
What Are You Known For? Learning User Topical Profiles with
Implicit and Explicit Footprints

Cheng Cao∗, Hancheng Ge∗, Haokai Lu, Xia Hu, and James Caverlee
Department of Computer Science and Engineering

Texas A&M University
chengcao@tamu.edu,{hge,hlu,hu,caverlee}@cse.tamu.edu

ABSTRACT
User interests and expertise are valuable but o�en hidden resources
on social media. For example, Twi�er Lists and LinkedIn’s Skill
Tags provide a partial perspective on what users are known for
(by aggregating crowd tagging knowledge), but the vast majority
of users are untagged; their interests and expertise are essentially
hidden from important applications such as personalized recom-
mendation, community detection, and expert mining. A natural
approach to overcome these limitations is to intelligently learn user
topical pro�les by exploiting information from multiple, hetero-
geneous footprints: for instance, Twi�er users who post similar
hashtags may have similar interests, and YouTube users who upvote
the same videos may have similar preferences. And yet identifying
“similar” users by exploiting similarity in such a footprint space
o�en provides con�icting evidence, leading to poor-quality user
pro�les. In this paper, we propose a uni�ed model for learning user
topical pro�les that simultaneously considers multiple footprints.
We show how these footprints can be embedded in a generalized
optimization framework that takes into account pairwise relations
among all footprints for robustly learning user pro�les. �rough
extensive experiments, we �nd the proposed model is capable of
learning high-quality user topical pro�les, and leads to a 10-15%
improvement in precision and mean average error versus a cross-
triadic factorization state-of-the-art baseline.
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1 INTRODUCTION
In social media systems, demographic pro�les — o�en including
name, age, gender, and location — provide an important �rst step
toward creating rich user models for information personalization.
For example, a user’s location can be a signal to surface local content
in the Facebook newsfeed. �ese demographic pro�les typically
reveal very li�le about a user’s topical interests (what she likes)
or expertise (what she is known for). Hence, there is great e�ort
toward building high-quality user topical pro�les, toward improving
user experience and powering important applications like person-
alized web search [42], recommendation system [13, 33], expert
mining [11], and community detection [53].

Indeed, there are two major approaches to build the topical
pro�les for social media users. One thread of methods seeks to
uncover latent factors that may be descriptive of a user. For ex-
ample, running Latent Dirichlet Allocation (LDA) over a user’s
posts in social media can reveal the topics of interest of the user
[28, 34, 48]; similarly, matrix factorization approaches have proven
popular at capturing user factors, o�en for personalization purposes
[14, 15, 21, 33, 42, 51, 56]. Aside from such recommendation appli-
cations, latent factor models have also been used to �nd in�uential
users, mine communities, and predict review quality [31, 48, 53].
Another thread of methods seeks to encourage social media users to
directly assess each other’s interests and expertise, providing a par-
tial perspective on user topical pro�les. For example, LinkedIn users
can choose skill tags for their own pro�les and can endorse these
tags on the pro�les of others. Twi�er Lists allow users to organize
others according to user-selected keywords, e.g., placing a group of
popular chefs on the list “Top Chefs”. In this way, some list names
can be viewed as a topical tag for list members. In the aggregate,
this crowd-contributed tagging knowledge can be viewed as explicit
evidence for capturing user interests and expertise [4, 11, 39].

Both approaches, however, face great challenges. Approaches
that identify latent topics (o�en, as a distribution over features
in some lower dimensional space) are typically trained only over
content (ignoring other important footprints) and are di�cult to di-
rectly interpret. Methods that only use crowdsourced tags typically
su�er from limited coverage; that is, while the hand-curated tags
may be of high-quality, very few users actually have descriptive
topical tags associated with them. For example, in a random sample
of 3.5 million Twi�er users, we �nd that only 2% have been labeled
with a topical tag (more details in Section 5). Moreover, to be�er
understand user topical interests and expertise, a more comprehen-
sive pro�ling framework is necessary. For instance, it is unclear
what kind of evidence is useful for user topical pro�ling. And how
can such potentially heterogeneous evidence be modeled for user
topical pro�ling?
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Hence, in this paper, we propose to exploit heterogeneous foot-
prints (e.g., tags, friends, interests, behavior) for intelligently learn-
ing user topical pro�les. Based on a small set of explicit user tags,
our goal is to extend this known set to the wider space of users
who have no explicit tags. �e key intuition is to identify “similar”
users in terms of their topical pro�les by exploiting their simi-
larity in a footprint space. For instance, Twi�er users who post
similar hashtags may have similar interests, and YouTube users
who upvote the same videos may have similar preferences. Such
evidence of homophily has been widely studied in the sociological
literature [35] and repeatedly observed in online social media, e.g.,
[5, 7, 26, 46, 49]. But what footprint spaces are appropriate for �nd-
ing this homophily? What impact do they have on the discovery of
user topical pro�les? And which footprints are more e�ective at
uncovering topical pro�les?

Toward answering these questions, the rest of this paper makes
the following main contributions:
• First, we formulate the problem of learning user topical pro-

�les in social media, with a focus on leveraging heterogeneous
footprints.
• Second, we demonstrate how to model di�erent footprints (e.g.,

like interests, social, and behavioral footprints) under this frame-
work, and we present a uni�ed 2-D factorization model in which
we simultaneously consider all of these footprints (called UTop).
• �ird, we then extend this initial approach through a generalized

model that integrates the pairwise relations across all poten-
tial footprints via a tensor-based model (called UTop+), which
provides a more robust framework for user pro�le learning.
• Finally, through extensive experiments, we �nd the proposed

UTop+ model is capable of learning high-quality user topical
pro�les, and leads to a 10-15% improvement in precision and
mean average error versus a state-of-the-art baseline. We �nd
that behavioral footprints are the single strongest factor, but that
intelligent integration of multiple footprints leads to the best
overall performance.

2 RELATEDWORK

Finding User Interests and Expertise. Finding user interests
and expertise has numerous applications, and one of the most popu-
lar tasks is personalized search and recommendation. Considerable
research [13, 14, 21, 33, 34, 42, 54, 56] has been dedicated to uncover
users’ latent interests or expertise as their personal preferences for
building recommender systems in di�erent domains, such as web
search [34, 42], web content [56], rating systems [20, 33], and social
media [14, 15, 21, 54].

For social media research, the latent factor model is a state-of-the-
art method for user recommendation. Interpreting the latent factors
as topics, approaches based on such a model usually avoid explicitly
identifying user interests but instead integrate the factors into a
recommendation task. For example, Hong et al. applied matrix fac-
torization on both users and tweets and focused on recommending
user’s retweeting behavior [15]. Similarly, Jiang et al. presented a
probabilistic matrix factorization method to recommend whether a
user adopts an item on a social network [21]. Zhong et al. collected

user’s webpage views to build a matrix factorization pro�le for web
content recommendation [56].

Leveraging Footprints. A sequence of research has focused on
using various footprints to learn user interests. One of the most
traditional approaches is to model text-based footprints to obtain
users’ latent topical preferences, as in the case of PLSA and LDA [37,
38, 48, 53]. Another popular footprint is social (o�en via friendships)
[21, 32, 36], with the natural homophily assumption that friends
tend to have similar pro�les. In addition, behavioral footprints have
become a newer factor; for example, Guy et al. used a user’s tagging
behavior as evidence for content recommendation [13]. Lappas et
al. considered user endorsement as a behavioral signal [27]. In [54],
Zhao et al. focused on the behaviors of commenting, “+1”, and
“like” on Google+. Some of the other footprints that have been
explored in previous works include user’s emotions and sentiment,
geo-location, temporal context and linguistic activity. For example,
Hu et al. [17, 18] proposed an unsupervised factorization approach
for user sentiment analysis through emotional signals. Lu et al. [30]
considered user’s geographical footpints to discover what people
are known-for. Yin et al. [51] proposed a probabilistic graphical
method to model user’s temporal interest for item recommendation.
Hu et al [19] applied a factorization method to infer linguistic
properties of user’s documents. However, typically, these di�erent
footprints have been treated separately.

Factorization Models. Technically, it is challenging to embed
users’ heterogeneous footprints into a factorization model. A hand-
ful of studies have adopted a regularization model [29, 31, 33] for
personalized recommendation, though typically focusing on only
one footprint. In [20], latent spaces are learned separately for each
footprint through probablisitc matrix factorization assuming they
are not independent. Tensor-based factorization methods [2, 8]
have been used in many applications such as behavior modeling,
healthcare, and urban planning [22, 47, 55]. A more comprehensive
survey of tensor factorization and its applications can be found in
[24]. In contrast, we �rst propose a factorization model in which
we simultaneously consider multiple contexts via linearly weighted
regularization. We then extend the model with a generalized tensor-
based factorization so that not only di�erent types of footprints
can be considered together but their multi-linear interactions with
each other can be exploited.

Several studies have focused on heterogeneous domains or en-
tities, instead of contexts. Yu et al. put mutiple types of entities
into a heterogeneous network and used a Bayesian ranking pro-
cess to estimate user preferences [52]. Similarly, Hu et al. looked
into a traditional user-item recommendation problem, presenting a
factorization model across heterogeneous items. However, the net-
work will quickly grow when users and items increase. Singh and
Gordon proposed a framework to learn di�erent types of relations,
where they iteratively do matrix factorization between all pairs
of domains [43]. Hu et al. [16] adopted the existing PARAFAC2
factorization algorithm on a tensor model, which is obtained by
combining user ratings of di�erent merchandises like book, music,
and movie. Zhong et al. [56] directly applies a matrix factorization
model on Web users and their clicked content items. However, in
this work, we focus on learning user topical pro�les rather than
recommending item ratings for users.
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Personalized Tag Recommendation. Another related research
line focuses on personalized tag recommendation for users in social
tagging systems [9, 25, 40, 41, 45, 50]. For example, Rendle et al.
[40, 41] proposed tensor factorization to suggest tags to users for
annotation on di�erent items. Feng et al. [9] modeled social tagging
as a multi-type graph and proposed random walk with restart for
tag recommendation. Konstas et al. [25] also proposed a modi�ed
random walk with restart by exploiting social relationships and
tagging for item recommendation. Our work is di�erent from
personalized tag recommendation in two aspects. �e �rst is that
we use crowdsourced tags to represent user’s interests and expertise
instead of annotating items in social systems. �e second is that our
problem is to infer users’ topical pro�les through tags for unknown
users based on their di�erent footprints rather than recommend
tags based on partial knowledge of a user’s pro�le.

3 PRELIMINARIES
Explicit Footprints. Let U = {u1,u2, . . . ,uN } be a set of users
where N is the number of users, andT = {t1, t2, . . . , tM } is a set of
M tags each of which is associated with a particular topic. Suppose
we have a subset of users S ⊂ U where each user ui ∈ S has
been labeled with a subset of T , typically based on the collective
e�orts of the crowd. In this paper, we refer to such labels as explicit
footprints. Practical examples of explicit footprints include LinkedIn
Skill Tags and Twi�er Lists, wherein users can provide a crowd-
sourced summary of a user’s interests and expertise [4, 11, 39]. We
denote the explicit footprints as the user-tag matrix P ∈ R |S |×M in
which element P(i, j) represents the number of times ui is labeled
by tj .
Learning User Topical Pro�les. Given a set of users U, a set of
tagsT , and a subset of users S ⊂ U for whom we know their user
topical pro�les P , the problem of Learning User Topical Pro�les is
the task of inferring the unknown tags from T for users in U − S.
An Initial Attempt with Explicit Footprints Only. A natural
choice for a�acking the challenge of learning user topical pro�les is
the matrix completion approach, which has been adopted in many
related works [15, 43, 52, 56]. Under a matrix completion approach,
we can extend P to a larger matrixX ∈ RN×M by including all users
of U. �en, we can formulate the learning user topical pro�les
problem as a matrix completion problem:

min
U ,V

1
2 ‖Ω � (X −UVT )‖2F ,

s. t. U ≥ 0,V ≥ 0,
(1)

where X is a user-tag matrix, and U ∈ RN×K and V ∈ RM×K
are latent representations of users and tags, respectively. K �
min(N ,M) is the number of latent dimensions. Since the given X is
naturally non-negative, we add the same constraints forU andV so
that we can be�er interpret the values in them. Ω is a non-negative
matrix with the same size of X :

Ω(i, j) =
{

1 if X (i, j) is observed,
0 if X (i, j) is unobserved.

�e basic matrix completion model above learns an optimal
set of {U , V } to approximate the original matrix X , estimating
for unobserved users through observed user-tag pairs. However,

as in many linear-inverse problems, there may not be su�cient
information to estimate the original matrix X based only on the
partially observed data. �e problem of learning user topical pro�les
is one such case, since most of our target users do not have any
partially explicit footprint.

Implicit Footprints. With the scarcity of explicit footprints in
mind, we are interested to explore the potential of implicit footprints
for learning unknown user topical pro�les. Implicit footprints may
indirectly re�ect user interests or expertise. Typical implicit foot-
prints, for example, could include user behaviors, the social circle of
a user, sentiment-based features of a user’s posts, the geo-location
of a user, emotional cues, and temporal dynamics, among many
others [13, 17–19, 21, 27, 30, 32, 36, 51, 54]. �e key intuition is to
identify “similar” users in terms of their topical pro�les by exploit-
ing their similarity via these implicit footprints. Since evidence
from these heterogeneous implicit footprints may provide con�ict-
ing evidence, potentially leading to lower quality user pro�les than
considering footprints in isolation, we propose a generalized op-
timization framework that takes into account pairwise relations
among all possible implicit footprints for learning user pro�les. In
this way, the bene�ts of each footprint may be intelligently com-
bined to �nd the best evidence across multiple implicit footprints
for learning high-quality user pro�les.

4 LEARNING USER TOPICAL PROFILES
We turn in this section to propose a generalized model for learning
user topical pro�les. We �rst identify multiple implicit footprints
and demonstrate how to model them. We then introduce a matrix
factorization based approach — called UTop, before extending this
version to a more general tensor-based approach — called UTop+.

4.1 Modeling Implicit Footprints
We aim to integrate many di�erent kinds of implicit footprints into
the framework for learning user topical pro�les. For the concrete-
ness in our discussion, we focus in this section on three speci�c
types of implicit footprints that capture three di�erent perspectives
on user topical pro�les. �e three footprints are: social, based on
the friends (via the social graph) around the user; interest, based
on the text posts made by the user; and behavioral, based on the
URL sharing activities of the user. �e intuition is that these varied
implicit footprints can connect related users, such that user topical
pro�les can be propagated from user to user. But how should we
model these kinds of implicit footprints? And how can we integrate
them into a matrix completion model? Note that the proposed
model can be easily extended to incorporate additional footprints.

Social Footprints. Social footprints — directly suggested by ho-
mophily — naturally indicate that connected users may share com-
mon interests, and hence can be used for inferring user topical
pro�les [13, 21, 32, 36]. For example, if Carol and David are follow-
ing each other on Twi�er, the social footprint suggests that it is
more likely for them to share common interests.

�ese social network connections between users can be naturally
modeled as a matrix. We denote the matrix as E ∈ RN×N in which
the binary element E(i, j) represents if user ui and user uj have a
connection on a social network. We can model this social footprint
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(a) Text-based Interest Footprint (b) Behavioral Footprint

Figure 1: Examples of Di�erent Implicit Footprints on Learning User Topical Pro�les

as a regularization term:

L1 =
1
2 ‖E −UUT ‖2F .

Our goal is to optimize the user latent matrix U in order to
minimize L1, with the intuition that friends are likely to have
similar pro�les. Of course, users may form relationships in social
media for many diverse reasons, and so these relationships may
not be appropriate for inferring similar topical pro�les. As one
example, family members may be “friends” in a social network but
can have distinct topical pro�les (e.g., sister vs brother, grandson vs
grandfather). Hence, we next consider additional implicit footprints
that may serve to mitigate these challenges.
Interest Footprints. �e second footprint we consider is based on
user interests. Texts posted by users can semantically re�ect related
subjects associated with their interests or expertise. �us, many
studies have directly applied LDA on posted texts, assuming the
(latent) topics in user’s posts are their topical pro�les [28, 34, 48].
In Figure 1a, Alice is a basketball fan and she has posted many
tweets talking about the upcoming NBA all-star game. We �nd
Bob’s tweets share many of the same words as Alice’s. Hence,
their posted texts demonstrate their shared interests in basketball,
suggesting that Alice’s user topical pro�le may be similar to Bob’s.

We can model this text-based interest footprint like so: let w =
{w1,w2, . . . ,wL} be the set of words, where L denotes the number
of words. A ∈ RN×L is a user-word matrix in which A(i, j) is the
frequency of word w j appearing in user ui ’s posts. Similarly, B ∈
RM×L is a tag-word matrix where B(i, j) represents the frequency
of word w j posted by all users who have tag ti . We propose to
leverage a user’s interest footprint as the following loss function:

L2 =
1
2 ‖A −UWT ‖2F +

1
2 ‖B −VW

T ‖2F ,

whereW ∈ RL×K represents word’s latent topics. Our goal is to
minimize L2 so that two users who are “nearby” in the interest
footprint space tend to have similar topical pro�les. However,
a user’s posts are o�en short (like on Twi�er) and may contain
many nonsense or o�-topic texts, which can interfere with clearly

revealing user topical pro�les. Hence, we next turn to a third
footprint for overcoming these issues.
Behavioral Footprints. Finally, we propose to augment the so-
cial and textual footprints with behavioral footprints [13, 27, 54].
According to the homophily evidence in the behavior dimension
[35], for instance, two YouTube users may have close tastes if they
usually “like” or “dislike” the same videos. A retweet on Twi�er is a
strong indication of the retweeter’s personal endorsement, so two
users can have similar preferences if they o�en retweet the same
tweets. Hence, these behavioral footprints may provide strong evi-
dence beyond who users are connected to (social) and what they
post (interests).

In this paper, we adopt URL sharing as a public, observable be-
havior that may serve as a �rst step toward improving the learning
of user topical pro�les. Other behavioral footprints are possible,
and we anticipate revisiting these in our future work. URL shar-
ing behavior for topical pro�les has received some a�ention in
social media research. Previous work looked into why and what
content people share via URLs in social media [3, 44]. Some other
work has mentioned the role of URL sharing in social spamming
[10]. �rough URL sharing, users can concisely express their view-
points, interests, and professional expertise. For instance, a person
who works in the IT industry may usually post URLs linking to
engadget.com. A user who likes sports may o�en share URLs of
espn.com. In Figure 1b, Carol is a political journalist so she regu-
larly posts some URLs linking to hu�ngtonpost.com, and we see
David also usually shares the same URLs. In this case we may infer
politics-relevant tags for David.

Concretely, let Z = {z1, z2, . . . , zP } be the set of URLs posted by
users. Similar to the interest footprint, we de�ne C ∈ RN×P as a
user-URL matrix where C(i, j) is the frequency of URL zj posted
by user ui . Also, D ∈ RM×P is a tag-URL matrix with D(i, j) as
the frequency of URL zj appearing in all posts from users having
tag ti . As a result, we leverage URL sharing via the following loss
function:

L3 =
1
2 ‖C −UGT ‖2F +

1
2 ‖D −VG

T ‖2F ,
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where G ∈ RP×K represents URL’s latent topical spaces. Our goal
is to minimize L3, with the idea that users may have similar topical
pro�les if they behave similarly when posting URLs.

4.2 Learning User Topical Pro�les: A 2-D
Model

Since evidence from multiple implicit footprints may provide con-
�icting evidence, potentially leading to lower quality user pro�les
than considering footprints in isolation, we turn in this section to
developing a uni�ed model that can integrate all possible hetero-
geneous footprints together into a matrix (2-D) completion model.
Since all implicit footprints are modeled as regularization terms in
Section 4.1, intuitively we can linearly incorporate them into the
proposed UTop model. Again, recall that we focus our presentation
here on those three speci�c footprints (social, interest, behavioral),
but the model is designed to generalize to more alternative foot-
prints as well.

Figure 2 gives an overview of UTop. In general, we factorize
each of the social, interest, and behavioral footprint matrices, and
assume that the objective user-tag matrix shares the same latent
user dimensions with them. �is is the fundamental assumption in
most factorization-based methods for solving matrix completion
problems. We also consider explicit footprints. Similarly, we collect
each tag’s latent representation, and multiply them with each user’s
latent factor for estimating the objective matrix.

Concretely, we formulate the following optimization problem as
following:

min
U ,V ,W ,G

F = 1
2 ‖Ω � (X −UVT )‖2F

+
λ

2 (‖A −UWT ‖2F + ‖B −VW
T ‖2F )

+
γ

2 (‖C −UGT ‖2F + ‖D −VG
T ‖2F )

+
δ

2 ‖E −UUT ‖2F

+
α

2 (‖U ‖
2
F + ‖V ‖

2
F + ‖W ‖

2
F + ‖G‖

2
F )

s. t. U ≥ 0,V ≥ 0,W ≥ 0,G ≥ 0,

(2)

where λ, γ , δ and α are positive regularization parameters con-
trolling the contributions of di�erent implicit footprints. ‖U ‖2F ,
‖V ‖2F , ‖W ‖2F and ‖G‖2F are deployed to avoid over��ing. Similar
to Equation 1, we insert the non-negative constraints for U , V ,W ,
and G.

�e derivation of the objective function in Eq.(2) regarding four
variables U , V ,W and G are demonstrated as:

∂F
∂U
= − Ω � Ω � (X −UVT )V − λ(A −UWT )

− γ (C −UGT ) − 2δ (E −UUT ) + αU ,
∂F
∂V
= − ΩT � ΩT � (XT −VUT )U − λ(B −VWT )

− γ (D −VGT ) + αV ,
∂F
∂W

= − λ(AT −WUT )U − λ(BT −WVT )V + αW ,

∂F
∂G
= − γ (CT −GUT )U − γ (DT −GVT )V + αG .

(3)
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Figure 2: An Overview of the 2-D Model (UTop)

Based upon these derivations, we then apply stochastic gradient
descent to iteratively update each variable by taking a step η along
its gradient ascending. �e algorithm details are presented in Al-
gorithm 1 in which learning steps ηu , ηv , ηw and ηд are chosen
based upon the Goldstein Conditions [12]. We implement the non-
negative constraints on U and V through forcing their negative
values to 0 in each iteration. As shown, this algorithm considers all
three footprints together to estimate the topical pro�les for each
user.

Algorithm 1: UTop Solver
Input: user-tag matrix X , user-word matrix A, tag-word

matrix B, user-url matrix C , tag-url matrix D, user
friendship matrix E, observation indication matrix Ω
and parameters {λ,γ ,δ , ρ,η}

Output: U ,V
1 Initialize U , V ,W and G randomly, t = 0
2 while Not Converged do
3 Compute ∂F

∂U , ∂F
∂V , ∂F

∂W and ∂F
∂G in Eq.(3)

4 Update Ut+1 ← max(Ut − ηu ∂F
∂U , 0)

5 Update Vt+1 ← max(Vt − ηv ∂F
∂U , 0)

6 UpdateWt+1 ← max(Wt − ηw ∂F
∂U , 0)

7 Update Gt+1 ← max(Gt − ηд ∂F
∂U , 0)

8 t = t + 1
9 returnU and V

�ough unifying all three heterogeneous implicit footprints, this
initial UTop approach has two main drawbacks. First, it will become
complex if we introduce additional footprints, as we bring in more
controlling parameters of new footprints to be tuned. In addition,

Session 7A: Social SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

747



UTop does not take into account the relations between those het-
erogeneous footprints which could be jointly explored in the latent
space. Given these concerns, can we �nd a generalized model that
can jointly leverage all potential heterogeneous footprints? We
turn in the following section to answering this question.

4.3 Learning User Topical Pro�les: A
Generalized Model

In this section, we augment UTop with a generalized approach to-
ward jointly exploring the relationships across footprints for more
robust user topical pro�le learning. First, to relieve the dramatic in-
crease of parameters when introducing more regularization terms,
we need to replace the linear combination model in UTop by a more
compact factorization model without manually tuning tradeo� pa-
rameters from di�erent new footprints. Second, such a compact
factorization model should consider all possible pairwise interac-
tions between footprints to exploit their multi-linear relationships.
�erefore, we adopt a tensor factorization model which explicitly
takes into account the multi-way structure of data. Moreover, the
factorization will only happen once even if we introduce additional
heterogeneous footprints.

Figure 3 shows an overview of UTop+. In general, we model all
implicit footprints in one tensor via calculating the user similarity in
each footprint space. �ere can be many options for measuring the
user similarity in every footprint space. We test many of them and
report the one providing the best performance in Section 5. �en,
we factorize the tensor and obtain a matrix of latent representations
for all users, upon which we extract a user similarity matrix to
estimate the original user-tag matrix.

Us
er

Behaviors
Social

Textual

Us
er

User

Us
er

Latent Dimensions
User Similarity Matrix

Calculate
Similarity

User-Tag Matrix

Figure 3: An Overview of the Generalized Model (UTop+)

Concretely, we denote the tensor as C ∈ RN×N×R which is a
multidimensional array where R is the number of implicit footprints
and N is the size of the user set. We can factorize the tensor C to
one latent user matrices Q ∈ RN×K and one latent context matrix
Y ∈ RR×K , where K is the number of latent dimensions. �e tensor

factorization is to solve the optimization problem de�ned below:

min
Q ,Y

1
2 ‖C − [[Q,Q,Y ]]‖

2
F +

α

2 (‖Q ‖
2
F + ‖Y ‖

2
F ), (4)

where [[Q,Q,Y ]] ∈ RN×N×R is given by

[[Q,Q,Y ]] =
K∑
k=1

qk ◦ qk ◦yk .

Here qk and yk are the kth column vectors of Q and Y , respec-
tively. To solve Eq.(4), we adopt the existing CPOPT method [1] —
a ��ing approach for the CP (Canonical-decomposition / Parallel-
factor-analysis (PARAFAC)) model. �e latent footprint matrix
Y represents the contribution of each type of footprint to latent
dimensions.

�e next natural question is how to leverage the new latent space
Q of all users. �e basic idea is that two users tend to have similar
topical pro�les if they have similar latent representations derived
by jointly considering all their implicit footprints. �us, we �rst
calculate the user similarity matrix denoted as Ψ computed from
latent features of users Q by the cosine similarity. We can see Q as
a “new footprint” and formulate it as the new loss function:

Θ =
1
2
∑
i, j

Ψ(i, j)‖Ui −Uj ‖2

=
∑
i, j

UiΨ(i, j)Ui
T −

∑
i, j

UiΨ(i, j)Uj
T

=
∑
i
UiD(i, i)Ui

T −
∑
i, j

UiΨ(i, j)Uj
T

= tr(UT (D − Ψ)U )

= tr(UTLU ),

(5)

where Ui is the ith row of U , tr (· ) denotes the matrix trace, and D
is a diagonal matrix in which D(i, i) = ∑

j Ψ(i, j), and L = D − Ψ
is the graph Laplacian of the user similarity matrix Ψ.

How can we utilize the new implicit footprint Θ to learn user
topical pro�les? Similarly, we are able to use Θ to regulate latent
representations of two similar users to make them as close as pos-
sible. Hence, we can build the generalized UTop+ by solving the
following optimization problem:

min
U ,V

1
2 ‖Ω � (X −UVT )‖2F +

β

2 tr(UTLU )

+
α

2 (‖U ‖
2
F + ‖V ‖

2
F ),

s. t. U ≥ 0,V ≥ 0,

(6)

where β is the controlling parameter. �is optimization problem
can be solved similarly as introduced in Section 4.2. �e detailed
solver is presented in Algorithm 2.

In summary, we �rst present a 2-D model for learning user
topical pro�les (called UTop) in which each of three heterogeneous
implicit footprints is modeled as regularization terms. We provide
Algorithm 1 to solve the optimization problem in Equation 2. �en
we extend UTop to a compact generalized model (called UTop+).
Based on a tensor decomposition method, UTop+ can jointly handle
relationships across multiple footprints without introducing new

Session 7A: Social SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

748



Algorithm 2: UTop+ Solver
Input: user-tag matrix X , user-word matrix A, user-url matrix

C , user friendship matrix E, observation indication
matrix Ω and parameters {α , β ,ηu ,ηv }

Output: U ,V
1 Calculate the tensor C from A, C and E

2 Calculate [Q,Y ] ← CPOPT(C)
3 Calculate the user similarity matrix Ψ based on Q

4 Construct the graph Laplacian matrix L for Ψ
5 Initialize U and V , randomly, t = 0
6 while Not Converged do
7 Compute ∂F

∂U = −(Ω � Ω)(X −UVT ))V + βLU

8 Compute ∂F
∂V = −(Ω

T � ΩT )(XT −VUT ))U
9 Update Ut+1 ← max(Ut − ηu ∂F

∂U , 0)
10 Update Vt+1 ← max(Vt − ηv ∂F

∂U , 0)
11 t = t + 1
12 returnU and V

parameters. �e complete overview of UTop+ is shown in Figure 3,
and we propose Algorithm 2 to solve Equation 6.

5 EXPERIMENTS
In this section, we conduct a series of experiments to answer the
following questions: (i) How well do the proposed UTop and UTop+
models work? (ii) Which implicit footprints are most e�ective?
(iii) How does UTop+ compare with other alternatives? Does it
really improve upon the simpler UTop approach? (iv) How do
the proposed approaches compare to other variants?; and (v) What
impact do the model parameters have on the ultimate performance?
We begin by introducing the experimental setup including dataset
collection and evaluation method.

5.1 Experiment Setup
In this section, we start with describing the data we collect. Next,
we introduce the metrics we use for evaluation. Finally, we provide
the details of three baselines, and show the parameter se�ings we
choose in our proposed models.

Twitter Lists. We adopt Twi�er Lists, a large publicly-accessible
collection of crowd-contributed tagging knowledge for social media
users. Recall that these lists allow one user to annotate another
with a list name (or tag), e.g., politics, music, art. Via the public
Twi�er API, we randomly sample a set of 3.468 million Twi�er
users, and crawl the list membership information for each of them.
We identify 977,000 users who have ever been included in some list,
but we �nd a huge amount of noise. For instance, nonsense tags
(like numbers, unicode characters, single le�ers) take up a major
proportion. Many tags (e.g., “friend”, “love”, and “amigo”) are not
re�ective of topical pro�les. Also, there exist many near-synonyms
and variants such as “writer-author” and “news-noticia”. To obtain
high-quality tags for our problem, we rank all tags by the number
of labeled users, and manually curate the top-500 tags through
merging variants and �ltering noise.

Implicit Footprints. For interest footprints, we aggregate all
terms each user has posted and adopt the standard LDA topic model
a�er �ltering stopwords and stemming. We further measure user
similarity by calculating the pairwise Jensen-Shannon divergence.
For social footprints, we crawl the friendship connection informa-
tion for each user. Following a user can be quite casual on Twi�er,
so we focus on mutual followings as the basis of user similarity in
the social footprint space. For behavioral footprints, we aggregate
all URLs a user has posted in her tweets and obtain the posting
counts. We resolve all crawled URLs (most are shortened) to take
care of URL variants, and focus on the URL domain name which
conceptually represents a website. For quantifying similar URL
sharing pa�erns, we test a set of measurements (e.g., intersection,
cosine, jaccard) and �nd the one in [6] works best.

Users. We collect a set of 72,096 users who have all those three
types of implicit footprints and have been labeled by at least one
of the candidate tags. Since many of them have sparse tagging
information, we rank all users by the number of tags they have. We
look into the top 50,000 users, and randomly select 10,000 users for
training and evaluation.

In our proposed models, we end up with scores of all candidate
tags for each user. Since we should take those most associated tags
as user topical pro�les, we rank them in descending order and focus
on the top-k ranked tags. Our evaluation is based on ten-fold cross
validation.

Metrics. We pick several metrics which can cover di�erent eval-
uation aspects. On the one side, we would like to see the ratio of
correct inferences for learning user topical pro�les. And on the
other side, we want to measure the prediction error. �us, we adopt
precision@k which measures the percentage of correctly estimated
top-k tags, and Mean Absolute Error (MAE) which quanti�es the
prediction quality in terms of errors. Note that a lower MAE means
a be�er performance.

Furthermore, besides the absolute measurement in accuracy, the
relative ranking order is another important perspective, especially
in some recommendation scenarios. �e rank correlation coef-
�cients of both Kendall’s τ and Spearman’s ρ are two prevalent
metrics for measuring rank-based agreement across two lists. We
use them both to measure the number of pairs of tags that are
correctly ordered from our results. �eir values both range from -1
to 1, with the higher the more relevant.

Baselines. We select three baselines as alternatives to the proposed
UTop+ approach. To be fair, we incorporate all three proposed
footprints and maintain the same experimental setup for all the
following approaches:
• Nearest Neighborhood (NN). An intuitive solution is based on

the traditional nearest neighborhood model. A user is modeled
by a vector extracting from the corresponding row in the context
matrix, i.e., A, C , or E. �en, for each target user, we separately
�nd a set of closest seed users in each context, and pick the
intersected neighbors from whom we propagate their tags and
scores and take the average for each tag.
• Cross-domain Triadic Factorization (CTF) [16]. �is state-

of-the-art method directly combines user ratings of di�erent
merchandise (e.g., book, music, movie) into one tensor model,
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Table 1: �e Impact of Di�erent Implicit Footprints for Learning User Topical Pro�les

Method Precision MAE Kendall’s τ Spearman’s ρ
Top 5 Top 10 Top 15 Top 5 Top 10 Top 15 Top 5 Top 10 Top 15 Top 5 Top 10 Top 15

NN (T) 0.2113 0.2356 0.2673 0.2914 0.2692 0.2432 0.2460 0.1687 0.1531 0.3054 0.2262 0.1784
NN (S) 0.1920 0.2153 0.2330 0.3048 0.2791 0.2642 0.2110 0.1420 0.1289 0.2670 0.1852 0.1682
NN (B) 0.2423 0.2629 0.3155 0.2650 0.2342 0.2110 0.2826 0.2044 0.1834 0.3314 0.2429 0.2106
UTop (T) 0.3438 0.3791 0.4668 0.2264 0.2069 0.1897 0.3221 0.2464 0.2031 0.4163 0.2987 0.2409
UTop (S) 0.3390 0.3837 0.4561 0.2298 0.2093 0.1887 0.3172 0.2421 0.2003 0.4135 0.2916 0.2341
UTop (B) 0.3556 0.3980 0.4733 0.2275 0.1982 0.1699 0.3286 0.2557 0.2067 0.4302 0.3015 0.2426
UTop (T+S) 0.3494 0.3847 0.4657 0.2300 0.2107 0.1872 0.3205 0.2516 0.2085 0.4189 0.2970 0.2378
UTop (T+B) 0.3587 0.4132 0.4758 0.2193 0.1894 0.1909 0.3329 0.2606 0.2197 0.4348 0.3071 0.2535
UTop (S+B) 0.3544 0.4069 0.4729 0.2238 0.1930 0.1852 0.3272 0.2588 0.2185 0.4322 0.3054 0.2561
UTop (T+S+B) 0.3616 0.4189 0.4931 0.2137 0.1861 0.1772 0.3403 0.2746 0.2267 0.4414 0.3104 0.2682

in which all the values are user ratings. �en, it extends the
existing PARAFAC2 model [23] that transforms heterogeneous
user-rating matrices of di�erent lengths into one cubical tensor
and factorizes it. Here in our problem se�ing, this approach
can also be applied on those heterogeneous user-footprint ma-
trices; the subsequent steps follow Equation 5 in order to solve
Equation 6.
• UTop. Introduced in Section 4.2, this model is a basic version

that considers each footprint as a regularization term and linearly
adds them together.

Parameter Settings. To determine the number of latent dimen-
sions in both UTop and UTop+, we experiment with a sequence of
se�ings {5, 10, 20, 30, 40, 50, 100} and empirically select 20 for both
UTop and UTop+, as a trade-o� between accuracy and e�ciency.
In Algorithm 1, there are �ve parameters λ, γ , δ , α , and η. �e �rst
four parameters are used to control the contributions of various
footprints. �e last one is a step along its gradient ascending. As
is commonly done, we iteratively employ cross-validation to tune
these parameters. Speci�cally, we empirically set λ = 0.02, γ = 0.7,
β = 0.1, α = 0.4 and η = 0.05 for general experiments, respectively.
In UTop+, we choose 10 for the number of latent dimension in
tensor factorization. �e step size η is set to 0.05. In addition, two
positive parameters α and β in Eq. (6) are involved in the exper-
iments. Concretely, we empirically set α = 0.3 and β = 0.02 via
cross-validation.

5.2 �e Impact of Di�erent Footprints
In general, interest, social, and behavioral footprints have di�erent
emphases on user topical pro�les. Hence, which footprints work
be�er (or best) is one of the most compelling questions to answer.
Hence, we compare di�erent combinations of all footprints in both
NN and UTop. �e reason we do not test them in UTop+ is that the
multi-way manner of UTop+ may not clearly tell which footprint
contributes more. We show the results in Table 1 in which T is for
text-based interest, S is for social, and B is for behavioral.

When individually using each implicit footprint, we �nd the
behavioral footprint (URL sharing) always performs the best in any
se�ing. Moreover, combining it with other footprints always bring
the biggest improvement in these experiments. For instance, within
the NN method, the behavioral footprint has up to 24% larger Spear-
man correlation than the social footprint. In UTop, the MAE@10

decreases by 8% when the behavioral footprint is added with the in-
terest footprint. �ese results indicate the importance of capturing
actual user behaviors as a critical step for identifying user topical
pro�les (in contrast, to relying purely on social connections or on
the content of what users post). �ese results support the intu-
ition that social footprints may capture spurious user similarities
(e.g., linking two very di�erent users) and that text-based interest
footprints may insert noise into learning user topical pro�les. In
contrast, behavioral cues provide a clearer perspective on user’s
interests and expertise.

What if behavioral data is scarce? URL sharing is one of the
few publicly-available sources of behavioral information, but some-
times it can still be a scarce resource because not all users will share
many URLs on social media. In contrast, social and interest-based
footprints are typically more universally available. We see in Ta-
ble 1 that interest and social footprints can still work well even
without access to behavioral footprints. For example, in UTop, the
interest footprint is only 5% behind behavioral in precision@10,
and the social footprint has just 1% larger MAE@5 than behavioral.
�ese observations show that our model can still achieve a good
performance even when we have scarce behavioral evidence. But
that together, the three di�erent footprints can complement each
other, leading to even be�er user topical pro�les.

5.3 Evaluating UTop and UTop+
Given the evidence of the importance of di�erent footprints, we
now turn to evaluating the two proposed models — UTop and UTop+
— versus alternatives. As we can see in Figure 4, both UTop and
UTop+ perform be�er than the Nearest Neighbor (NN) and the
Cross-domain Triadic Factorization (CTF) across all four evaluation
metrics. For precision@5, UTop+ is 36% and 13% be�er than NN
and CTF with p-values of 0.001 and 0.003 under McNemar’s test,
respectively. For MAE@10, UTop+ outperforms NN by 20% with
the p-value of 0.002 and CTF by 11.8% with the p-value of 0.001. �e
gaps become even larger for the two ranking correlation coe�cients,
as we can see in Figure 4c and 4d. �ese results suggest that the
proposed learning models can be�er leverage all footprints together
than either the neighborhood-based propagation or the immediate
tensor decomposition. Note that the CTF method is fundamentally
di�erent from our problem se�ing where we cannot simply put
together all heterogeneous footprints. In contrast, we exploit latent
factors to build a user similar matrix and �nd its graph Laplacian as
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Figure 4: Comparisons Between Proposed Models and Alternative Baselines

a new regularization term. We show the e�ectiveness of this step
in Section 5.4.

Recall that we introduced UTop+ as an extension to UTop to
provide a more compact factorization and to jointly handle relation-
ships across multiple implicit footprints. In Figure 4 we �nd UTop+
surpasses UTop in all se�ings. UTop+ has an improvement of 4.2%
in precision@10, 3% in MAE@5, 5.9% in Kendall correlation@10,
and 3.8% in Spearman correlation@5. �ese �ndings indicate that
the proposed UTop+ can be�er exploit the joint correlations be-
tween all heterogeneous footprints for improved learning of user
topical pro�les. All these �nding are conducted under McNemar’s
test with p-values less than 0.01.

5.4 Considering Other Variants
Why We Need Regularization? A natural question is why we
need a regularization model. Why not just put all footprints into one
large matrix and directly apply state-of-the-art matrix factorization
methods? To investigate this question, we put them into one matrix
upon which we adopt the standard factorization technique, where
we denote such a method MF. We do normalization for the data of
each footprint since their values can have distinct scales. We follow
the same evaluation methodology and show the comparisons in
Figure 5. All results are measured at the top-10. We clearly see the
proposed UTop results in be�er performances than MF in every
metric. �ese results suggest that heterogeneous footprints require
careful integration, and that the proposed UTop approach is a good
solution in comparison.
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Figure 5: Comparisons Between UTop and Standard MF

Why We Do Regularization A�er Tensor Factorization? In
UTop+, a�er having the latent factors of users from tensor factor-
ization, we build a user similar matrix and �nd its graph Laplacian
as the new regularization term. Why not just directly replace the
user’s latent matrix U in X a�er factorizing the tensor? We call
such a scheme Tensor Factorization-based Matrix Factorization
(TFMF), and we show the comparison results in Figure 6 for all
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Figure 6: Comparisons between UTop+ and TFMF

metrics at top 10. Our UTop+ outperforms TFMF in all se�ings (e.g.,
68% precison, 38% MAE, 45% Kendall correlation). �ese outcomes
show that regularization a�er tensor factorization can signi�cantly
improve the performance.
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Figure 7: Impact of α and β on UTop+

Impact of Parameters. Finally, two critical parameters in UTop+
are α and β . Recall that α is used to avoid over��ing; β is to control
the contribution of the user similarity derived from three types of
footprints. In order to be�er understand the impacts of these two
parameters, we evaluate the performance of UTop+ across various
parameter se�ings. We vary values of these parameters in [0.001
0.01, 0.1, 1, 10] and present the results of precision and Kendall’s
τ in Figure 7 for learning the top-10 tags. As we can see, UTop+
achieves relatively consistent performance across a wide range.
Particularly, we �nd the se�ing α = 0.1 and β = 0.01 gives the best
performance. �ese results indicate the stability of UTop+ to these
parameters.

6 CONCLUSION
Mining user’s topical pro�les (e.g., user interests and expertise) has
important applications in diverse domains such as personalized
search and recommendation, as well as expert detection. In this
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paper, we tackled the problem of learning user topical pro�les. In
particular, we investigated how to leverage user-generated infor-
mation in heterogeneous and diverse footprints. Concretely, we
proposed UTop+ — a generalized model that integrates multiple
implicit footprints with explicit footprints for learning high-quality
user topical pro�les. By taking into account pairwise relations
among multiple footprints, the proposed UTop+ intelligently com-
bines the potential bene�ts of each footprint to �nd the best evi-
dence across footprints for learning high-quality user pro�les. And
indeed, extensive experiments demonstrate the e�ectiveness of
UTop+. For instance, it surpasses other alternatives up to 36% in
precision@5 and 20% in MAE@10. URL sharing, as one type of
publicly-accessible user behavior, brings be�er results than other
implicit footprints in every evaluation se�ing. Moreover, compared
with other variants in terms of modeling, our model also has the
best performances, e.g., up to 68% for precision@10 and Kendall
correlation@10.
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