
Effective Trend Detection within a Dynamic Search Context

Anat Hashavit
IBM Haifa Research Lab

Haifa, Israel
anath@il.ibm.com

Roy Levin
IBM Haifa Research Lab

Haifa, Israel
levin.royl@gmail.com

Ido Guy
Ben Gurion University of the

Negev, Israel
Yahoo Research, Israel
idoguy@acm.org

Gilad Kutiel
Department of Computer

Science
Technion, Haifa, Israel

gkutiel@cs.technion.ac.il

ABSTRACT
In recent years, studies about trend detection in online social
media streams have begun to emerge. Since not all users are
likely to always be interested in the same set of trends, some
of the research also focused on personalizing the trends by
using some predefined personalized context.

In this paper, we take this problem further to a setting
in which the user’s context is not predefined, but rather de-
termined as the user issues a query. This presents a new
challenge since trends cannot be computed ahead of time
using high latency algorithms. We present RT-Trend, an
online trend detection algorithm that promptly finds rele-
vant in-context trends as users issue search queries over a
dataset of documents.

We evaluate our approach using real data from an online
social network by assessing its ability to predict actual ac-
tivity increase of social network entities in the context of a
search result. Since we implemented this feature into an ex-
isting tool with an active pool of users, we also report click
data, which suggests positive feedback.

Keywords: Trends, Analytics, Tag Cloud, Word Cloud,Trend

Cloud

1. INTRODUCTION
Nowadays, large social media sites such as Twitter, Face-

book and LinkedIn generate huge amounts of information.
These social networks expose activity streams which are
composed of actions generated by hundreds of millions of
users over time. As such, some characteristics are likely to
change over time. In recent years, many research papers
have focused specifically on the problem of detecting trends
over such data [2,3,5]. In addition, since not all trends may
warrant the same level of attention from all users. Some
research effort was directed at detecting trends within some

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914705

predefined context such as regional [2] or a predefined user
profile [9]. Yet, such approaches require a context to be
provided in advance.

In contrast to such predefined contexts, users have tradi-
tionally relied on keyword search to explore textual content.
However getting a list of relevant documents is only a partial
solution. As an extension, Faceted search [8] allows users to
explore these results by applying multiple filters. For exam-
ple, in a social network settings such as Twitter, documents
can be defined as microblogs and their authors can be added
as facets. Using faceted search, the top-k users that appear
in the microblogs of the search results can also be displayed.
Other examples of facets can also be categories, topics, or
when the social network contains structured data [1], enti-
ties such as the communities that the search results belong
to.

In this paper we present a framework that utilizes faceted
search along with a novel realtime algorithm called RT-
Trends which calculates trending facets related to the search
results. This approach employs a two phase solution. First,
during indexing, we associate, as facets, to each document
the trending candidate entities along with their correspond-
ing information. Then, when a search query is issued, we
collect and aggregate, in real time, trend scores for each
candidate trend. We then rank them, and select the top-k
to be displayed.

We implemented the feature of detecting trending entities
within a search context into the Streamz [4] application. In
our experiments we examine how well the RT-Trends algo-
rithm can actually predict which entities exhibit increased
activity levels. As further validation we analyze the Streamz
query log and report on some encouraging results.

2. TREND SCORING
In this section, we describe the method for calculating

trend scores for a stream of events.

2.1 Intuition
We begin by describing the intuition behind our trend

scoring algorithm. Consider a community in a social net-
work (a trend candidate in the example), which for the past
month has had a relatively stable volume of activity within
it. As such, predicting future activity volumes can be based
on previous activity levels, even when they are not very re-

817

cent. Note that the term stability here implies relatively
small changes in daily frequencies. However, if a sudden
trend appears in the amount of activity then we except our
predicted value to significantly deviate from the actual vol-
ume of activity. This is due to the fact that our prediction
does not give high significance to recent activity volumes.
The idea is therefore to use this predicated error to derive a
trend score.

2.2 Computing an Entity’s Trend Score
Let C = ci, .., cn denote the time series representing the

occurrences of a trending entity candidate e in a sequence
of time intervals T = t1, .., tn. We begin by assuming that
the dataset behaves in a predictable manner (as described
in the intuition above) and we predict its volume based on
an Exponential Moving Average [6] as follows:

χi+1(e) = α · χi(e) + (1− α) · ci+1(e) (1)

We define the starting condition for the recursion to be
χ0(e) = 0. Note that α ∈ (0, 1) is a smoothing parameter,
which controls the weights of older versus newer values. As
stated before, when an entity is trending there is a sudden
and abrupt change in it’s arrival rate (volume per time in-
terval) which can not be predicted based on its previous be-
havior. In practice we set a high value to α. This captures
the underlying assumption that the rate of change is pre-
dictable. If there is a trend then this calculation will result
in an error. By aggregating these errors we get a quantita-
tive measure of how much the new behavior deviates from
the predicted one. The trend score can thus be based on
this aggregated error by the recursive formula bellow:

TSi+1(e) = TSi(e) + (ci+1(e)− χi(e)) (2)

The starting condition for the recursive formula is set to
be TS0(e) = 0. Note that not every time series that is
not predicted well by this Exponential Moving Average will
produce a high aggregated error. For example, white noise
will constantly exhibit prediction errors, yet when summing
these errors, since there are likely to be an equal number of
under predictions and over predictions, the aggregated error
will be close to zero. This is good since we would not like
such cases to be determined as being trendy.

2.2.1 Optimizing the Recursion
Since an entity is not necessarily active at each time in-

terval in the series it is possible to optimize Equation (2)
such that TSi+1(e) will be dependent solely on the values
of TSj(e) (j ≤ i) for which cj(e) 6= 0. This is an important
optimization since indeed the volumes in each time interval
yield a sparse vector. As a result, the trend score of an entity
can be updated only for time slots in which it actually oc-
curs. Let j be an index such that for every index j < k < i it
follows that ck(e) = 0 and cj(e) 6= 0. First, note that based
on Equation (1) as ck(e) = 0 it follows that χk+1 = α ·χk(e)
and therefore:

χi+1(e) = αi−j · χj(e) + (1− α) · cj(e) (3)

We can now develop Equation (2) as follows: (Note that
we use a shorthand notation here in which ∗i denotes ∗i(e)).

0

20

40

60

80

100

120

0 20 40 60 80 100 120

 arrival rate predicted trend score trend score with decay

Figure 1: The trend score is based on the difference
between the actual and predicted arrival rate. The
actual arrival rates in this Figure have been synthet-
ically generated for the purpose of illustration.

(a) TSi = TSi−1 + (ci − χi−1) =

(b) ci + TSi−2 − χi−2 − χi−1 = (since ci−1 = 0)

(c) ci + TSi−3 − χi−3 − χi−2 − χi−1 =

...
...

...

(*) ci + TSj − χj ·
i−j−1∑
k=0

αk

We can now rewrite Equation (2) based on previous values
that have been calculated only when the entity e occurs
within the corresponding time window.

TSi(e) = ci(e) + TSj(e) − χj(e) ·
i−j−1∑
k=0

αk (4)

2.3 Trend Decay Factor
In Figure 1, we see an example of the gap between the

predicted arrival rate, based on the exponential smoothing
method proposed above and actual arrival rate of an entity
as it becomes a trend. The figure also shows the trend score
as calculated by Equation (4). Note that the trend score
increases as the difference between the actual and predicted
rate grows and levels when the entity’s arrival rate conver-
gence to a new constant value. The problem is however,
that this new constant value is high and is the result of mis-
predictions (errors) that have occurred for older values. In
fact, note that for values of around i = 30 (in the x-axis)
the predictions become very accurate, i.e., the arrival rate no
longer deviates from its predicted value yet the trend score
remains high due to the fact that the entity “was” trending
in the past. We therefore need to add a decay factor to
“forget” past trends. Therefore, we introduce a slight modi-
fication to Equation (4) by multiplying it by a Decay Factor
β ∈ (0, 1).

TSi(e) = β · (ci(e) + TSj(e) − χj(e) ·
i−j−1∑
k=0

αk) (5)

818

The “trends with decay” line in bright green now shows
the new trend score with the decay for the example of the
trending entity presented in Figure 1. We now see that once
the entity’s rate is correctly predicted the trends score starts
to slowly decrease, as would be expected.

3. ALGORITHM AND EVALUATION
In this section we describe our dataset and the algorithm

that calculates trend scores based on the description in Sec-
tion 2 over our data and within a faceted search context.
We also present our experimental evaluation of the results.

3.1 The Dataset and Environment
To construct the dataset for our experiments we used so-

cial data from the activity stream of an enterprise social
network called IBM-Connections [1]. This data consists of
more than 800,000 individuals including employees, contrac-
tors and ex-employees. The activities consist of generating
and modifying several types of web entities, such as Blogs,
Wikis, Files and Discussion Forums. Another web entity
form is a Community [7] which groups together Blogs, Wikis,
Files and Forums pertaining to a certain topic.

To keep things simple, we defined our documents as Blogs,
Wikis, Files and Forums and, since each of them is con-
tained within a community, we define the communities as
our trending candidates (which are added as facets).

In addition, we implemented the“in-context trending com-
munities“ feature into a web application called Streamz [4]
which is deployed in our organization and has more than a
thousand internal users. This allowed us to track click rates
for each trending community shown based on its rank in the
top-5 trends results (1-5) including the overall clicks ratio of
the trends feature in general.

3.2 Application in Search Context
We next describe how we implemented our trends score

within a search context using the Apache Lucene Open Source
search framework. During the indexing phase a document
is created for social entities (in our case Blogs, Wikis, Files
and Forums) and the unique id of the containing community
is associated to that document as a facet 1. Note that we
could similarly add other associations like categories, top-
ics, users and others using the same method. The document
along with its facets are then indexed. In addition, during
indexing we also calculate our time intervals span denoted
T = {t1, t2, . . . , tn}.

The next phase occurs during search. Given a search
query q we retrieve the matching documents Dq along with
their associated facets denoted F (Dq). For a given facet
f ∈ F (Dq), let V Tf = {V Ti1 , V Ti2 , . . . , V Tifn} denote the
set of non-zero volumes per time intervals in T , i.e., V Tj

represents the number of times facet f appears in F (Dq)
within time interval Tj ∈ T . Note that zeros are not needed
due to the trend score calculation optimization described in
Section 2. We next compute the facet’s trend scores. This
can be done efficiently, in memory, by using Lucene’s facets
mechanism as next described. We start by mapping each
facet to its time interval in T and then aggregate the counts
to find V Tf for each facet. This represents the volume within
the corresponding time interval. Each V Tf is maintained in

1https://lucene.apache.org/core/4 0 0/facet/org/apache/
lucene/facet/doc-files/userguide.html

ascending order and is therefore a time series which we can
apply our trend score algorithm over. The trend score al-
gorithm of each V Tf is calculated in parallel. As the trend
scores are updated we also maintain a top-k list of the 5
trends with the highest trend scores. Based on trial and er-
ror we selected the values for the trend scoring to be α , β
which we report in the subsections below.

3.3 Evaluation Based on Prediction
In order to evaluate the RT-Trends algorithm we exam-

ined its ability to identify trending communities that con-
tain documents (Blogs, Wikis, Files and Forums) from the
search results of a given search query. We evaluate this by
checking to see if, in retrospect, these exhibit an actual in-
crease in their activity volume. Specifically, we examined
the algorithm’s ability to predict a volume increase within
a predefined time span ∆, called the Query Activity Time
Span, from the moment the search query is issued. Given
a community c and a search query at time t, we compare
the volume of activity in the community c during the time
window before the query, [t − ∆, t), namely the Prequery
Activity to that after the query, [t, t + ∆), herein the Post-
query Activity. If for a community c the postquery activity
is greater than the prequery activity we consider c to be an
Accurate Prediction with respect to the query and the ac-
tivity time span. To make sure the trends are meaningful,
we also report the average factor by which the postquery
activity actually increases.

In our experiments, we distinguish between short and long-
term trends. The former represent current and immedi-
ate topics of interests in the organization. Announcements
about new appointments, annual report publishing and in-
ternal conferences are just a few examples of events that
can trigger short term trends. These events are classified
as short term since they need to be quickly detected and
their effect usually subsides within a few days. Long term
trends, on the other hand, suggest slower but often more
significant changes that affect the organization. Examples
include adopting new technologies, releasing new products,
and starting a new line of business. Oftentimes, such trends
tend to exhibit slow and gradual changes but are neverthe-
less quite meaningful. Taking this into account, we sepa-
rately examined how well the algorithm can predict both
types of trends.

We began by selecting a random sample of user queries
from the query log of the Streamz application. Note that
these queries are typically more than just a set of keywords.
They commonly also contain constraints on employees or
departments as well as combinations of all the above. For
short term trends, we then picked the date and time ds of
each day within a time period of one month (the month was
selected arbitrarily) and set the query activity time span
∆s to be twelve hours. The queries above were then issued
while limiting them to return results before the date ds. For
each retrieved community, the prequery activity was com-
pared to the postquery activity. Similarly, for long term
trends we picked a date and time dl at the beginning of ev-
ery forth day in a time period of three months. We then
applied the RT-Trends algorithm as well as two baseline al-
gorithms to retrieve the trending communities relevant to
the given query. The first baseline algorithm, called Ran-
dom, merely selects ten communities relevant to the query
by random (in fact this is not really an algorithm, its merely

819

Trend Type Random Volume RT-Trends
Short Term 17.6% 39.0% 42.4%
(∆s = day) (α = 0.999, β = 0.999),

|t|=minute
Long Term 22.2% 25.8% 54.2%

(∆s = month) (α = 0.7, β = 0.765),
|t|=day

Table 1: Average percentage of accurate predictions
for each algorithm for short and long term trends.

the ratio of communities whose postquery activity is greater
than its prequery activity). The second baseline algorithm
called Volume selects ten communities from all the relevant
communities such that their volume of activity in a given
time window is the highest. For short term trends this time
window is defined to be the day prior to the query date and
for long term trends it is defined as the prior month. We
summarize the average percentage of accurate predictions
made by each algorithm for short and long term trends in
Table 1. The table also includes the activity time span and
values of α and β, and the time interval size denoted |t| used
for the RT-Trends algorithm.

3.3.1 Results Analysis
We start by looking at the, more important, long term

trends. Note that the volume of activity in the previous
month is a very weak indicator for long term trends whereas
the RT-Trend algorithm, which examines a finer granularity,
is able to significantly outperform both Random and Volume
by almost a factor of 2.5. Intuitively, the key difference lies in
the fact that the RT-Trends algorithm is based on a weighted
moving average which gives more weight to recent activities.

For short term trends, the Volume algorithm performs
much better than Random. This means that the activity
volume of the previous day is a significant indicator for the
activity volume of the next day. RT-Trends does not signif-
icantly outperform Volume in detecting short term trends
since looking at levels of activities of smaller time units than
a single day is not that significant. The reason is that in our
data the amount of activity in a single community per one
day is not high enough to merit such a fine-grained granu-
larity. In addition, short-term trends are somewhat noisier
and thus more difficult to predict than long-term trends.

We also report that the average factor by which the activ-
ity in communities found trendy by RT-Trends is 2.354 for
short term trends and 3.057 for long term trends. That is,
the algorithm finds communities that exhibit a significant
increase in their activity.

3.4 Analysis of User Log Data from Streamz
When displaying search results Streamz also depicts what

we refer to as a Search Analytics Box. This box con-
tains information about the search results such as the most
active people, topics, and the new addition of trending com-
munities. Since the launch of the trends feature in Streamz
we tracked user activity and found that in 19.8% of the
searches, the search analytics box was clicked. Out of these
clicks, 80% were on the trends feature, indicating that users
found this feature to be interesting. As the ranking of the
trending communities in the search context is based on the
trend score, we expect that the number of user clicks should
correlate with the rank. Table 2 depicts the percentage of

Rank 1 2 3 4 5
Clicks 38.5% 25.7% 15.6% 11.0% 9.2%

Table 2: Percentage of user clicks on trending com-
munities based on their rank in the results.

clicks on the trending communities by users based on their
rank in the results. The main point of this is to show that
there is no evidence of mis-ranked communities by the RT-
Trends algorithm.

4. CONCLUSION
In this paper, we introduce a new problem, namely finding

trending entities, in real time and within a dynamic search
context which is not known in advance. We devise a novel
framework and an algorithm called RT-Trends, which re-
trieves scores, ranks, and selects the top-k trending items
that are relevant to the search results. We implement the al-
gorithm using Apach Lucene’s Faceted Search and deployed
it into a web application used within the organization to
track its usage. The tool is used by thousands of users in
our organization and enables search and analytics capabili-
ties over streaming social media data.

In our experiments, we analyze the algorithm’s ability to
predict trends. We show that it predicts an actual growth in
the level of activity within communities relevant to answers
of user queries. Moreover, we show that the average factor
by which the activity increases is also significant. Analysis
of the Streamz query log shows that a high percentage of
users that use the Search Analytics Box click specifically on
the trends feature. Finally, we also show that a correlation
exists between how we rank trending communities and the
number of clicks they receive in the analytics box by users.

5. REFERENCES
[1] IBM-Connections.

www-03.ibm.com/software/products/en/conn, 2007.

[2] Z. Al Bawab, G. H. Mills, and J.-F. Crespo. Finding
trending local topics in search queries for
personalization of a recommendation system. In
SIGKDD 2012.

[3] N. G. Golbandi, L. K. Katzir, Y. K. Koren, and R. L.
Lempel. Expediting search trend detection via
prediction of query counts. In WSDM 2013.

[4] I. Guy, T. Steier, M. Barnea, I. Ronen, and T. Daniel.
Swimming against the streamz: search and analytics
over the enterprise activity stream. In CIKM 2012.

[5] J. Kleinberg. Bursty and hierarchical structure in
streams. In SIGKDD 2002.

[6] S. Roberts. Control chart tests based on geometric
moving averages. Technometrics, 1(3):239–250, 1959.

[7] I. Ronen, I. Guy, E. Kravi, and M. Barnea.
Recommending social media content to community
owners. Proc. SIGIR ’14, pages 243–252. ACM, 2014.

[8] D. Tunkelang. aceted search (synthesis lectures on
information concepts, retrieval, and services). Claypool:
Morgan, 2009.

[9] X. Zhou, S. Wu, C. Chen, G. Chen, and S. Ying.
Real-time recommendation for microblogs. Information
Sciences, 2014.

820

