is con-
structed by averaging the embeddings of the words that appear
in the document, upon which a so�max layer is applied to map
the document representation to class labels. �is approach was in-
spired by the recent work on e�cient word representation learning,
such as skip-gram and CBOW[32]. It ignores word order in the
construction of document representations, and uses a linear so�-
max classi�er. �is simplicity makes FastText very e�cient to train
yet achieving state-of-the-art performances on several multi-class
classi�cation benchmarks, and o�en is several orders of magnitude
faster than other competing methods [23]. However, simply av-
eraging input word embeddings with the shallow architecture for
document-to-label mapping might limit its success in XMTC, as in
XMTC, document presentations need to capture much richer infor-
mation for successfully predicting multiple correlated labels and
discriminating them from enormous numbers of irrelevant labels.

2.4 CNN-Kim
CNN-Kim [25] is one of the �rst a�empts of applying convolutional
neural networks to text classi�cation. CNN-Kim constructs a docu-
ment vector with the concatenation of its word embeddings, and
then t �lters are applied to this concatenated vector in the convo-
lution layer to produce t feature maps, which are in turn fed to a
max-over-time pooling layer to construct a t-dimensional document
representation. �is is followed by a fully-connected layer with L
so�max outputs, corresponding to L labels. In practice CNN-Kim
has shown excellent performance in multi-class text classi�cation,
and is a strong baseline in our comparative evaluations.

2.5 Bow-CNN
Bow-CNN [21] (Bag-of-word CNN) is another strong method in
multi-class classi�cation. It represents each small text region (sev-
eral consecutive words) using a bag-of-word indicator vector (called
the one-hot vector). Denoting by D the size of the feature space
(the vocabulary), a D-dimensional binary vector is constructed for
each region, where the i-th entry is 1 i� the i-th word in the vocab-
ulary appears in the that text region. �e embeddings of all regions
are passed through a convolutional layer, followed by a special
dynamic pooling layer that aggregates the embedded regions into
a document representation, and then fed to a so�max output layer.

2.6 PD-Sparse
PD-Sparse [45] is a recently proposed max-margin method de-
signed for extreme multi-label classi�cation. It does not fall into
the three categories in Section 1 (target-embedding methods, tree-
based methods, and deep learning methods). In PD-Sparse, a linear
classi�er is learned for each label with `1 and `2 penalties on the
weight matrix associated with this label. �is results in a solu-
tion extremely sparse in both the primal and dual spaces, which is
desirable in terms of both time and memory e�ciency in XMTC.
PD-Sparse proposes a Fully-Corrective Block-Coordinate Frank-
Wolfe training algorithm that exploits sparsity in the solution and
achieves sub-linear training time w.r.t the number of primal and
dual variables, but prediction time is still linear w.r.t the number of

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

117

labels. [45] has shown that PD-Sparse outperforms 1-vs-all SVM
and logistic regression on multi-label classi�cation, with signi�-
cantly reduced training time and model size.

3 PROPOSED METHOD
Our model architecture (XML-CNN), shown in Figure 1, is based on
CNN-Kim [25], the CNN model for multi-class text classi�cation
described in 2.4.

Similar to other CNNs[21, 25], our model learns a rich num-
ber of feature representations by passing the document through
various convolutional �lters. �e key a�ributes of our model lie
in the following connected layers. Speci�cally, our model adopts
a dynamic max pooling scheme that captures more �ne-grained
features from di�erent regions of the document. We furthermore
utilize a binary cross-entropy loss over sigmoid output that is more
tailored for XMTC. An additional hidden bo�leneck layer is inserted
between pooling and output layer to learn compact document rep-
resentations, which reduces model size as well as boosts model
performance. In the following we describe our model in detail.

Let ei ∈ Rk be the k-dimensional word embedding correspond-
ing to the i-th word in the current document, i = 1, ..,m. �e whole
document is represented by the concatenation of its word embed-
dings e1:m = [e1, ..,em] ∈ Rkm . In general, the text region from
the i-th word to the j-th word is represented by ei :j = [ei , ..,ej] ∈
Rk(j−i+1). A convolution �lterv ∈ Rkh is applied to a text region
of h words ei :i+h−1 to produce a new feature:

ci = дc (vT ei :j+h−1)

where дc is the nonlinear activation function for this convolution
layer, such as sigmoid or ReLU. We omit all bias terms for sim-
plicity. All ci ’s together form a feature map c = [c1, ..., cm] ∈ Rm
associated with the applied �lter v . Here we pad the end of the
document to obtain m features if the length is short. Multiple �l-
ters with di�erent window sizes are used in a convolution layer
to capture rich semantic information. Suppose t �lters are used
and the t resulting feature maps are c(1), ..,c(t). �en a pooling
operation P(·) is applied to each of these t feature maps to produce
t p-dimensional vectors P(c(i)) ∈ Rp . We will discuss the choice
of P(·) in Section 3.1. �e output of pooling layer is followed by a
fully connected bo�leneck layer with h hidden units and then an
output layer with L units corresponding to the scores assigned to
each label, denoted by f ∈ RL :

f =Woдh (Wh [P(c(1)), .., P(c(t))]) (1)

HereWh ∈ Rh×tp andWo ∈ RL×h are weight matrices associated
with the bo�leneck layer and output layer; дh is the element-wise
activation functions applied to the bo�leneck layer. �e key at-
tributes that make our model especially suited for XMTC are the
pooling operation, loss function, and the hidden bo�leneck layer
between pooling and output layer. We will verify that each of
these three components contributes to performance improvement
in XMTC through an ablation test in Section 4.4. In the remainder
of this section, we introduce these three key a�ributes of our model.

3.1 Dynamic Max Pooling
In previous CNN models for text classi�cation, including CNN-
Kim, a max-over-time[12] pooling scheme is usually adopted. �is
simply means taking the maximum element of a feature map: P(c) =
ĉ = max{c}. �e idea is to capture the most important feature, i.e.
the entry with the largest value, in each feature map. Using max-
over-time pooling, each �lter generates a single feature, so the
output of the pooling layer is [P(c(1)), .., P(c(t))] = [ĉ(1), .., ĉ(t)] ∈
Rt . However, one drawback of max-over-time pooling is that for
each �lter, only one value, i.e. the largest value in the feature
map, is chosen to carry information to subsequent layers, which
is especially problematic when the document is long. Moreover,
this pooling scheme does not capture any information about the
position of the largest value.

In our model, we adopt a dynamic max pooling scheme, which
is similar to [8, 21]. Instead of generating only one feature per
�lter, p features are generated to capture richer information. For a
document withm words, we evenly divide itsm-dimensional feature
map intop chunks, each chunk is pooled to a single feature by taking
the largest value within that chunk, so that information about
di�erent parts of the document can be received by the top layers.
Under this pooling scheme, each �lter produces a p-dimensional
feature (assumingm is dividable by p):

P(c) = [max{c1:mp }, ..,max{cm−mp +1:m }] ∈ Rp

which captures both important features and position information
about these important features.

3.2 Loss Function
�e most straightforward adaptation from the mult-class classi�ca-
tion problems to multi-label ones would be to extend the traditional
cross-entropy loss. Speci�cally, [16–18, 25] consider the extended
cross-entropy loss function as

min
Θ

− 1
n

n∑
i=1

L∑
j=1

yi j log(p̂i j) = −
1
n

n∑
i=1

∑
j ∈y+i

1
|y+i |

log(p̂i j),

where Θ denotes model parameters, y+i denotes the set of relevant
labels of instance i and p̂i j is the model prediction for instance i on
label j , through a so�max activation:

p̂i j =
exp(fj (xi))∑L

j′=1 exp(fj′(xi))
.

Another intuitively reasonable objective for XMTC is rank loss
[47] that minimizes the number of mis-ordered pairs of relevant and
irrelevant labels, i.e. it aims to assign relevant labels with higher
scores than irrelevant labels. However, rank loss has shown to be
inferior to binary cross-entropy loss (BCE) over sigmoid activation
when applied to multi-label classi�cation datasets in a simple feed-
forward neural network[34]. �e binary cross-entropy objective
can be formulated as:

min
Θ

− 1
n

n∑
i=1

L∑
j=1

[
yi j log(σ (fi j)) + (1 − yi j) log(1 − σ (fi j))

]
(2)

where σ is sigmoid function σ (x) = 1
1+e−x .

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

118

wait
for
the
video
and
do
n’t
rent
it

Representations	of	
documents	with	word	
embeddings

Convolutional	layer	
with	multiple	filter	
widths	and	feature	
maps

Dynamicmax	
pooling

Fully	connected	
layer	for	a	
compact
representation

Fully	connected	layer	
with	sigmoid output	for	
large	label	space
and	binary	entropy	loss

Figure 1: Proposed architecture XML-CNN with an example sentence.

We �nd that the BCE loss is more suited for multi-label problems
and outperforms cross-entropy loss in our experiments (Section
4.4). �erefore, we adopt the BCE loss for our �nal model.

3.3 Hidden Bottleneck Layer
Unlike CNN-Kim [25] or Bow-CNN [21] where pooling layer and
output layer are directly connected, we propose to add a fully-
connected hidden layer with h units between pooling and output
layer, referred to as the hidden bo�leneck layer, as the number
of its hidden units is far less than the pooling and output layer.
�e reason for this is two-fold. First, with pooling layer directly
connected to output layer, the number of parameters between these
two layers isO(pt×L). When the document is long, and the number
of labels is large, more �lters and more chunks in pooling operation
are needed to obtain good document representations, and in XMTC
se�ing, L can be up to millions, so model size of O(pt × L) might
not �t into a common GPU memory. With an additional hidden
bo�leneck layer inserted between pooling and output layer, the
number of parameters reduces to O(h × (pt + L)), which can be an
order of magnitude less than without this bo�leneck layer. Second,
without this hidden bo�leneck layer, the model only has one hidden
layer of non-linearity, which is not expressive enough to learn good
document representations and classi�ers. Experiments in Section
4 show that this hidden bo�leneck layer does help to learn be�er
document representations and improve prediction accuracy.

4 EXPERIMENTS
In this section we report our evaluation of the proposed method
and the six competing methods introduced in Section 2 on XMTC
benchmark datasets, and compare both the e�ectiveness and scala-
bility of those methods. We also analyze the contribution of each
component of our method via an ablation test.

4.1 Datasets
We used six benchmark datasets, including two small-scale datasets
RCV1 [29] (103 labels) and EUR-Lex [31] (3865 labels), two medium-
scale datasets Amazon-12K [30] (12,277 labels) and Wiki-30K [51]
(29,947 labels), and two large-scale datasets Amazon-670K [28]
(670,091 labels) and Wiki-500K1 (501,069 labels). �e dataset statis-
tics are summarized in Table 1.

�e TF-IDF features and the class labels for all of these datasets
are available in the Extreme Classi�cation Repository1. In our
experiments, the non-deep learning methods (FastXML, SLEEC and
PD-Sparse) used the vectors of TF-IDF features to represent input
documents, while the deep learning methods (FastText, Bow-CNN
and CNN-Kim and XML-CNN) require raw text of documents as
input, which we obtained from the authors of the repository1. We
removed words that do not have corresponding TF-IDF features
from the raw text so that the feature set (vocabulary) of each dataset
is the same in the experiments for both the deep learning and non-
deep learning methods. Each dataset has an o�cial training set and
test set, which we used as they are. We reserved 25% of the training
data as the validation set for model selection (i.e., for tuning hyper-
parameters); the remaining 75% is used for training the models.

4.2 Evaluation Metrics
In extreme multi-label classi�cation datasets, even though the label
spaces are very large, each instance only has very few relevant
labels (see Table 1). �is means that it is important to present a
short ranked list of potentially relevant labels for each test instance
for user’s a�ention, and to evaluate the quality of such ranked lists
with an emphasis on the relevance of the top portion of each list. For
these reasons rank-based evaluation metrics have been commonly
used for comparing XMTC methods, including the precision at
top K (P@K) and the Normalized Discounted Cummulated Gains

1h�ps://manikvarma.github.io

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

119

https://manikvarma.github.io

datasets N M D L L̄ L̃ W̄ Ŵ

RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23
EUR-Lex 15,449 3,865 171,120 3,956 5.32 15.59 1,225.20 1,248.07
Amazon-12K 490,310 152,981 135,895 12,277 5.37 214.45 230.25 224.67
Amazon-670K 490,449 153,025 135,895 670,091 5.45 3.99 230.20 224.62
Wiki-30K 12,959 5,992 100,819 29,947 18.74 8.11 2,246.58 2,210.10
Wiki-500K 1,646,302 711,542 2,381,304 501,069 4.87 16.33 750.64 751.42

Table 1: Data Statistics: N is the number of training instances, M is the number of test instances, D is the total number of
features, L is the total number of class labels, L̄ is the average number of label per document, L̃ is the average number of
documents per label, W̄ is the average number of words per document in the training set, Ŵ is the average number of words
per document in the test set.

(NDCG@K) [1, 5, 36, 41, 45]. We follow such convention and use
these two metrics in our evaluation in this paper, with k = 1, 3, 5.
Denoting byy ∈ {0, 1}L as the vector of true labels of an document,
and ŷ ∈ RL as the system-predicted score vector for the same
document, the metrics are de�ned as:

P@k =
1
k

∑
l ∈rk (ŷ)

yl

DCG@k =
∑

l ∈rk (ŷ)

yl
log(l + 1)

NDCG@k =
DCG@k∑min(k, ‖y ‖0)

l=1
1

log(l+1)

where rk (ŷ) is the set of rank indices of the truly relevant labels
among the top-k portion of the system-predicted ranked list for a
document, and ‖y‖0 counts the number of relevant labels in the
ground truth label vector y. P@K and NDCG@K are calculated for
each test document and then averaged over all the documents.

4.3 Main Results
�e performance of all methods in P@K and NDCG@K on all six
datasets are summarized in Tables 2 and 3. Each line compares all
the methods on a speci�c dataset, where the best score is in boldface.
We conducted paired t-tests to compared the performance score
of each method against the best one in the same line, where the
number of documents in each test set is the number of trials.

As we can see in Table 2, XML-CNN has the best scores in 11 out
of the 18 lines in the table, and each of the 11 scores is statistically
signi�cantly be�er than the 2nd best score in the corresponding line.
On the other hand, the target-embedding method SLEEC is the best
in 4 lines, the deep learning method Bow-CNN is the best in 2 lines,
and the tree-based ensemble method FastXML is the best in only 1
line. Similar observation can be found in Table 3 of the NDCG@K
scores, where XML-CNN has the best results in 12 out of the 18
lines. On the Wiki-500K dataset with over 2 million documents and
500,000 labels in particular, XML-CNN outperformed the second
best method by 11.7% ∼ 15.3% in P@K and by 11.5% ∼ 11.7% in
NDCG@K for K = 1,3,5. In the lines XML-CNN does not have the
best score, it has the 2nd best score.

Why did XML-CNN perform particularly strong on the datasets
ofRCV1,Amazon-12K andWiki-500K? We notice that these datasets
have a higher number of training instances per class than that in
other datasets (see the column of L̃ in Table 1). �is con�rms our in-
tuition about deep learning: it typically requires more training data
in order to achieve advantageous performance than other methods,
and XML-CNN successfully took this advantage on these datasets.
As for why other deep learning methods especially CNN-Kim per-
formed much worse on the other hand, we will analyze this via the
ablation test in Section 4.4.

As for why SLEEC, the leading target-embedding method, had
the strongest performance on EUR-Lex and Wiki-30K in particular,
we notice that these two datasets have much longer documents
than other datasets (see column of W̄ in Table 1). In other words,
the feature vectors of documents in these two datasets are denser
and possibly information-richer than those in other datasets. As
we described in Section 2, SLEEC uses a linear regression model to
establish the mapping from documents to label vectors in a dimen-
sion reduced target space. But why such a relatively simple linear
mapping should lead to be�er predictions for long documents than
the more complex deep learning or tree-based models is not clear
at this point – answering this question requires future research.

An interesting observation is that all the methods performed
relatively well on RCV1, and each method has much stronger per-
formance on this dataset than itself on other datasets. Notice that
this dataset has a much smaller number of labels (103 only) than
those of other datasets, and the smallest number of labels (3.18) per
document. �ese means that this dataset is the least challenging
one among the six included in this study.

Another interesting observation is that FastText and CNN-Kim
had signi�cantly worse results than other methods on Amazon-
670K (with 670K labels) and Wiki-500K (with 500K labels). �e
extremely huge label spaces mean that the data sparsity issue would
be severe, especially for the long tail of rare labels. Both FastText
and CNN-Kim are designed for multi-class classi�cation and not
for modeling label correlations, and hence su�ered signi�cantly in
XMTC when the label spaces are extremely large. Other models
like PD-Sparse and Bow-CNN would have a similar weakness but

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

120

we cannot examine them empirically as they failed to scale up on
these two datasets.

4.4 Ablation Test
Given that CNN-Kim and XML-CNN are closely coupled in the
sense that the la�er is an extension of the former by adding a few
components that especially suit XMTC, it would be informative to
empirically examine the impact of each new component in XML-
CNN via an ablation test. �e results are shown in Figure 2, where
CNN-Kim is the original model designed for multi-class problems;
su�x v1 denotes the model obtained by replacing the original
loss function of CNN-Kim by the binary cross-entropy loss over
sigmoid output (Section 3.2); su�x v2 denotes the model obtained
by inserting the hidden bo�leneck layer to model v1; su�x v3
denotes the model obtained by adding the dynamic pooling layer
to model v2. �at is, v3 is the full version of our XML-CNN model.
We show results on three representative datasets in terms of their
category sizes (small, medium and large scale). Results on the other
three datasets demonstrate similar trends and we omit them here
due to space limit.

Overall, we can see that each of the three new components im-
proved the performance of XML-CNN. First, the new loss function
certainly is more suitable for dealing with multi-label problems. We
also found that the hidden bo�leneck layer not only consistently
boosted the performance of XML-CNN, but also improved the scala-
bility as it compresses the output of the pooling layer into a smaller
one and makes XML-CNN scalable on the largest dataset. Last but
not least, dynamic max-pooling layer plays a crucial role in our
model, leading to signi�cant improvement of XML-CNN over CNN-
Kim, indicating its e�ectiveness in extracting richer information
from the context of documents.

4.5 E�ciency and Scalability
�e training and testing time in clock-time seconds for all the
methods on the six benchmark datasets are summarized in Table 4.
Notice that four of those methods (FastXML, SLEEC, PD-Sparse
and FastText) are implemented for running on CPU, while the
remaining deep learning methods (Bow-CNN, CNN-Kim and XML-
CNN) were implemented for running on GPU. �e le� portion
of Table 4 presents the time in seconds on CPU for the former
group (running time using a single thread is reported), and the
right portion presents the time in seconds on GPU for the la�er
group. Although the two groups are not directly comparable, they
are informative in a practical sense. For the CPU runs we used
Intel(R) Xeon(R) CPU E5-2630v3 2.40GHz with 192 GB memory,
and for the GPU runs we used Nvidia GTX TITAN X.

In addition, we also ran all the methods on subsets of the Wiki-
500K data, which were obtained by randomly sampling 1%, 5%,
10% and 25% of its 501,069 labels and corresponding documents.
Figure 3 summarizes the training time on CPU or GPU in seconds,
depending on the methods. �ree methods (SLEEC, Bow-CNN and
PD-Sparse) are not scalable to the fullset and the larger subsets
of Wiki-500K because that their excessive memory requirements
exceed the limits of our machines, and hence the early stop of their
curves. In order to �ll in the training-time slot for SLEEC in Table 4
on Wiki-500K, we had to reduce the feature space to 5000 instead

of the full dimension of D=2,381,304; otherwise it could not �t into
our memory. �us the listed CPU seconds (209,735) in this table
does not re�ect the full complexity of SLEEC in training.

Combining Table 4 and Figure 3 we have the following points:

(1) For scalability comparison, time complexities on the largest
datasets, e.g., Wiki-500K and Amazon-670K, are most in-
formative. Only four methods, i.e., XML-CNN, CNN-Kim,
FastXML and FastText successfully scaled to these extremely
large problems; the remaining methods failed for memory
issues;

(2) Both XML-CNN and FastXML (the 4th best method on
average in this study) scaled well with both extremely
large feature spaces and label spaces;

(3) SLEEC (the 2nd best method on average in this study)
scaled well with extremely large label spaces (e.g., on
Amazon-670K) but su�ered from extremely large feature
spaces (e.g., on Wiki-500K);

(4) CNN-Kim has comparable time complexities as XML-CNN
in both training and testing, but CNN-Kim performed sub-
stantially worse on all of the datasets;

(5) FastText is less e�cient on EUR-Lex, Wiki-30K as its train-
ing cost is proportional to document length on average;

(6) Bow-CNN is relatively fast in training if it were not run-
ning into memory issues. �is is partly due to its imple-
mentation2; also, it has a dynamic pooling layer directly
connected to output layer, resulting in O(ptL) memory (as
we discussed in Section 3.3), where t ,p are the number
of �lters and pooling chunks, which can be an order of
magnitude larger than that of XML-CNN (O(h(pt + L)))
and CNN-Kim (O(tL)).

4.6 Experimental Details
In our proposed model XML-CNN, we used recti�ed linear units as
activation functions, one-dimensional convolutional �lters with the
window sizes of 2, 4, 8; the number of feature maps for each �lter
was 128 for small datasets (RCV1, Wiki-30K, EUR-Lex, Amazon-12K)
and 32 for large datasets (Wiki-500K, Amazon-670K), dropout rate
was p = 0.5, and the number of hidden units of the bo�leneck layer
was 512. �ese hyper-parameters were �xed across all datasets.

For all the six baseline methods (Section 2) except for CNN-Kim,
we used the author-provided implementations 123; XML-CNN and
CNN-Kim are implemented in THEANO[4]. For SLEEC, the number
of learners was set to 15, embedding dimension was set to 100 for
small datasets and 50 for large datasets as suggested in [5]. For
FastXML, the number of trees was set to 50 and hyper-parameter
Cδ = Cr = 1.0 as suggested in [36]. For PD-Sparse, the tuning
parameter C was set to 1.0. All other hyper-parameters of these
methods were chosen on the validation set.

For word embeddings in deep learning models (except for Bow-
CNN, which uses one-hot vectors as input) we used pre-trained
300-dimensional Glove vectors [35].

2h�p://riejohnson.com/cnn download.html
3h�ps://github.com/facebookresearch/fastText

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

121

http://riejohnson.com/cnn_download.html
https://github.com/facebookresearch/fastText

Methods
Datasets Metrics FastXML SLEEC PD-Sparse FastText Bow-CNN CNN-Kim XML-CNN

RCV1
P@1 94.62 95.35 95.16 95.40 96.40 93.54 96.86
P@3 78.40 79.51 79.46 79.96 81.17 76.15 81.11
P@5 54.82 55.06 55.61 55.64 56.74 52.94 56.07

EUR-Lex
P@1 68.12 78.21 72.10 71.51 64.99 42.84 76.38
P@3 57.93 64.33 57.74 60.37 51.68 34.92 62.81
P@5 48.97 52.47 47.48 50.41 42.32 29.01 51.41

Amazon-12K
P@1 94.58 93.61 88.80 82.11 92.77 90.31 95.06
P@3 78.69 79.13 70.69 71.94 69.85 74.34 79.86
P@5 62.26 63.54 55.70 58.96 48.74 58.78 63.91

Amazon-670K
P@1 35.59 34.54 - 8.93 - 15.19 35.39
P@3 31.87 30.89 - 9.07 - 13.78 31.93
P@5 28.96 28.25 - 8.83 - 12.64 29.32

Wiki-30K
P@1 83.26 85.96 82.32 66.19 81.09 78.93 84.06
P@3 68.74 73.13 66.96 55.44 50.64 55.48 73.96
P@5 58.84 62.73 55.60 48.03 35.98 45.06 64.11

Wiki-500K
P@1 49.27 53.60 - 8.66 - 23.38 59.85
P@3 33.30 34.51 - 7.32 - 11.95 39.28
P@5 25.63 25.85 - 6.54 - 8.59 29.81

Table 2: Results in P@K – bold face indicates the best method in each line; * denotes the method (if any) whose score is not
statistically signi�cantly di�erent from the best one; ‘-’ denotes the methods which failed to scale due to memory issues.

Methods
Datasets Metrics FastXML SLEEC PD-Sparse FastText Bow-CNN CNN-Kim XML-CNN

RCV1
G@1 94.62 95.35 95.16 95.40 96.40 93.54 96.88
G@3 89.21 90.45 90.29 90.95 92.04∗ 87.26 92.22
G@5 90.27 90.97 91.29 91.68 92.89 88.20 92.63

EUR-Lex
G@1 68.12 78.21 72.10 71.51 64.99 42.84 76.38
G@3 60.66 67.86 61.33 63.32 55.03 36.95 66.28
G@5 56.42 61.57 55.93 58.56 49.92 33.83 60.32

Amazon-12K
G@1 94.58 93.61 88.80 82.11 92.77 90.31 95.06
G@3 88.26 88.61 80.48 79.90 80.96 83.87 89.48
G@5 84.89 86.46 77.81 79.36 73.01 81.21 87.06

Amazon-670K
G@1 35.59 34.54 - 8.93 - 15.19 35.39
G@3 33.36 32.70 - 9.51 - 14.60 33.74
G@5 31.76 31.54 - 9.74 - 14.12 32.64

Wiki-30K
G@1 83.26 85.96 82.32 66.19 81.09 78.93 84.06
G@3 72.07 76.10∗ 70.54 57.87 57.26 60.52 76.35
G@5 64.34 68.14 61.74 52.12 45.28 51.96 68.94

Wiki-500K
G@1 49.27 53.60 - 8.66 - 23.38 59.85
G@3 41.64 43.64 - 8.43 - 15.45 48.67
G@5 40.16 41.31 - 8.86 - 13.64 46.12

Table 3: Results in NDCG@K – bold face indicates the best method in each line; * denotes the method (if any) whose score is
not statistically signi�cantly di�erent from the best one; ‘-’ denotes the methods which failed to scale due to memory issues.

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

122

P@1 P@3 P@5
metric

0.0
0.2
0.4
0.6
0.8
1.0

va
lu

e

data = eurlex

P@1 P@3 P@5
metric

0.0
0.2
0.4
0.6
0.8
1.0 data = wiki30K

P@1 P@3 P@5
metric

0.0
0.2
0.4
0.6
0.8
1.0 data = amazon670K

CNN-Kim
CNN-Kim+v1
CNN-Kim+v2
CNN-Kim+v3

Figure 2: Result of the ablation test – v1 uses the new loss function for multi-label classi�cation over CNN-Kim; v2 denotes
the insertion of the additional hidden layers over v1, and v3 denotes the insertion of the dynamic max pooling layer over v2
(hence the full version of XML-CNN).

CPU GPU
FastXML SLEEC PD-Sparse FastText Bow-CNN CNN-Kim XML-CNN

dataset train test train test train test train test train test train test train test
RCV1 552 615 888 1,764 20 15 858 184 804 85 3,720 92 2,340 89

EUR-Lex 756 55 4,617 16 322 0.4 19,518 7 1,665 4 660 0.6 1,020 0.7
Amazon-12K 27,949 1,015 90,925 2,506 2,399 15 20,790 499 11,097 135 41,460 34 48,000 45
Amazon-670K 47,342 1,300 63,991 2,856 - - 19,353 26,746 - - 138,060 889 188,040 2,476
Wiki-30K 2,047 21 2,646 0.6 238 60 6,354 20 2,377 20 1,020 3 5,280 9
Wiki-500K 192,741 8,972 209,735 20,002 - - 721,444 84,442 - - 494,400 4,534 422,040 16,511

Table 4: Training and testing time (seconds) of 7 methods on 6 datasets

1% 5% 10
%

25
%

50
%

Percentage of Sampled Category Space

102

103

104

105

106

Tr
ai

ni
ng

 ti
m

e
(s

ec
on

ds
)

Scalability on Wiki500K

XML-CNN
FastXML
FastText
SLEEC
CNN-Kim
Bow-CNN
PD-Sparse

Figure 3: Scalability results on Wiki-500K.

5 CONCLUSION
�is paper presented a new deep learning approach to extreme
multi-label text classi�cation, and evaluated the proposed method in
comparison with other state-of-the-art methods on six benchmark
datasets where the label-set sizes are up to 670K. Our proposed
method XML-CNN goes beyond the deep learning methods for
binary or multi-class classi�cation by using a dynamic max pooling
scheme that captures richer information from di�erent regions of
the document, a binary cross-entropy loss that is more suitable
for multi-label problems, and a hidden bo�leneck layer for be�er
representations of documents as well as for reducing model size.
�e advantageous performance of XML-CNN over other competing
methods is evident as it obtained the best or second best results
on all the benchmark datasets in our comparative evaluation. We
hope this study is informative for XMTC research.

ACKNOWLEDGMENTS
We thank the reviewers for their helpful comments. �is work is
supported in part by the National Science Foundation (NSF) under
grant IIS-1546329.

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

123

REFERENCES
[1] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. 2013. Multi-

label learning with millions of labels: Recommending advertiser bid phrases for
web pages. In Proceedings of the 22nd international conference on World Wide Web.
ACM, 13–24.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Krishnakumar Balasubramanian and Guy Lebanon. 2012. �e landmark selection
method for multiple output prediction. arXiv preprint arXiv:1206.6479 (2012).

[4] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. �eano: A CPU and GPU math compiler in Python. In Proc. 9th
Python in Science Conf. 1–7.

[5] Kush Bhatia, Himanshu Jain, Purusho�am Kar, Manik Varma, and Prateek Jain.
2015. Sparse local embeddings for extreme multi-label classi�cation. In Advances
in Neural Information Processing Systems. 730–738.

[6] Wei Bi and James Tin-Yau Kwok. 2013. E�cient Multi-label Classi�cation with
Many Labels.. In ICML (3). 405–413.

[7] Ma�hew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. 2004.
Learning multi-label scene classi�cation. Pa�ern recognition 37, 9 (2004), 1757–
1771.

[8] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event
Extraction via Dynamic Multi-Pooling Convolutional Neural Networks.. In ACL
(1). 167–176.

[9] Yao-Nan Chen and Hsuan-Tien Lin. 2012. Feature-aware label space dimen-
sion reduction for multi-label classi�cation. In Advances in Neural Information
Processing Systems. 1529–1537.

[10] Moustapha M Cisse, Nicolas Usunier, �ierry Artieres, and Patrick Gallinari.
2013. Robust bloom �lters for large multilabel classi�cation tasks. In Advances
in Neural Information Processing Systems. 1851–1859.

[11] Amanda Clare and Ross D King. 2001. Knowledge discovery in multi-label phe-
notype data. In European Conference on Principles of Data Mining and Knowledge
Discovery. Springer, 42–53.

[12] Ronan Collobert, Jason Weston, Léon Bo�ou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost)
from scratch. Journal of Machine Learning Research 12, Aug (2011), 2493–2537.

[13] André Elissee� and Jason Weston. 2001. A kernel method for multi-labelled
classi�cation. In Advances in neural information processing systems. 681–687.

[14] Chun-Sung Ferng and Hsuan-Tien Lin. 2011. Multi-label Classi�cation with
Error-correcting Codes.. In ACML. 281–295.

[15] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencı́a, and Klaus Brinker.
2008. Multilabel classi�cation via calibrated label ranking. Machine learning 73,
2 (2008), 133–153.

[16] Sayan Ghosh, Eugene Laksana, Stefan Scherer, and Louis-Philippe Morency.
2015. A multi-label convolutional neural network approach to cross-domain
action unit detection. In A�ective Computing and Intelligent Interaction (ACII),
2015 International Conference on. IEEE, 609–615.

[17] Yunchao Gong, Yangqing Jia, �omas Leung, Alexander Toshev, and Sergey
Io�e. 2013. Deep convolutional ranking for multilabel image annotation. arXiv
preprint arXiv:1312.4894 (2013).

[18] Ma�hieu Guillaumin, �omas Mensink, Jakob Verbeek, and Cordelia Schmid.
2009. Tagprop: Discriminative metric learning in nearest neighbor models
for image auto-annotation. In Computer Vision, 2009 IEEE 12th International
Conference on. IEEE, 309–316.

[19] Daniel Hsu, Sham Kakade, John Langford, and Tong Zhang. 2009. Multi-Label
Prediction via Compressed Sensing.. In NIPS, Vol. 22. 772–780.

[20] Shuiwang Ji, Lei Tang, Shipeng Yu, and Jieping Ye. 2008. Extracting shared
subspace for multi-label classi�cation. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 381–389.

[21] Rie Johnson and Tong Zhang. 2015. E�ective use of word order for text catego-
rization with convolutional neural networks. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologie. 103–112.

[22] Rie Johnson and Tong Zhang. 2015. Semi-supervised convolutional neural
networks for text categorization via region embedding. In Advances in neural
information processing systems. 919–927.

[23] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of tricks for e�cient text classi�cation. arXiv preprint arXiv:1607.01759 (2016).

[24] Ashish Kapoor, Raajay Viswanathan, and Prateek Jain. 2012. Multilabel classi�-
cation using bayesian compressed sensing. In Advances in Neural Information
Processing Systems. 2645–2653.

[25] Yoon Kim. 2014. Convolutional neural networks for sentence classi�cation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1746–1751.

[26] Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016. Improved neural network-
based multi-label classi�cation with be�er initialization leveraging label co-
occurrence. In Proceedings of NAACL-HLT. 521–526.

[27] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional
Neural Networks for Text Classi�cation.. In AAAI. 2267–2273.

[28] Jure Leskovec and Andrej Krevl. 2015. {SNAP Datasets}:{Stanford} Large
Network Dataset Collection. (2015).

[29] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. Rcv1: A new bench-
mark collection for text categorization research. Journal of machine learning
research 5, Apr (2004), 361–397.

[30] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics:
understanding rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems. ACM, 165–172.

[31] Eneldo Loza Mencia and Johannes Fürnkranz. 2008. E�cient pairwise multilabel
classi�cation for large-scale problems in the legal domain. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
50–65.

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[33] Tomas Mikolov, Martin Kara�át, Lukas Burget, Jan Cernockỳ, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model.. In Interspeech,
Vol. 2. 3.

[34] Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna Gurevych, and Johannes
Fürnkranz. 2014. Large-scale multi-label text classi�cation��revisiting neural
networks. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 437–452.

[35] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global Vectors for Word Representation.. In EMNLP, Vol. 14. 1532–1543.

[36] Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A fast, accurate and stable
tree-classi�er for extreme multi-label learning. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
263–272.

[37] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Man-
ning, Andrew Y Ng, and Christopher Po�s. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank. In Proceedings of the con-
ference on empirical methods in natural language processing (EMNLP), Vol. 1631.
Citeseer, 1642.

[38] Ilya Sutskever, Oriol Vinyals, and �oc V Le. 2014. Sequence to sequence
learning with neural networks. In Advances in neural information processing
systems. 3104–3112.

[39] Farbound Tai and Hsuan-Tien Lin. 2012. Multilabel classi�cation with principal
label space transformation. Neural Computation 24, 9 (2012), 2508–2542.

[40] Jason Weston, Samy Bengio, and Nicolas Usunier. 2011. Wsabie: Scaling up to
large vocabulary image annotation. (2011).

[41] Jason Weston, Ameesh Makadia, and Hector Yee. 2013. Label Partitioning For
Sublinear Ranking.. In ICML (2). 181–189.

[42] Yiming Yang and Siddharth Gopal. 2012. Multilabel classi�cation with meta-
level features in a learning-to-rank framework. Machine Learning 88, 1-2 (2012),
47–68.

[43] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical a�ention networks for document classi�cation. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies.

[44] Chih-Kuan Yeh, Wei-Chieh Wu, Wei-Jen Ko, and Yu-Chiang Frank Wang. 2017.
Learning Deep Latent Spaces for Multi-Label Classi�cation. (2017).

[45] Ian EH Yen, Xiangru Huang, Kai Zhong, Pradeep Ravikumar, and Inderjit S
Dhillon. 2016. PD-Sparse: A Primal and Dual Sparse Approach to Extreme
Multiclass and Multilabel Classi�cation. (2016).

[46] Hsiang-Fu Yu, Prateek Jain, Purusho�am Kar, and Inderjit S Dhillon. 2014. Large-
scale Multi-label Learning with Missing Labels.. In Proceedings of the 31th Inter-
national Conference on Machine Learning. 593–601.

[47] Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel neural networks with
applications to functional genomics and text categorization. IEEE transactions
on Knowledge and Data Engineering 18, 10 (2006), 1338–1351.

[48] Min-Ling Zhang and Zhi-Hua Zhou. 2007. ML-KNN: A lazy learning approach
to multi-label learning. Pa�ern recognition 40, 7 (2007), 2038–2048.

[49] Rui Zhang, Honglak Lee, and Dragomir Radev. 2016. Dependency sensitive
convolutional neural networks for modeling sentences and documents. arXiv
preprint arXiv:1611.02361 (2016).

[50] Yi Zhang and Je� G Schneider. 2011. Multi-Label Output Codes using Canonical
Correlation Analysis.. In AISTATS. 873–882.

[51] Arkaitz Zubiaga. 2012. Enhancing navigation on wikipedia with social tags.
arXiv preprint arXiv:1202.5469 (2012).

Session 1C: Document Representation and Content Analysis 1 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

124

	Abstract
	1 Introduction
	1.1 Target-Embedding Methods
	1.2 Tree-based Ensemble Methods
	1.3 Deep Learning for Text Classification
	1.4 Our New Contributions

	2 Existing Competitive Methods
	2.1 SLEEC
	2.2 FastXML
	2.3 FastText
	2.4 CNN-Kim
	2.5 Bow-CNN
	2.6 PD-Sparse

	3 proposed method
	3.1 Dynamic Max Pooling
	3.2 Loss Function
	3.3 Hidden Bottleneck Layer

	4 experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Main Results
	4.4 Ablation Test
	4.5 Efficiency and Scalability
	4.6 Experimental Details

	5 conclusion
	Acknowledgments
	References

