
Graph Stream Summarization

From Big Bang to Big Crunch

Nan Tang Qing Chen Prasenjit Mitra
Qatar Computing Research Institute, HBKU

{ntang, qchen, pmitra}@qf.org.qa

ABSTRACT
A graph stream, which refers to the graph with edges be-
ing updated sequentially in a form of a stream, has impor-
tant applications in cyber security and social networks. Due
to the sheer volume and highly dynamic nature of graph
streams, the practical way of handling them is by summa-
rization. Given a graph stream G, directed or undirected,
the problem of graph stream summarization is to summarize
G as S

G

with a much smaller (sublinear) space, linear con-
struction time and constant maintenance cost for each edge
update, such that S

G

allows many queries over G to be ap-
proximately conducted e�ciently. The widely used practice
of summarizing data streams is to treat each stream element
independently by e.g., hash- or sample-based methods, with-
out maintaining the connections (or relationships) between
elements. Hence, existing methods can only solve ad-hoc
problems, without supporting diversified and complicated
analytics over graph streams. We present TCM, a novel
graph stream summary. Given an incoming edge, it sum-
marizes both node and edge information in constant time.
Consequently, the summary forms a graphical sketch where
edges capture the connections inside elements, and nodes
maintain relationships across elements. We discuss a wide
range of supported queries and establish some error bounds.
In addition, we experimentally show that TCM can e↵ec-
tively and e�ciently support analytics over graph streams
beyond the power of existing sketches, which demonstrates
its potential to start a new line of research and applications
in graph stream management.

CCS Concepts
•Mathematics of computing ! Network flows;
•Information systems ! Data streams; •Theory of
computation ! Sketching and sampling;

Keywords
Graph streams; Data streams; Sketch; Summarization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
c� 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915223

1. INTRODUCTION
Nowadays, massive graphs arise in many applications e.g.,

network tra�c data, social networks, and transportation
networks. These graphs are highly dynamic: Network tra�c
data averages to about 109 packets per hour per router for
large ISPs [23]; Twitter sees 100 million users login daily,
with around 500 millions tweets per day [1].

As conventionally formulated, we consider a graph stream
as a sequence of elements (x, y; t)1, which indicates that the
edge (x, y) is encountered at time t. A sample graph stream
h(a, b; t1), (a, c; t2), · · · , (b, a; t14)i is depicted in Fig. 1, where
all timestamps are omitted for simplicity. Each edge is as-
sociated with a weight, which is 1 by default.

Practically, real-time analytics over large graph streams
has wide applications, such as monitoring cyber security at-
tacks and social network opinions. To a large extent, in the
era of big data, the increasing expansion of data velocity
is an open issue, and many big data is graphs inherently.
Unfortunately, in a recent survey for businesses in analyzing
big data streams [2], although 41% of respondents stated
that the ability to analyze and act on streaming data in
minutes is critical, 67% admitted that they do not have the
infrastructure to support that goal. The situation is more
complicated and challenging when processing graph streams.
It poses unique space and time constraints on storing, sum-
marizing and querying graph streams, due to their sheer
volumes, high velocity, and the complication of analytics.

Fortunately, for the applications of data streams, fast and
approximated answers are often preferred than exact an-
swers. Not surprisingly, sketch synopses have been widely
studied for data streams: approximate frequency counts [29],
AMS [5], and Bottom-k [13]. Although they allow false pos-
itives, the space savings often outweigh this drawback, when
the probability of an error is su�ciently low.

We illustrate by an example how approximate frequency
counts [29] works. CountMin [14] improves it simply by using
multiple hash functions, and gSketch [39] further improves
CountMin by assuming the presence of sample data/queries
that help better partition the input graph stream.

Example 1: Consider the graph stream in Fig. 1. Approx-
imate frequency counts based methods can be used to treat
each node or edge in the stream independently, by mapping
them to w hash buckets. Let w = 4 in this example.

(1) Node sketch: It treats node labels as hash keys, i.e.,
{a, b, c, d, e, f, g}. A hash function h is used to map these

1Without loss of generality, we use a directed graph for il-
lustration. Our method can also work on undirected graphs.

1481

b

1tt
1

✏✏

1 //

1

��

d

1

$$
a

1

44

1

$$

e
1

OO

1

✏✏

1

dd

g

1

jj

c

1

::

1
// f

1
jj

Figure 1: A sample graph stream

h(·) 4 5 2 3

keysI a, c b, d e, g f

(a) Node sketch

h0(·) 5 5 3 1

keysI ab, ac, ed, eb, ef bc, bd, ba, bf, fa ce, cf, gb dg

(b) Edge sketch

Figure 2: Examples of frequency counts

values to 4 buckets, i.e., h(·)! [1, 4], as shown in Fig. 2 (a).
The first bucket sums up the in-flow weights to nodes a and
c, which is 4, and similar for other buckets.

(2) Edge sketch: It treats pairs of node labels as hash keys,
e.g., {ab, ac, bc, · · · }, where ab is to concatenate the two
node labels for (a, b; t1). A hash function h0 is used to
map these values in 4 buckets, as shown in Fig. 2 (b). The
value of the first bucket is the sum of weights for edges {ab,
ac, ed, ed, ef}, which is 5, and similar for other buckets. 2

The power of frequency counts based approaches is lim-
ited inherently by its structure: It is a vector of (hashed
key, value) pairs and each hashed key is independent of each
other. That is, one cannot reason for any relationships be-
tween two hashed keys. In fact, CountMin or gSketch cannot
support any more queries than their frequency counts coun-
terparts, since they are proposed to improve the accuracy.
We give more details of supported queries below.

Example 2: Consider the two sketches in Example 1 that
are depicted in Fig. 2. Below, we denote by 3 the types of
queries a sketch supports, and 7 for those not supported.

(1) Node sketch (see Fig. 2 (a)).

3 Node queries: It can only be used to estimate an in-flow
weight of a node, e.g., the estimated in-flow weight to node
a is in the first bucket since h(a) = 1, which gives 4.

7 Conditional node queries: It cannot find locally important
node, e.g., which is the most frequent node linking to node
a, which relates to the conditional heavy hitter problem.

(2) Edge sketch (see Fig. 2 (b)). (Note: gSketch only sup-
ports the type of queries that an edge sketch supports.)

3 Edge queries: What is the estimated edge weight? For
instance, it is 5 for edge (a, b) from the first bucket since
h0(ab) = 1.

3 Aggregate subgraph queries: What is the aggregated
weight for a graph with all edges being given explicitly? For
instance, for a graph with two edges (a, c) and (c, e), the
estimated weight for ac (resp. ce) is 5 (resp. 3), which sums
up to be 8.

7 Node connectivity: Whether two nodes are connected? It
cannot answer whether there is a path from a to g. 2

II(bf)

2

vv

1

⌥⌥

1

((

1⌫⌫

I(ae)

3
77

1

''

1
--
III(cg)1ll

2
hh

IV (d)

1

@@

Figure 3: An example of our graphical sketch

Challenges. Designing a generalized sketch for graph
streams to support all above analytics and beyond requires
to satisfy the following constraints. (1) Space constraint:
sublinear upper bound is required. (2) Time constraint: lin-
ear construction time is a must. Notably, this is stronger
than the condition with only a constant passes over the
stream. (3) Maintenance constraint: to maintain it for one
element insertion/deletion must be in constant time. (4)
Graphical connectivity: it should have a graphical model.

To solve the above challenges, we propose TCM, a gener-
alized graph stream summary. Given an incoming element
(i.e., an edge), it summarizes both node and edge informa-
tion in constant time. In contrast to previous sketches that
have one-dimensional data structures, TCM is a graphical
sketch with a two-dimensional data structure.

Example 3: Again, consider the graph stream in Fig. 1.
Our proposal is shown in Fig. 3. For each edge (x, y; t),
TCM uses a hash function to map each node label to 4
node buckets i.e., h00(·)! [1, 4]. Node I is the summary of
two node labels a and e, assuming h00(a) = 1 and h00(e) = 1.
The other compressed nodes are computed similarly. The
edge weight denotes the aggregated weights from stream el-
ements, e.g., the number 3 from node I to II means that
there are three elements as (x, y; t) where the label of x (resp.
y) is a or e (resp. b or f). 2

From Example 3, it is easy to see that the queries sup-
ported by existing node or edge sketches are naturally sup-
ported, e.g., the estimated in-flow weights to node a is 3
and the estimated weight of edge (a, b) is 3. Moreover, the
other queries that are not supported by existing sketches are
also supported, e.g., the node that sends the most weights
to node a is either b or f , and there is a path from a to d.
The essential di↵erence of TCM, compared with existing
sketches, is that TCM keeps all structural connectivities of
the original graph stream, not only edges, but also paths.
For instance, the path a! b! d! g in Fig. 1 is captured
in Fig. 3 as I ! II ! IV ! III. This salient property pro-
vides rich structural information to support various graph
analytics (see Section 4 for a detailed discussion).

Contributions. This paper presents a novel generalized
graphical sketch for summarizing graph streams, with the
following contributions.

(1) We formally introduce TCM (Section 3). As illustrated
in Fig. 3, the proposed sketch naturally preserves the graph-
ical connections of the original graph stream, which makes it
a better fit than traditional sketches in supporting analytics
over graph streams.

(2) We describe algorithms to process various graph ana-
lytics on top of TCM (Section 4). The general purpose is,
instead of proposing new algorithms, to show that TCM

1482

can be easily used to support many graph queries, and o↵-
the-shelf graph algorithms can be seamlessly integrated.

(3) We describe internals of TCM implementation (Sec-
tion 5). This is important to ensure that it can be built and
maintained under the hard time/space constraints for graph
stream scenarios. Moreover, we propose to use non-square
matrices for storage, based on which we show that Count-

Min is a special case of TCM. Furthermore, we describe its
extension to support high-dimensional data streams.

(4) Using real-world and synthetic data sets, we have ex-
perimentally evaluated the power of TCM in supporting
di↵erent analytics (Section 6), which confirms that the new
sketch is indeed e↵ective and e�cient, and more general than
existing sketches for graph stream applications.

In this history of graph problems over streams, unfortu-
nately, most results showed that a large amount of space is
required for complicated graph problems [4,30]. The present
study makes an important attempt to build a generalized
sketch to support various graph analytics, using only a small
amount of space, which sheds considerable light on graph
stream applications.

Organization. Section 2 discusses related work. Section 3
introduces TCM. Section 4 presents its supported queries.
Section 5 explains implementation details and extensions.
Section 6 gives experimental findings. Finally, Section 7
concludes this work, followed by our agenda for future work.

2. RELATED WORK
We categorize related work as follows.

Sketch synopses. Given a data stream, the aim of sketch
synopses is to apply (linear) projections of the data into
lower dimensional spaces that preserve the salient features
of the data. A considerable amount of literature has been
published on general data streams such as AMS [5], lossy
counting [29], CountMin [14] and bottom-k [13]. The work
gSketch [39] improves CountMin for graph streams, by as-
suming that data or query samples are given. Bloom fil-
ters have been widely used in a variety of network problems
(see [10] for a survey). There are also sketches that maintain
counters only for nodes, e.g., using a heap for maintaining
the nodes with the largest degrees for heavy hitters [15].

As remarked earlier, TCM is more general, since it main-
tains connections of all streaming edges, without assuming
any sample data or query is given. None of existing sketches
for graph streams has a graphical model.

Graph summaries. Summarizing graphs has been widely
studied. The most prolific area is in web graph compression.
The papers [3,35] encode Web pages with similar adjacency
lists using reference encoding, so as to reduce the number
of bits needed to encode a link. The work [32] groups Web
pages based on a combination of their URL patterns and k-
means clustering. The paper [18] compresses graphs based
on specific types of queries. There are also many clustering
based methods from data mining community (see e.g., [24]),
with the basic idea to group similar nodes together. Another
line of work is graph sparsificaiton, which is to approximate a
graph G by a sparse graph H, where H and G have the same
set of vertices and H is “close” to H in some specific metric,
e.g., cut sparsifiers [7, 8] and spectral sparsifiers [6, 34].

These data structures are designed for less dynamic
graphs, which are not suitable for graph streams. Another

reason that graph sparsification is not used for graph streams
is the metric studied for sparsifying a graph is not suitable
for graph stream applications, e.g., network monitoring.

Graph pattern matching over streams. There have been sev-
eral work on matching graph patterns over graph streams,
based on either the semantics of subgraph isomorphism [12,
20,38] or graph simulation [33]. The work [38] assumes that
queries are given, and builds node-neighbor tree to filter false
candidate results. The paper [20] leverages a distributed
graph processing framework, Giraph, to approximately eval-
uate graph quereis. The work [12] uses the subgraph distri-
butional statistics collected from the graph streams to opti-
mize a graph query evaluation. The paper [33] uses filtering
methods to find data that potentially matches for a specific
type of queries, namely degree-preserving dual simulation
with timing constraints.

Firstly, all the above algorithms are designed for specific
types of graph queries. Secondly, most of them assume the
presence of queries, so they can build indices to accelerate.
In contrast, TCM aims at summarizing graph streams in a
generalized way, so as to support various types of queries,
without any assumption of queries.

Graph stream algorithms. There has also been work on al-
gorithms over graph streams (see [30] for a survey). This
includes the problems of connectivity [19], trees [36], span-
ners [16], sparsification [26], counting subgraphs e.g., trian-
gles [9,37]. However, they mainly focus on theoretical study
for best approximation bound, mostly on O(n polylog n)
space, with one to multiple passes over the data stream.

TCM is complementary to the above algorithms. As will
be seen later (Section 4), TCM can treat existing algorithms
as black-boxes to help solve existing problems.

Distributed graph systems. Many distributed graph comput-
ing systems have been proposed to conduct data processing
and data analytics in massive graphs, such as Pregel [28], Gi-
raph2, GraphLab [27], Power-Graph [21] and GraphX [22].
They have been proved to be e�cient on static graphs, but

are not fully geared for analytics over big graph streams with
real-time response. In practice, they are complementary to
and can be used for TCM in distributed settings.

3. THE TCM MODEL
We first define graph streams (Section 3.1). We then for-

mulate the studied problem (Section 3.2). Finally, we intro-
duce our proposed graphical sketch model (Section 3.3).

3.1 Graph Streams: Big Bang
A graph stream is a sequence of elements e = (x, y; t)

where x, y are node identifiers (labels) and edge (x, y) is
encountered at time-stamp t. Such a stream,

G = he1, e2, · · · , emi

naturally defines a graph G = (V,E) where V is a set of
nodes and E is a set of edges as {e1, · · · , em}. We write
!(e

i

) the weight for the edge e
i

, and !(x, y) the aggregated
edge weight from node x to node y. We call m the size of
the graph stream, denoted by |G|. In this work, we assume
that edge weight is non-negative (i.e., !(e

i

) � 0).
Intuitively, the node label, being treated as an identifier,

uniquely identifies a node, which could be e.g., IP addresses

2http://giraph.apache.org

1483

in network tra�c data or user IDs in social networks. Note
that, in the graph terminology, a graph stream is a multi-
graph, where each edge can occur many times, e.g., one IP
address can send multiple packets to another IP address. We
are interested in properties of the underlying graph. This
causes a main challenge with graph streams where one nor-
mally does not have enough space to record the graph that
has been seen so far. Summarizing such a graph stream in
one pass is important to many applications. Moreover, we
do not explicitly di↵erentiate whether the edge (x, y) is an
ordered pair or not. In other words, our approach applies
naturally to both directed and undirected graphs.

For instance, in network tra�c data, a stream element ar-
rives at the form: (192.168.29.1, 192.168.29.133, 62, 105.12)3,
where node labels 192.168.29.1 and 192.168.29.133 are IP
addresses, 62 is the number of bytes sent from 192.168.29.1
to 192.168.29.133 in this captured packet (i.e., the weight of
the directed edge), and 105.12 is the time in seconds that
this edge arrived when the server started to capture data.
Please see Fig. 1 for a sample graph stream.

3.2 Graph Streams Summaries: Big Crunch
The problem of summarizing graph streams is, given a

graph stream G, to compute another data structure S
G

from
G, such that:

1. |S
G

|⌧ |G|: the size of S
G

is far less than G, preferably
in sublinear space.

2. The time to construct S
G

from G is in linear time.

3. The update cost of S
G

for each edge insertion/deletion
is in constant time.

4. S
G

is a graph.

Intuitively, a graph stream summary has to be built and
maintained in real time, so as to deal with big volume and
high velocity graph stream scenarios. In fact, the Count-

Min [29] and its variant gSketch [39] satisfy the above con-
ditions 1-3 (see Example 1 for more details). Unfortunately,
CountMin and gSketch can support only limited types of
graph analytics, since condition 4 is not satisfied.

3.3 Graphical Sketches
The graph sketch. A graph sketch is a graph S

G

(V, E),
where V denotes the set of vertices and E its edges. For a
vertex v 2 V, we simply treat its label as its node identi-
fier (the same as the graph stream model). Each edge e is
associated with a weight, denoted as !(e).

In generating the above graph sketch S
G

from a graph
G, we first set the number of nodes in the sketch, i.e., let
|V| = w. For an edge (x, y; t) in G, we use a hash function
h to map the label of each node to a value in [1, w], and the
aggregated edge weight is calculated correspondingly.

Please refer to Fig. 3 as an example, where we set w = 4.

Edge weight. The edge weight for an edge e in the graph
sketch is computed by an aggregation function of all edge
weights that are mapped to e. Such an aggregation function
could be min(·), max(·), count(·), average(·), sum(·) or other
functions. In this paper, we use sum(·) by default to ex-
plain our method. The other aggregation functions can be
similarly applied. In practice, which aggregation function
to use is determined by applications. For a more general

3We omit port numbers and protocols for simplicity.

II(bc)

3

{{

1

⌥⌥

1

%%

1⌫⌫

I(af)
1��

2
;;

III(dg)

1
ee

1

��

IV (e)

1

FF

1

^^
1

KK

(a) Sketch S1

ii(cd)

2

⌥⌥

1

��
i(ab)

3

AA

2⌫⌫

1 ##

iii(g)1ll

iv(ef)

2

dd

1

GG

1

KK

(b) Sketch S2

Figure 4: TCM with 2 hash functions

setting that requires to maintain multiple aggregated func-
tions in a graph sketch, we may extend our model to have
multiple edge weights e.g., !1(e), · · · ,!n

(e), with each !
i

(e)
corresponds to a distinct aggregation function.

One may observe that the graph sketch model is basically
the same as the graph stream model, with the main di↵er-
ence that the time-stamps are not maintained. This makes
it very useful and applicable in many scenarios when query-
ing a graph stream for a given time window. In other words,
for a graph analytical method M that needs to run over a
graph stream G, denoted as M(G), one can run it directly
on its sketch S

G

, i.e., M(S
G

), to get an approximate result,
without modifying the method M .

Example 4: Consider the graph stream in Fig. 1 and its
sketch in Fig. 3. Assume that query Q1 is to estimate the
aggregated edge weight from b to c. In Fig. 3, one can map
b to node II, c to node III, and get the estimated weight 1
from edge (II, III), which is precise. Now consider Q2 that
is to compute the aggregated weight from g to b. One can
find edge (III, II), and the estimated result is 2, which is
not accurate since the real weight of (g, b) in Fig. 1 is 1. 2

The above result is expected, since given the compres-
sion, no hash function can ensure that the estimation on
the sketch can be done precisely. Along the same line of
CountMin [14], we use multiple independent hash functions
to collectively reduce the probability of hash collisions.

The TCM model. A TCM sketch is a set of graph
sketches {S1(V1, E1), · · · , Sd

(V
d

, E
d

)}. Here, we use d hash
functions h1, · · · , hd

, where h
i

(i 2 [1, d]) is used to generate
S
i

. Also, h1, · · · , hd

are pairwise independent hash functions
(see Section 5.2 for more details).

Example 5: Figure 4 shows another two sketches for Fig. 1.
Again, consider the query Q2 in Example 4. Using S1 in
Fig. 4 (a), one can locate edge (III, II) for (g, b), which
gives 1. Similarly, S2 in Fig. 4 (b) will also give 1 from edge
(iii, i), where g (resp. b) maps to iii (resp. i). The minimum
of the above two outputs is 1, which is correct. 2

Example 5 shows that using multiple hash functions can
indeed improve the accuracy of estimation. In practice, us-
ing pairwise independent hash functions is a significant ad-
vance, since pairwise independent hash functions are gener-
ally easy to implement and quite e�cient.

4. TCM POWERED GRAPH ANALYTICS
In this section we shall show how TCM can be easily used

to support di↵erent graph analytics. Here, we consider the
graph stream as G, and d graph sketches {S1, · · · , Sd

} of G,
where S

i

is constructed using a hash function h
i

(·). Also, we

1484

assume that an adjacency matrix M
i

is used for storing one
graph sketch S

i

. We use sum(·) as the default aggregation
function for constructing graph sketches. Whilst the exer-
cise in this section only substantiates several types of graph
queries to be addressed in this work, it is evident that the
power of TCM is far beyond the queries listed below.

As mentioned in Section 3.3, for any graph analytics
method M to run over G, i.e., M(G), it is possible to run
M on each sketch directly, and then merge the result as:
M̃(G) = �

�
M(S1), · · · ,M(S

d

)
�
, where M̃(G) denotes the

estimated result over G, and �(·) an aggregation function
(e.g., min, max, conjunction) to merge results returned from
d sketches. Moreover, we provide the proofs of error bounds
for di↵erent queries in Appendix A.

4.1 Edge Queries
Aggregated edge weights. Given two node labels a and b,
we denote by f

e

(a, b) the exact aggregated edge weight from
node a to node b. We write f̃

e

(a, b) the estimated weight.

One application of such queries, taking social networks
for example, is to estimate the communication frequency
between two specific friends.

It is straightforward to evaluate f̃
e

(a, b), the weight of edge
(a, b). It first gets estimated edge weight M

i

[h
i

(a)][h
i

(b)]
from each matrixM

i

and then uses a corresponding function
�(·) to merge them. The notation M

i

[h
i

(a)][h
i

(b)] is the cell
value relative to position h

i

(a) and h
i

(b) in matrix M
i

. It
works as follows:

f̃
e

(a, b) = �
�
M1[h1(a)][h1(b)], · · · ,Md

[h
d

(a)][h
d

(b)]
�

In this case, the function �(·) is to take the minimum.

Complexity. Estimating the aggregate weight of an edge
query is in O(d) time, where d is a constant.

4.2 Node Queries
Aggregated node flows. For a directed graph, given a
node label a, we denote by f

v

(a,!) (resp. f
v

(a,)) node
out-flow query (resp. in-flow query), which is to tell the
aggregated edge weight from (resp. to) a node with label a
in the graph stream G. For an undirected graph, we write
f
v

(a,�). Similarly, we use f̃
v

(a,!), f̃
v

(a,), f̃
v

(a,�) for
estimated results using sketches.

One important application of such queries is to find heavy
hitters (i.e., top-k nodes with highest weights of their flows)
in e.g., DoS (Denial-of-service) attacks for cyber security,
which typically flood a target source (i.e., a computer) with
massive external communication requests.

Note that, CountMin has been used to solve the problem of
finding heavy hitters, i.e., which nodes are associated with a
large number of edges or weights. Again, CountMin is a lin-
ear structure, which cannot tell any information more than
a count. For a simple extended problem such as conditional
heavy hitters [31], which is to find heavy hitters that are
locally popular by considering edge connections, CountMin

does not work. In contrast, the graphical structure of TCM
provides rich information to find conditional heavy hitters.
Please refer to Appendix-B.1 for the detailed algorithm for
computing conditional heavy hitters using TCM.

Here, we only discuss the case f̃
v

(a,!), which is to esti-
mate the aggregate weight from node a. The other two cases,
i.e., f̃

v

(a,) and f̃
v

(a,�), can be processed analogously.

We denote by f̃ i

v

(a,!) the estimated out-flow from the

i-th sketch. f̃ i

v

(a,!) can be computed by first locating
the row in the adjacency matrix corresponding to label a
(i.e., h

i

(a)), and then summing up the values in that row,

i.e., f̃ i

v

(a,!) =
P

w

j=1 Mi

[h
i

(a)][j]. Here, w is the width of
the adjacency matrix M

i

. Then,

f̃
v

(a,!) = �
�
f̃1
v

(a,!), · · · , f̃d

v

(a,!)
�

The function �(·) is also to take the minimum.

Complexity. It is easy to see that it takes O(d · w) time,
where both d and w are constants.

4.3 Path Queries
Reachability. Given two node a and b, a boolean reacha-
bility query r(a, b) is to tell whether there exists a path from
a to b. Also, we write r̃(a, b) as the estimated reachability.
One important monitoring task, for the success of multi-

cast deployment in the Internet, is to verify the availability
of network service, which is usually referred to as reachabil-
ity monitoring. Another application that needs to consider
edge weights is IP routing, which is to determine the path
of data flows in order to travel across multiple networks.

We consider the reachability query r̃(a, b), which is to es-
timate whether b is reachable from a. For such queries, we
treat any o↵-the-shelf algorithm reach(x, y) as a black-box,
which returns either true to indicate that b is reachable from
a, or false to represent that b is unreachable from a. It works
as follows for our sketch.

P1. [Execute in parallel.] Invoke reach(h
i

[a], h
i

[b]) on each
sketch S

i

(for i 2 [1, d]), to decide whether the mapped
node h

i

[b] is reachable from the mapped node h
i

[a] on
sketch S

i

.

P2. [Merge.] Merge individual results as follows:

r̃(a, b) = reach(h1[a], h1[b]) ^ · · · ^ reach(h
d

[a], h
d

[b])

Here, the “^” is for a boolean conjunction. Stating in
another way, the estimated reachability is true only if the
mapped nodes are reachable from all d sketches.

The complexity of the above strategy is determined by the
third party solution reach().

4.4 Subgraph Queries
Aggregate subgraph queries. The aggregate subgraph
query is considered in gSketch [39]. It is to compute
the aggregated weight of the constituent edges of a sub-
graph Q = {(x1, y1), · · · , (xk

, y
k

)}, denoted by f
g

(Q) =
⌦(f

e

(x1, y1), · · · , fe(xk

, y
k

)). Here, the function ⌦(·) is to
sum up the weights from all f

e

(x
i

, y
i

) for i 2 [1, k]. We
write f̃

g

(Q) for the estimated result using sketches.
We adopt the following query semantics: if f̃

e

(x
i

, y
i

) = 0
for any edge, the estimated aggregate weight should be 0,
since the query graph Q does not have an exact match.

Example 6: Consider a subgraph with two edges as
{(a, b), (a, c)}. The query Q3 : f̃

g

({(a, b), (a, c)}) is to esti-
mate the aggregate weight of the graph. The precise answer
is 2, which is easy to verify from Fig. 1. 2

Extensions. We consider an extension of the above aggregate
subgraph query, which allows a wildcard ⇤ in the node labels
that are being queried. More specifically, for the subgraph

1485

Symbols Notations

G, S
G

a graph stream, and a graph sketch

!(e) weight of the edge e
f
e

(a, b) edge weight

f
v

(a,!) node out-flow weight (directed graphs)

f
v

(a,) node in-flow weight (directed graphs)

f
v

(a,�) node flow weight (undirected graphs)

r(a, b) whether b is reachable from a
f
g

(Q) weight of subgraph Q

Table 1: Notations

query Q = {(x1, y1), · · · , (xk

, y
k

)}, each x
i

or y
i

is either a
constant value, or a wildcard ⇤ (i.e., match any label). A
further extension is to bound the wildcards to be matched
to the same node, by using a subscript to a wildcard as
⇤
j

. That is, two wildcards with the same subscripts enforce
them to be mapped to the same node.

Example 7: A subgraph queryQ4 : f̃
g

({(a, b), (b, c), (c, a)})
is to estimate the triangle, i.e., a 3-clique with three vertices
labeled as a, b, and c, respectively. Another subgraph query
Q5 : f̃

g

({(⇤, b), (b, c), (c, ⇤)}) is to estimate paths that start
at node with an edge to b, and end at any node with an edge
from c, if the edge (b, c) exists in the graph. If one wants
to count the common neighbors of (b, c), the following query
Q6 : f̃

g

({(⇤1, b), (b, c), (c, ⇤1)}) can enforce such a condition,
which again is a case of counting triangles. 2

The extension is apparently more general, with the pur-
pose of covering more useful queries in practice. Unfortu-
nately, gSketch cannot support such extensions.

We next discuss the aggregate subgraph query f̃
g

(Q),
which is to compute the aggregate weight of the constituent
edges of a sub-graph Q. The process is similar to the above
path queries, by using any existing algorithm subgraph(Q).

S1. [Execute in parallel.] Invoke subgraph(Q) at each
sketch to find subgraph matches, and calculate the aggre-
gate weight, denoted by weight

i

(Q) obtained from the i-th
sketch.

S2. [Merge.] Merge individual results as follows:

f̃
g

(Q) = �
�
weight1(Q), · · · ,weight

d

(Q)
�

Here, the function �(·) is also to take the minimum.
Note that, running a graph algorithm on a sketch is only

applicable to TCM. It is not applicable to gSketch since
gSketch by nature is an array of frequency counts, without
maintaining the graphical structure as TCM does. Also,
in the case that weight

i

(Q) from some sketch says that a
subgraph match does not exist, we can terminate the whole
process, which provides chances for optimization that is dis-
cussed below.

Optimization. Consider a subgraph Q is defined as con-
stituent edges as {(x1, y1), · · · , (xk

, y
k

)}. An alternative way
of estimating the aggregate subgraph query is to first com-
pute the minimum value among all estimated edge weights.
If any f̃

e

(x
i

, y
i

) (i 2 [1, k]) is 0, we have f̃ 0
g

(Q) = 0. Other-
wise, we sum them up as:

f̃ 0
g

(Q) =
P

k

i=1 f̃e(xi

, y
i

)

Intuitively, instead of taking the minimum weighted sub-
graph from all sketches, this optimization is to decompose
a big problem (e.g., a graph) to small pieces (e.g., an
edge) and locally optimize each piece. Naturally, we have

j from \ to I(af) II(bc) III(dg) IV (e)

I(af) 1 2 0 0
II(bc) 3 1 1 1
III(dg) 0 1 1 0
IV (e) 1 1 1 0

Figure 5: The adjacency matrix of S1

f̃ 0
g

(Q) f̃
g

(Q). Consider the two extensions of subgraph
queries discussed above. For the first extension that a wild-
card ⇤ is used, the above optimization can be used. For
instance, the edge frequency of f̃

e

(x, ⇤) for a directed graph
is indeed f̃

v

(x,!). For the second extension that multi-
ple wildcards ⇤

i

are used to bound to the same node, this
optimization cannot be applied.

Summary of notations. The notations of this paper are sum-
marized in Table 1, which are for both directed and undi-
rected graphs, unless being specified otherwise.

4.5 Wrap-Up
Let’s conclude this section by giving some insight.

(1) One can see that we can treat existing algorithms as
black-boxes to be applied directly on top of our sketches,
e.g., reach() in Section 4.3 and subgraph() in Section 4.4.

(2) One can also optimize a specific query by leveraging
multiple sketches to take care of some piece of the query,
e.g., the edge estimation used in Section 4.4, which provides
flexibility and opportunity to tune TCM for other specific
applications.

(3) Many other graph analytics can be potentially benefi-
cial from TCM, beyond what have been presented above.
Please refer to Appendix B.1 about an algorithm for condi-
tional heavy hitters, and Appendix B.2 about an algorithm
for heavy triangle connections, which are important in com-
munity detection.

5. INTERNALS
Now let’s shift gears and concentrate on the internals of

TCM and its extensions (Section 5.1). We also discuss pair-
wise independent hash functions (Section 5.2), and a discus-
sion of TCM in a distributed environment (Section 5.3).

5.1 Adjacency Matrix and Beyond
Using hash-based methods, it is evident that it only re-

quires one-pass of the graph stream to construct/update a
TCM. However, the linear time complexity of construct-
ing and updating a TCM depends on the data structures
used. For example, the adjacency list may not be a fit, since
searching a specific edge on a list is not in constant time.

5.1.1 Adjacency Matrix
An adjacency matrix is a means of representing which

nodes of a graph are adjacent to which other nodes.

Example 8: Consider the sketch S1 in Fig. 4 (a) for exam-
ple. Its adjacency matrix is shown in Fig. 5. 2

Example 8 showcases a directed graph. In the case of an
undirected graph, it will be a symmetric matrix.

Construction. Consider a graph stream G = he1, e2,
· · · , e

m

i where e
i

= (x
i

, y
i

; t
i

). Given a number of nodes
w for a graph sketch and a hash function h(·)! [1, w]. We
use the following strategy.

1486

j from \ to i(abcd) ii(efg)

I(a) 2 0
II(b) 3 1
III(c) 0 2
IV (d) 0 1
V (e) 2 1
V I(f) 1 0
V II(g) 1 0

Figure 6: A non-square matrix

C1. [Initialization.] Construct a w⇥w matrix M, with all
values being initialized as 0.

C2. [Insertion of edges.] For each edge e
i

(i 2 [1,m]),
compute h(x

i

) and h(y
i

), and increase the value of
M[h(x

i

)][h(y
i

)] by !(e
i

), the weight of e
i

.

In the above strategy, C1 takes constant time to allocate
a matrix. C2 takes constant time for each e

i

. Hence, the
time complexity is O(m) where m is the number of edges in
G. The space complexity is O(w2).

Deletions. [Deletion of e
i

.] Insertions have been discussed
in the above C2. For the deletion of an e

i

that is not of
interest (e.g., out of a certain time window), it su�ces to
decrease the value of M[h(x

i

)][h(y
i

)] by !(e
i

) in O(1) time.
Alternatively, one may consider to use an adjacency hash-

list for each node, instead of a list, to maintain its adjacent
nodes using a hash table. Given an edge e

i

(x
i

, y
i

; t
i

), two
hash operations are needed: The first is to locate x

i

, and the
second is to find y

i

from x
i

’s hash-list. Afterwards, it up-
dates the corresponding edge weight. adjacency list is known
to be suitable when graph is sparse. However, in terms of
compressed graph in our case, most sketches are relatively
dense, which makes the adjacency matrix the default data
structure to manage our graph sketches.

5.1.2 Non-Square Matrices
In this section, we discuss the limitations of using standard

adjacency matrices, followed by our proposal to relax them.
Let R be the available space for storing a graph. When

using a classical adjacency matrix, we have a n⇥ n matrix,
where n =

p
R. Now, consider all edges from node a such

as (a, ⇤). Using any hash function will inevitably hash all
of these edges to the same row that is relative to node a
in a matrix. For example, in Fig. 5, all edges (a, ⇤) will be
hashed to the first row of the matrix.

In fact, for real-world graph data, the node degrees are
skewed. It is desirable that, the nodes with higher degrees
should be allocated more buckets, so as to reduce the proba-
bility of hash collisions. However, due to the lack of a priori
knowledge of data distribution in highly dynamic graphs, it
is hard to decide the right shape of a matrix. To cope with
this problem, we propose to use non-square matrices.

Non-square matrices. We use a p⇤q matrix with two hash
functions: h1(·)! [1, p] on the from nodes and h2(·)! [1, q]
on the to nodes. Let p⇤q ⇡ R where R is the available space.

Example 9: Consider the graph stream in Fig.1. Assume
that we use two hash functions: h1(·) ! [1, 7] and h2(·) !
[1, 2]. The non-square matrix is shown in Fig. 6. 2

In practice, when generating multiple sketches, we simply

use matrices n ⇤ n, 2n ⇤ n/2, n/2 ⇤ 2n, 4n ⇤ n/4, n/4 ⇤ 4n,
etc, without any assumption of data distribution.

5.1.3 Data Stream Sketches: A Bird’s Eye View
Using non-square matrices, we can see clearly the picture

of data stream summarization from a border perspective.
Keep in mind that a sketch for data streams should be in
sublinear space, linear construction time, and constant time
maintenance cost per update.

One-dimensional sketch. Traditional sketches typically use
a linear structure to maintain a certain type of character-
istics of data streams, in real time. Taking approximate
frequency counts [29] for example, they are special cases of
TCM when setting one of our hash functions with only one
bucket, i.e., h2(·)! [1, 1] (see Section 5.1.2 for details).

Two-dimensional sketch. When handling two-dimensional
data such as graph streams (see Section 3.1 for our formal
definition) where we need to maintain the information be-
tween two items in one element, we propose to extend the
sketch from a one-dimensional structure (e.g., a vector) to
a two-dimensional structure (e.g., a matrix). The increased
power with this small change is evident (see Section 4).

High-dimensional sketch. See further: When dealing with
data streams that for each element (v1, v2, . . . , vx), there are
x intra-connected values that need to be maintained. It is
natural to extend our idea to use x independent methods,
m1, · · · ,mx

, with each m
i

working for one dimension. Here,
m

i

could be either a hash function, a sample-based method,
or other methods such as predefined hash tags, e.g., di↵erent
application protocols (e.g., TCP or UDP) for the Internet,
or di↵erent years as a time dimension.

5.1.4 Hash Key Materialization
Obviously, there are many ways to extend TCM. One

intuitive way is to materialize the node labels. It comes
from the following observation: A hash function is a one-
way function that is easy to compute, but hard to invert.
Therefore, we hit a wall between hash keys and hash values
such that it is di�cult for us to do more reasonings given
only hashed values. Especially when using d hash functions,
we lose important connections among them since we do not
keep the information of hash keys. This naturally leads to
the idea of maintaining hash keys.

Extended graph sketch. Consider the graph sketch
S
G

(V, E) defined in Section 3.3. An extended graph sketch is
a graph sketch S

G

(V, E) that each node v 2 V is extended
with a set of node labels, denoted by ext(v), which records
all node labels that are hashed to v.

Take Fig. 3 for example, we have ext(I) = {a, e}. In
fact, in Fig. 3, although we depict that with each node, the
labels that it represents, e.g., node I for label a and e, are
not explicitly stored in the original graph sketch, but in the
extended graph sketch.

Of course, this benefit comes at a cost, the extra node
labels. However, this takes only O(|V |) space where |V |
is the number of nodes in the graph stream. In terms of
graph streams, the graph model is typically a multigraph
with multiple edges between two nodes. Under such circum-
stance, the number of nodes is typically much smaller than
the number of edges and maintaining them is a↵ordable.

We will show later the usage of the extended graph sketch

1487

in supporting the problem of heavy triangle connections (see
Appendix B.2).

5.2 Pairwise Independent Hash Functions
Here, we only borrow the definition of pairwise indepen-

dent hash functions.
A family of functions H = {h|h(·) ! [1, w]} is called

a family of pairwise independent hash functions if for two
di↵erent hash keys x

i

, x
j

, and k, l 2 [1, w],

Pr

h H[h(x
i

) = k ^ h(x
j

) = l] = 1/w2

Intuitively, when using multiple hash functions to con-
struct sketches, the hash functions used should be pairwise
independent in order to reduce the probability of hash col-
lisions. Please refer to [14] for more details.

5.3 Distributed Setup
One can see that TCM can be naturally deployed to a

distributed environment, since the construction and mainte-
nance of each sketch is independent of each other. Assuming
we have d sketches in one computing node, when m comput-
ing nodes are available, we can use d⇥m sketches, which can
significantly reduce the probability of hash collisions. More-
over, many analytics using TCM can be independently per-
formed on multiple sketches in parallel (see Section 4), which
makes a distributed environment a good fit for TCM.

6. EXPERIMENTS
We will start by explaining the environments where our

experiments were conducted (Section 6.1). We then compare
with existing approaches (Section 6.2). Finally, we summa-
rize our experimental findings (Section 6.3).

The chief purpose of our experimental study is to prove
that TCM should serve as the new backbone for graph
stream management: TCM is as good as ad-hoc sketches for
specific problems, but is much more general in supporting a
wide range of analytics not supported by existing sketches.

6.1 Experimental Setup

6.1.1 Data Sets and Environment Setup
∂ DBLP. We extracted 933,530 authors as nodes and
4,918,090 author-pairs as edges from the latest DBLP

archive4. It is an undirected graph with the weight of each
streaming edge to be 1, indicating a co-authorship.

∑ IP flow. This data set contains anonymized passive traf-
fic traces from CAIDA’s equinix-chicago monitor on high-
speed Internet backbone links5. We use one minute’s traces
that contain 281121 IPs and 17,721,707 traces. A trace rep-
resents a directed edge that one IP sent a packet to another
IP, such as (192.168.29.1, 192.168.29.133, 62, 105.12). Here,
each IP address is a node, each trace represents a directed
edge, and the edge weight is the packet size, e.g., 62 bytes.

∏ GTGraph. We used the well-known graph generator
GTGraph

6 to generate directed graphs. We first used the R-
MAT model [11] to generate a large network with power-law
degree distributions. We then added weights to the edges us-
ing Zipfian distribution and the weight for each edge means
4http://dblp.dagstuhl.de/xml/
5
http://www.caida.org/data/passive/passive 2015 dataset.xml

6http://www.cse.psu.edu/˜kxm85/software/GTgraph/

the times the edge appeared in the streams. The generated
network contains 107 vertices and 1.444 ⇤ 109 edges.

π Twitter link structure. We used the Twitter link struc-
ture Twitter

7. Since the released data is anonymized, we
mainly used it for e�ciency study. It has around 5.26 mil-
lion nodes and 2 billion undirected edges, and we added ran-
dom edges to simulate friendship links to make it 10 billion
edges, which is 200GB on disk.

Setup. All algorithms were implemented in C++. We used
the same hash functions as adopted in an open source Count-
Min code8. All our experiments were conducted on an Intel
PC with a 3.4 GHz CPU and 32GB RAM, running Ubuntu.

6.1.2 Comparison with State-of-the-Art
In sketches for data streams, there are two main types:

frequency counts based (e.g., CountMin and gSketch) and
sample-based [29]. Take frequency counts based approaches
for example, one needs to implement a node sketch by hash-
ing nodes to support node queries, and another edge sketch
by hashing edges to support edge queries (see Example 1 for
more details). It is the same for sample-based solutions that
di↵erent sketches are needed for ad-hoc problems.

We used two strategies to compare with other approaches.

(1) Same space for an ad-hoc problem. We used the same
space for TCM, frequency counts-based, and sample-based
approaches, for each specific problem.

(2) Same space for a set of problems. When giving a set of
problems, e.g., both edge and node queries, we only build
one TCM, while using the same space to constructing two
frequency counts-based sketches, a node sketch and an edge
sketch. To better understand this comparison, please refer
to Table 3 in Appendix C.1 to see the types of queries that
TCM supports and what existing solutions support.

Note that, frequency counts-based approaches such as
CountMin and TCM overcount the encountered elements.
While sample-based approaches, on the other hand, typi-
cally undercount the elements. In fact, sample-based ap-
proaches, from the application perspective, are mainly used
to estimate the hot elements, i.e., heavy hitter problems.

6.1.3 Effectiveness Metrics
Average relative error. This measure is used for the set
of queries that returns estimated frequencies, such as edge or
subgraph frequencies. We used the measure defined in [39].
Given a query Q, the relative error is formalized as:

er(Q) =
f̃ 0(Q)� f(Q)

f(Q)
=

f̃ 0(Q)
f(Q)

� 1

The average relative error, given a set of m queries as
Q : {Q1, . . . , Qm

}, is determined by averaging the relative
errors over all queries Q

i

for i 2 [1,m] as:

e(Q) =

P
k

i=1 er(Qi

)

m

Intersection accuracy. When evaluating top-k results for
heavy nodes/edges and reachability queries, we used a sim-
ple intersection metric [17]. Let X be the set of top-k results
computed by an algorithm, and Y be the ground truth top-k

7http://twitter.mpi-sws.org/data-icwsm2010.html.
8https://github.com/alabid/countminsketch/

1488

 0
 20
 40
 60
 80

 100
 120

1/1
60

1/1
40

1/1
20

1/1
00

1/8
0

1/6
0

1/4
0Av

ar
eg

e
re

al
tiv

e
er

ro
r

Compression ratio

TCM
CountMin

(a) DBLP

 0

 10

 20

 30

 40

 50

1/7
00
1/6

50
1/6

00
1/5

50
1/5

00
1/4

50
1/4

00
1/3

50
1/3

00

Av
ar

eg
e

re
al

tiv
e

er
ro

r
Compression ratio

TCM
CountMin

(b) IP flow

 0

 5

 10

 15

 20

1/1
60

1/1
40

1/1
20

1/1
00

1/8
0

1/6
0

1/4
0Av

ar
eg

e
re

al
tiv

e
er

ro
r

Compression ratio

TCM
CountMin

(c) GTGraph

Figure 7: Edge queries (varying compression ratios)

100
101
102
103
104
105
106

 10 20 30 40 50 60 70

D
is

tri
bu

tio
n

Edge weights [1, 146]

+
+
++

+++
++++

+++++++++++++
+
+++++

(a) DBLP

102

103

104

105

 10 20 30 40 50 60 70 80 90 100

D
is

tri
bu

tio
n

Edge weights [46, 1.1*108]

(b) IP flow

103

104

105

106

 10 20 30 40 50 60 70 80 90 100

D
is

tri
bu

tio
n

Edge weights [1, 199]

 †
 †
 †

(c) GTGraph

Figure 8: Edge weight distribution

results. The inter-accuracy is defined as |X \ Y |/k, which is
in [0, 1], where 1 means that all real top-k results are found.

Furthermore, we used another popular measure of ranking
quality for top-k results, namely normalized discounted cu-
mulative gain (NDCG), see Appendix C.3 for more details.

6.2 Experimental Results
In this section, we show the results from five types of ex-

periments: e↵ectiveness for edge queries (Exp-1), e↵ective-
ness for node queries (Exp-2), e↵ectiveness for path queries
(Exp-3), e↵ectiveness for graph queries (Exp-4), and e�-
ciency study (Exp-5).

Exp-1: Edge queries. In the first set of experiments, we
studied the performance of TCM in estimating edge fre-
quencies by varying di↵erent parameters. More specifically,
we varied d that is the number of hash functions, and w that
is the width of the matrix.

(a) [Fixed d = 9, and varying w.] Here, we fixed the number
of hash functions d to be 9. We varied the sizes of TCM
by di↵erent compression ratios. Consider a graph with |E|
edges, the compression ratio c means that we use |E| ⇥ c
space for storage. Take DBLP with 2, 3425, 800 edges for ex-
ample, the compression ratio 1/100 indicates that the ma-
trix used takes 2, 3425, 800⇥ 1/100 = 234, 258 space, which
is a

p
234, 258 ⇥

p
234, 258 (i.e., 484 ⇥ 484, or w = 484)

matrix. For each CountMin sketch we use a vector with
234, 258 cells, the same size of the matrix used by TCM.
Figures 7(a), 7(b) and 7(c) show the results of edge fre-
quency estimation (Section 4.1) for the data sets DBLP, IP

flow, and GTGraph, respectively. The x-axis is the compres-
sion ratio and the y-axis is the average relative error of dis-
tinct edges in the graph streams.

The above results show that TCM and CountMin achieve
comparable performance. The reason is that both ap-
proaches hashed (or compressed) all values to the same
spaces having the same size w ⇥ w, and the error bounds
are the same (see Section A.1).

One may observe that the average relative error is rela-
tively high for all data sets. The reason is that both TCM
and CountMin overcount stream elements due to the com-
pressed space. For an edge e, if its real frequency f

e

(e) is
low, its estimated frequency f̃(e) is typically much higher

 0
 5

 10
 15
 20
 25
 30
 35
 40

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(a) DBLP

 0

 500

 1000

 1500

 2000

 2500

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(b) IP flow

 5
 10
 15
 20
 25
 30
 35
 40
 45

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(c) GTGraph

Figure 9: Edge queries (fixed w, varying d)

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Av
ar

eg
e

re
al

tiv
e

er
ro

r

Segments partitioned by weights

TCM
CountMin

(a) DBLP

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 3 4 5 6 7 8 9 10

Av
ar

eg
e

re
al

tiv
e

er
ro

r

Segments partitioned by weights

TCM
CountMin

(b) IP flow

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

Av
ar

eg
e

re
al

tiv
e

er
ro

r

Segments partitioned by weights

TCM
CountMin

(c) GTGraph

Figure 10: In-depth: partition edge weights

than f
e

(e) since it has chances to collide with edge e0 whose
real frequency is much higher than e. Figures 8(a), 8(b),
and 8(c) show the edge weight distribution for DBLP, IP flow,
and GTGraph, respectively. For each data set, the x-label in-
dicates the range of edge weights. For instance, the edge
weights, i.e., the number of co-authorships between two au-
thors for DBLP in Fig. 8(a), are in [1, 146]. There are 70
distinct weights, which are ranked in ascending order along
the x-axis, and the y-axis indicates the number that such
frequency appears. In Fig. 8(b), the edge weights have a big
range [46, 1.1⇥108] that for the aggregated bytes transferred
between two IPs. We sorted the weights in ascending order,
partitioned the sorted weights in 100 equal sized bucket, and
counted the number of edges in each bucket. For the value
10 in the x-axis, its y-axis value corresponds to the total
number of edges appeared in the first 10 buckets. Similar
for the GTGraph data in Fig. 8(c).
These figures tell us that the edge frequencies of all data

sets satisfy the Zipf distribution, and edges with low fre-
quencies dominate the results in Fig. 9. However, this will
not hurt a lot in real applications. As will be shown later,
the average relative error is very low for edges with high fre-
quencies. Also, we will show that in important applications
like heavy hitters, these sketches will find top-k frequent
edges with high accuracy.

(b) [Fixed w, and varying d from 1 to 9.] In this set of
experiments, we studied the e↵ect of multiple pairwise inde-
pendent hash functions. Figures 9(a), 9(b), and 9(c) show
the results of average relative error for data sets DBLP, IP

flow and GTGraph, by fixing the compression ratios to 1/40,
1/600 and 1/80, respectively. In the x-axis, we varied the
number of hash functions d from 1 to 9 with a step of 2.

These results tell us that using multiple pairwise indepen-
dent hash functions can indeed reduce the average relative
error, since the probability of hash collisions is reduced sig-
nificantly. The e↵ect is particularly clear when the edge
weights are large numbers, e.g., the bytes of sent packets in
IP flow data in Fig. 9(b), for both TCM and CountMin.

(c) [In-depth: partition edge weights.] We tested the average
relative error for di↵erent ranges of edge weights, as a com-
plementary experiment for Exp-1 (a)(b). For each data set,
we first sorted all edges in ascending weight order, and par-
titioned the sorted edge weights in 10 groups of equal size.

1489

0.2
0.4

0.6
0.8

1

DBLP IP

In
te
r-a
cc
ur
ac
y

TCM
CountMin
Sample

(a) Heavy edges

0.2
0.4

0.6
0.8

1

DBLP IP

In
te
r-a
cc
ur
ac
y

TCM
CountMin
Sample

(b) Heavy nodes
Figure 11: Heavy hitters

d = 1 d = 3 d = 5 d = 7 d = 9

CountMin 2434 124 62 44 36

TCM 2551 122 63 45 36

gSketch 31 13 10 9.3 8.6

TCM (edge sample) 33 13 11 9.9 9.2

Table 2: Average relative errors (IP flow)

Figures 10(a), 10(b) and 10(c) show the results for data sets
DBLP, IP flow, and GTGraph, respectively. Here, we fixed the
number of hash functions d = 9, and the compression ratios
1/40, 1/600 and 1/80 for the data sets DBLP, IP flow, and
GTGraph, respectively.

These figures show consistent results that the average rel-
ative error is high for edges with low weights, e.g., the 10%
lowest weight edges w.r.t. x-axis value 1 in all figures. Along
with the increasing edge weights, i.e., the x-axis values from
2 to 10, the average relative error is significantly reduced.

(d) [Heavy edges.] We studied the performance of TCM,
CountMin and sample-based approaches for estimating
heavy edges. For each data set, we first computed top-100
edges from the original data as the ground truth. For moni-
toring heavy edges, we adopted a priority queue to maintain
the estimated top-100 heavy edges, for each sketch. The
results from the priority queue were then computed for the
inter-accuracy as defined in Section 6.1.3. Also, we fixed
the number of hash functions d = 9 and the compression
ratios 1/40 and 1/600 for DBLP and IP flow, respectively.
Figure 11(a) shows the results for DBLP and IP flow. GT-

Graph is a synthetic data, and hence its heavy edges are
less of interests, which are thus not shown here. Moreover,
we used the non-square matrices (Section 5.1.2) for this ex-
periment, without assumption of the presence of any sam-
ple data. The results of using square matrices are a little
bit worse than using non-square matrices, since non-square
metrics can heuristically reduce the probability of hash col-
lisions, as remarked earlier in Section 5.1.2.

The result in Fig. 11(a) tells us that TCM and CountMin

are perfect (inter-accuracy = 1) in finding heavy edges for
IP flow, for the case that the edge weights have a big range
[46, 1.1 ⇥ 108] to represent the bytes sent between two IPs.
For the edge weights that have a smaller range, e.g., [1, 146]
for DBLP, the inter-accuracy of both TCM and CountMin

reduced, but are still good that is 80%. For sample-based ap-
proach, we use a uniform sampling to sample a large portion
(50%) of data. For both data sets, sample-based approaches
perform worse than the other two.

(e) [Compare with gSketch.] We have implemented gSketch,
which uses data samples to partition the graph stream by
putting edges with similar weights in one partition, such that
low weight edges will not collide with high weight edges when
being hashed.

The result for IP flow is given in Table 2, by varying the

 0

 20

 40

 60

 80

 100

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(a) DBLP

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(b) IP flow

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 3 5 7 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(c) GTGraph

Figure 12: Edge queries (sketches for > 1 function)

Shlomo Shamai
Sanjeev R. Kulkarni

Lalitha Sankar
Yingbin Liang
Mung Chiang

H. Vincent Poor

Debin Zhao
Qingming Huang
Shiguang Shan

Xilin Chen
Tiejun Huang

Wen Gao

Shuicheng Yan
Jianchao Yang
Huazhong Ning
Haichao Zhang
Narendra Ahuja

Thomas S. Huang

Sung-Kwun Oh
Kaoru Hirota

Ho-Sung Park
Salvatore Sessa

Chang Kwak

Witold Pedrycz

Philip S. Yu
Deng Cai

Hong Cheng
Jian Pei
Heng Ji

Jiawei Han

Figure 13: Conditional heavy hitters (DBLP)

number d of hash functions. Here, we used 10 data par-
titions. The result shows that the techniques proposed by
gSketch can be easily integrated to TCM, i.e., TCM (edge
sample) in Table 2, to significantly reduce the average rela-
tive errors, when data samples are available. Moreover, the
average relative errors of gSketch and improved TCM using
edge samples are very close. The results for other data sets
are given in Appendix C.2, which show similar trend.

(f) [Same space for a set of problems.] As stated in Sec-
tion 6.1.2, using the same space, we built one TCM (with
compression ratio 1/600), but two CountMin based sketches,
one for edge and the other for node with equal size. The
result of comparing TCM and edge sketches in this setting
is given in Fig. 12. The result for node comparison is similar
and thus omitted due to space constraints.

The result shows that TCM clearly outperforms Count-

Min in this setting. That is, by using the same space for a
set of problems, TCM can support ad-hoc problems with
better accuracy. Meanwhile, TCM can still support more
analytics (see more discussion in Table 3 in Appendix C.1).

Exp-2: Node queries. In this set of experiments, we eval-
uated the support for heavy nodes of di↵erent sketches, as
well as showing the results of using TCM for the conditional
heavy hitter problem.

(a) [Heavy nodes.] We first studied the monitoring task of
finding top-k heavy nodes. Note that, we adopted the same
TCM sketches used in Exp-1 (d). However, for CountMin

and sample-based approaches, they need to rebuild sketches
for collecting node information. In other words, in order
to support edge queries and point queries, both CountMin

and sample-based approaches need to use extra spaces. For
CountMin, we used the same space for TCM. For sample-
based approaches, we used 50% rate for uniform sampling.
For each data set, we first computed top-100 nodes from
the original data as the ground truth. Similar to monitor-
ing heavy edges, we used a priority queue to maintain the
estimated top-100 heavy nodes, for each sketch. The results
from the priority queue were then computed for the inter-
accuracy as defined in Section 6.1.3. Figure 11(b) shows
the results for DBLP and IP flow. Also, we ignored GTGraph,
since it is a synthetic data, which is less of interests for heavy
hitter problems.

The results show that TCM and CountMin perform sim-
ilar with good accuracy in terms of estimating heavy nodes.

1490

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

In
te

r-a
cc

ur
ac

y

#-hash functions

DBLP
IP flow

GTGraph

(a) All Data Sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

In
te

r-a
cc

ur
ac

y

#-hash functions (GTGraph)

|E|/|V|=1
|E|/|V|=3
|E|/|V|=5
|E|/|V|=7

(b) True Negatives

Figure 14: Reachability queries (varying d)

In particular, they clearly outperform sample-based ap-
proaches in both data sets, which agrees with the results
from heavy edges given in Fig. 11(a).

(b) [Conditional heavy hitters.] Besides finding which nodes
are most popular as heavy hitters do, conditional heavy hit-
ters is to further find the most popular neighbors to the most
popular nodes. Please find a detailed discussion and its cor-
responding Algorithm 1 in Appendex-B.1 for detecting con-
ditional heavy hitters. Also, please refer to the discussion in
Section 4 about why other sketches fall short of supporting
the problem of conditional heavy hitters.

Since the results of DBLP are easy to understand, we only
show the conditional heavy hitters detected for DBLP, as
given in Fig. 13. It depicts the top-5 most productive au-
thors such as H. Vincent Poor and Wen Gao, each of them
indeed has > 700 publications. Also, it reports for each au-
thor and his top-5 most frequent collaborators. We have
manually checked DBLP: 3 collaborators (Shlomo Shamai,
Sanjeev R. Kulkarni, and Yingbin Liang) are indeed in H.
Vincent Poor’s top-5 frequent collaborators, and the other
2 are in his top-10 frequent collaborators.

Exp-3: Path queries. In this set of experiments, we evalu-
ated the power of TCM in supporting reachability queries.
Note that the other two types of sketches, CountMin and
sample-based, cannot be used for estimating reachability
queries. We fixed the compression ratios to 1/40, 1/600 and
1/80 for DBLP, IP flow, and GTGraph, respectively. We varied
the number of hash functions from 1 to 9. For each data
set, we randomly picked 100 pairs of nodes. The estimation
is correct if either TCM reports that two nodes are reach-
able and they are indeed reachable (i.e., true positives), or
estimates that two nodes are not reachable and they are not
connected in the original graph (i.e., true negatives). The
results for inter-accuracy are shown in Fig. 14(a).

The above results tell us two things. Firstly, along
with the increasing number of hash functions d, the inter-
accuracy of estimating reachability queries will increase, as
expected. Secondly, TCM achieved good inter-accuracy for
all data sets. For example, when d = 9, the inter-accuracy
values for DBLP, IP flow and GTGraph are 96%, 84.5% and
100%, respectively.

In-depth: true negatives. Since TCM keeps all connectives
of the graph stream, it only has true positives but no false
positives, i.e., all reachable node pairs will be detected as
reachable. However, due to hash collisions, there may exist
hash collisions such that TCM may have false negatives,
i.e., not reachable node pairs may be reported as reachable.
In order to control the graph shape, we used synthetic data
GTGraph by varying the ratio |E|/|V | from 1 to 7, with a step
of 2. Figure 14(b) shows the results for 100 not reachable

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(a) DBLP

 0
 5

 10
 15
 20
 25
 30
 35

1 2 3 4 5 6 7 8 9

Av
ar

eg
e

re
al

tiv
e

er
ro

r

#-hash functions

TCM
CountMin

(b) IP flow

Figure 15: Subgraph frequencies (varying d)

pairs. It shows that when the number of hash functions is
small, the inter-accuracy of true negatives is low. Along with
increasing number of hash functions, the inter-accuracy in-
creases significantly, with low false negatives. In fact, when
|E|/|V | > 7, most node pairs were reachable to each other,
i.e., no negatives and TCM naturally performs well.

Exp-4: Graph analytics. In this set of experiments, we
study two types of graph analytics, subgraph queries and
heavy triangle connections.

(a) [Subgraph queries.] We first tested the performance of
both TCM and CountMin in estimating subgraph queries
(Section 4.4). Since subgraph queries are considered as sum-
ming up the estimated edge frequencies of all graph edges,
the results are expected to be similar to the ones for edge
queries. We verified the above observation by the follow-
ing experiments, using only real-world data sets, i.e., DBLP

and IP flow. For each data set, we generated, from the origi-
nal graph stream, 20 connected graphs with di↵erent shapes,
such as paths, star-shaped graphs, and general graphs. Also,
they have various sizes from 2 to 8 edges. We fixed the com-
pression ratios to 1/40 and 1/600 for DBLP and IP flow, and
varied the number of hash functions d from 1 to 9. Fig-
ures 15(a) and 15(b) show the results of average relative
error for DBLP and IP flow, respectively. Here, the x-axis
indicates the number of hash functions used, and the y-
axis represents the average relative error for all tested graph
queries.

The above results tell us that along with the increasing
number of hash functions, the average relative error will de-
crease, which is expected and agrees with the results for
edge queries (Exp-1 (b)). Also, the results show that the
average relative error is lower than the results in Fig. 9 for
edge queries. The reason is that, given a graph with several
edges, if the real weight of one edge is large, it will poten-
tially dominate the estimation of average relative error for
other edges, and the overall value is thus lower. This also
agrees with the results shown in Fig. 10.

(b) [Heavy triangle connections.] Intuitively, heavy trian-
gle connections (see Appendix B.2 for a detailed discussion
and its corresponding algorithm) are the set of analytics
that first identify heavy edges, and then for each heavy edge
(x, y), finding the nodes that communicate frequently with
both x and y. We showcase DBLP here, since it is easy to un-
derstand by database researchers. We first identified top-20
heavy edges, indicating frequent collaborations, from which
we selected five edges about database researchers as depicted
in Fig. 16. The top-5 heavy connections with both authors
are also shown. Take Charu C. Aggarwal and Philip S. Yu
for example, for the 5 discovered authors that collaborate

1491

Jiawei Han
Joel L.Wolf

Jianyong Wang
Haixun Wang

Marjory S. Blumenthal

Charu C.
Aggarwal

Amr El
Abbadi

Philip
S. Yu

Divyakant
Agrawal

Sudipto Das
Sunil Prabhakar

Georg Klump
H. Clifford Lane

Mineo Tsuji

Jiawei
Han

Philip S. Yu
Hong Cheng
Gema Calbo

Soroosh Nalchigar
Sangmin No

Barbara Carminati
Giovanna Guerrini

Pierangela Samarati
Bhavani M. Thuraisingham
Anna Cinzia Squicciarini

Anthony K. H. Tung
Wee Siong Ng

Hongjun Lu
Aoying Zhou

Jason Scimeca

Xifeng
Yan

Elisa
Bertino

Elena
Ferrari

Beng Chin
Ooi

Kian-Lee
Tan

Figure 16: Heavy Triangle Connections (DBLP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
on

ds
)

#-hash functions

CM-string
CM-hash

TCM-string
TCM-hash

(a) DBLP (|E| = 4.9 ⇤ 106)

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
on

ds
)

#-hash functions

CM-string
CM-hash

TCM-string
TCM-hash

(b) IP flow (|E| = 1.7 ⇤ 107)

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
on

ds
)

#-hash functions

CM-string
CM-hash

TCM-string
TCM-hash

(c) GTGraph (|E| = 1.44 ⇤ 109)

 0

 1000

 2000

 3000

 4000

 5000

1 2 3 4 5 6 7 8 9

Ti
m

e
(s

ec
on

ds
)

#-hash functions

CM-string
CM-hash

TCM-string
TCM-hash

(d) Twitter (|E| = 1010)

Figure 17: E�ciency

frequently with both of them, 4 are in the ground truth of
top-5 results. This tells us that (i) TCM can discover inter-
esting and useful results for practical applications; and (ii)
the accuracy is good in practice.

Exp-5: E�ciency. In the last set of experiments, we first
evaluated the e�ciency of building TCM, as discussed in
Section 5.1.1. The results of varying the number of hash
functions from 1 to 9 are given in Fig. 17. In all stream-
ing scenarios, data does not reside in disk. Hence, in our
experiments, we counted the time after data is in memory.

Take DBLP in Fig. 17(a) for example. When the x-axis
value is 1 that is for 1 hash function, the left (resp. right) bar
represents gSketch, i.e., CountMin based edge sketch, (resp.
TCM). Each bar consists of two parts, where the upper
part (-string) is for the time of string operation and the lower
part (-hash) is for hashing and updating the sketch. gSketch
concatenates two strings but TCM does not need to, that is
why the upper part of CountMin takes much time but TCM
has almost zero cost. For the cost of hashing, i.e., the lower
parts of both bars, the time is comparable. Moreover, when
concatenating two strings a and b, sometimes the time of
running the same hash function h on h(ab) takes longer than
on two strings h(a) and h(b) separately, which explains why
in Fig. 17(d) the hashing time of TCM is even less than
CountMin. Hence, the overall time of constructing gSketch

is even longer than TCM.
The above results show that the maintenance cost of

TCM is comparable to the state-of-the-art and also scal-
able, which indicates that TCM can be e�ciently built to
support real-time applications in graph streams.

Query time. After e↵ectiveness study in Exps 1-4, we now
discuss the e�ciency of using TCM against query evalua-

tion using the original graph stream. Note that, the TCM
is stored as an adjacency matrix. The original graph stream,
however, can only be stored using an adjacency list for two
reasons: (1) one cannot know the number of nodes a-priori,
and (2) memory limitation. Naturally, query estimation us-
ing TCM is orders of magnitude faster than evaluation over
the graph stream. Please see Appendix C.4 for more empir-
ical results.

6.3 Summary of Experimental Findings
We find the followings from our experimental study.

(1) TCM can achieve performance comparable with the
state-of-the-art specialized sketches (Exp-1 (a-d), Exp-2 (a)
and Exp-4 (a)). Also, the idea of gSketch can be applied to
TCM to improve accuracy (Exp-1 (e)). Moreover, when us-
ing the same space to support di↵erent applications, TCM
is more e↵ective than its counterpart (Exp-1 (f)).

(2) TCM is much general than existing sketches, such as the
conditional heavy hitters studied in Exp-2 (b), the reach-
ability queries discussed in Exp-3, and the heavy triangle
relations studied in Exp-4 (b).

(3) TCM is economic to maintain and e�cient for query
estimation (Exp-5).

These experimental results confirmed the generalization,
e↵ectiveness and e�ciency of TCM in supporting various
graph stream applications, which sheds new light on sum-
marizing and analyzing graph streams.

7. CONCLUSION AND FUTURE WORK
We have proposed a graphical sketch TCM for summa-

rizing graph streams in a sublinear space, using linear con-
struction time, and with constant maintenance cost per up-
date. We have demonstrated its wide applicability to many
emerging applications, theoretically and experimentally. In
addition, we have shown that TCM has comparable perfor-
mance for specialized sketches for ad-hoc problems, and is
more e↵ective when considering a set of problems. We have
also shown problems that existing sketches fail to support.

One topic for future work is to revise it in order to serve
specific applications, e.g., to integrate it to OpenSOC for
cyber security framework. Another topic is, instead of treat-
ing it as a sketch, we plan to store extra information, use
it as a filter for general (exact) query evaluation (see Sec-
tion 5.1.4 for an initial discussion). Also, since evaluating
queries over multiple sketches of TCM is naturally paral-
lelizable, we plan to implement it on a distributed platform
e.g., GraphX, so as to handle big graph streams in practice,
in a more scalable way. Last but not least, we plan to use
it for revisiting a set of graph mining problems, e.g., find-
ing the evolution of graphs, and monitoring networks using
temporal snapshots of our sketches.

1492

8. REFERENCES

[1] Tweet statistics. http://expandedramblings.com/
index.php/march-2013-by-the-numbers-a-few-amazing-
twitter-stats/10/.

[2] Vitria. http://www.vitria.com/solutions/streaming-
big-data-analytics/benefits/.

[3] M. Adler and M. Mitzenmacher. Towards compressing
web graphs. In Data Compression Conference, pages
203–212, 2001.

[4] C. C. Aggarwal, editor. Data Classification:
Algorithms and Applications. CRC Press, 2014.

[5] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

[6] J. D. Batson, D. A. Spielman, and N. Srivastava.
Twice-ramanujan sparsifiers. In STOC, pages 255–262,
2009.

[7] A. A. Benczúr and D. R. Karger. Approximating s-t

minimum cuts in Õ(n2) time. In STOC, pages
255–262, 1996.

[8] A. A. Benczúr and D. R. Karger. Randomized
approximation schemes for cuts and flows in
capacitated graphs. CoRR, cs.DS/0207078, 2002.

[9] V. Braverman, R. Ostrovsky, and D. Vilenchik. How
hard is counting triangles in the streaming model? In
ICALP, pages 244–254, 2013.

[10] A. Z. Broder and M. Mitzenmacher. Survey: Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2003.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In SDM, pages
442–446, 2004.

[12] S. Choudhury, L. B. Holder, G. C. Jr., K. Agarwal,
and J. Feo. A selectivity based approach to continuous
pattern detection in streaming graphs. In EDBT,
pages 157–168, 2015.

[13] E. Cohen and H. Kaplan. Tighter estimation using
bottom k sketches. PVLDB, 1(1):213–224, 2008.

[14] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. J. Algorithms, 55(1):58–75, 2005.

[15] G. Cormode and S. Muthukrishnan. Space e�cient
mining of multigraph streams. In PODS, pages
271–282, 2005.

[16] M. Elkin. Streaming and fully dynamic centralized
algorithms for constructing and maintaining sparse
spanners. ACM Transactions on Algorithms, 7(2):20,
2011.

[17] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. In SODA, pages 28–36, 2003.

[18] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving
graph compression. In SIGMOD, pages 157–168, 2012.

[19] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming
model. Theor. Comput. Sci., 348(2-3), 2005.

[20] J. Gao, C. Zhou, J. Zhou, and J. X. Yu. Continuous
pattern detection over billion-edge graph using
distributed framework. In ICDE, pages 556–567, 2014.

[21] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel

computation on natural graphs. In OSDI, pages 17–30,
2012.

[22] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
OSDI, pages 599–613, 2014.

[23] S. Guha and A. McGregor. Graph synopses, sketches,
and streams: A survey. PVLDB, 5(12):2030–2031,
2012.

[24] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[25] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Trans. Inf. Syst.,
20(4), 2002.

[26] J. A. Kelner and A. Levin. Spectral sparsification in
the semi-streaming setting. Theory Comput. Syst.,
53(2):243–262, 2013.

[27] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
graphlab: A framework for machine learning in the
cloud. PVLDB, 5(8):716–727, 2012.

[28] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In
SIGMOD, pages 135–146, 2010.

[29] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In VLDB, pages 346–357,
2002.

[30] A. McGregor. Graph stream algorithms: a survey.
SIGMOD Record, 43(1):9–20, 2014.

[31] K. Mirylenka, G. Cormode, T. Palpanas, and
D. Srivastava. Conditional heavy hitters: detecting
interesting correlations in data streams. VLDB J.,
24(3):395–414, 2015.

[32] S. Raghavan and H. Garcia-Molina. Representing web
graphs. In ICDE, pages 405–416, 2003.

[33] C. Song, T. Ge, C. X. Chen, and J. Wang. Event
pattern matching over graph streams. PVLDB,
8(4):413–424, 2014.

[34] D. A. Spielman and N. Srivastava. Graph
sparsification by e↵ective resistances. In STOC, pages
563–568, 2008.

[35] T. Suel and J. Yuan. Compressing the graph structure
of the web. In Data Compression Conference, pages
213–222, 2001.

[36] R. E. Tarjan. Data structures and network algorithms.
In SIAM. 1983.

[37] C. E. Tsourakakis, U. Kang, G. L. Miller, and
C. Faloutsos. DOULION: counting triangles in massive
graphs with a coin. In SIGKDD, pages 837–846, 2009.

[38] C. Wang and L. Chen. Continuous subgraph pattern
search over graph streams. In ICDE, pages 393–404,
2009.

[39] P. Zhao, C. C. Aggarwal, and M. Wang. gSketch: On
query estimation in graph streams. PVLDB,
5(3):193–204, 2011.

APPENDIX
A. ERROR BOUNDS

We discuss the error bounds for two basic types of queries:

1493

edge queries and node queries. Although TCM is more
general, we show that theoretically, it has the same error
bounds as CountMin.

A.1 Edge Queries
Our proof for error bound of edge queries is an adaption

of the proof used in CountMin (Section 4.1 of [14]).

Theorem 1: The estimation f̃
e

(x, y) of the cumulative
edge weight of the edge (x, y) has the following guaran-
tees, f

e

(x, y) f̃
e

(x, y) with probability at least 1 � �, s.t.,
f
e

(x, y) f̃
e

(x, y)+ ✏ ⇤n, where f
e

(x, y) is the exact answer
to the cumulative edge weight of the edge (x, y), n denotes
the number of nodes, and the error in answering a query is
within a factor of ✏ with probability �9. 2

Proof. Consider an edge query f
e

(x, y). For each stream
edge e : (x, y; t) and a hash function h

i

, by construction, the
edge weight !(e) is added to M

i

[h
i

(x), h
i

(y)], where M
i

is
the adjacency matrix corresponding to the hash function,
h
i

. Therefore, by construction, the answer to f
e

(x, y) is less
than or equal to min

i2[1,d] Mi

[h
i

(x), h
i

(y)], where d is the
number of applied hash functions.

Consider two edges (x, y) and (z, w). We define an indi-

cator vector ~I
x,y,z,w

with d variables [I1
x,y,z,w

, . . . , Id
x,y,z,w

],
where Ii

x,y,z,w

corresponds to the hash function h
i

. We de-
fine Ii

x,y,z,w

to be 1, if there is a collision between two disjoint
edges, i.e., (x 6= z) ^ (y 6= w) ^ (h

i

(x) = h
i

(z)) ^ (h
i

(y) =
h
i

(w)), and 0 otherwise. By independence assumption of
hash buckets w.r.t. distinct hash keys, we have

E(Ii
x,y,z,w

) = Pr[(h
i

(x) = h
i

(z) ^ h
i

(y) = h
i

(w)]

 (1/range(h
i

))2 = ✏02/e2 P
where e is the base used to compute natural logarithm, and
range(h

i

) is the number of hash buckets of function h
i

. De-
fine the variable Xi

x,y

(random over choices of h
i

) to count
the number of collisions with the edge (x, y), which is for-
malized asXi

x,y

= ⌃
z=1...n,w=1...nI

i

x,y,z,w

a
z,w

, where n is the
number of nodes in the graph and a

z,w

is the sum of non-
zero weight entries of edge (z, w). Since a

z,w

is non-negative,
Xi

x,y

is non-negative. By construction, M
i

[h
i

(x), h
i

(y)] =
f
e

(x, y) + Xi

x,y

. So clearly,
�
min

i2[1,d] M
i

[h
i

(x), h
i

(y)]
�
�

f
e

(x, y). By pairwise independence of h
i

, and linearity of
expectation, we have

E(Xi

x,y

) = E
�P

z=1...n,w=1...n Ii
x,y,z,w

f
e

(z, w)
�P

�P

z=1...n,w=1...n E(Ii
x,y,z,w

)f
e

(z, w)
�
 (✏0/e)2 ⇤ nPP

Let, ✏02 = ✏. By the Markov inequality, we get

Pr[f̃
e

(x, y) > f
e

(x, y) + ✏ ⇤ n]

= Pr[8
i

. M
i

[h
i

(x), h
i

(y)] > f
e

(x, y) + ✏ ⇤ n]P
= Pr[8

i

. f
e

(x, y) +Xi

x,y

> f
e

(x, y) + ✏ ⇤ n]P
= Pr[8

i

. Xi

x,y

> e ⇤ E(Xi

x,y

)] < e

�d �P

Hence, TCM generates the same number of collisions and
the same error bounds under the same probabilistic guaran-
tees as CountMin for edge queries.

9The parameters ✏ and � are usually set by the user.

A.2 Node Queries
We first discuss the query for node out-flow, i.e., f

v

(a,!).
Consider the stream of edges e : (a, ⇤; t), i.e., edges from
node a to any other node indicated by a wildcard ⇤. Drop
the destination (i.e., the wildcard) of each edge. The stream
now becomes a stream of tuples (a,!(t)) where !(t) is the
sum of the weights of the outgoing edges from node a at time
t. When a query is posed to find the weighted out-degree
(i.e., the sum of the weights of all edges whose source node
is a) of node a, CountMin [14] returns the minimum of the
weights in di↵erent hash buckets as the estimation of the
flow out of node a. The unweighted out-degree (i.e., the
number of edges with source a) can be calculated similarly
by setting !(t) above to 1. Clearly, by construction, the
answer obtained is an over-estimation of the true out-degree
because of two reasons: (a) collisions in the hash-buckets,
and (b) self-collision, i.e., we do not know if an edge has been
seen previously and thus count the outgoing edge again even
if we have seen it.

The cases for in-flow point queries f
v

(a,) for directed
graphs and flow point queries f

v

(a,�) for undirected graph
queries can be analyzed using a similar discussion as shown
above, which are thus omitted here.

Given the same number of hash buckets, the error esti-
mates for point queries (see Sec. 4.1 of [14]) hold for these
cases.

Lemma 1.2: The estimated out-flow (in-flow) is within a
factor of ✏ of the actual out-flow (in-flow) with probability �
if we use d = dln(1/�)e pair-wise independent hash functions
and the number or rows w = de/✏e. 2

B. ADDITIONAL ALGORITHMS

B.1 Conditional Heavy Hitters
As discussed in Section 4, di↵erent from heavy hitters,

conditional heavy hitters [31] are to find heavy hitters that
are locally popular by considering edge connections. In other
words, instead of finding which nodes are most popular as
heavy hitters do, it is to find the most popular neighbors to
the most popular nodes.

In the following, we will present an algorithm of how
TCM can be used to monitor a graph stream and to report
conditional heavy hitters. Before we give the algorithmic
details, let us define the problem first.

Conditional heavy hitters. Consider a graph stream
G = he1, e2, · · · , emi as defined in Section 3.1. Assume
w.l.o.g. that each edge e

i

: (x
i

, y
i

; t
i

) is a directed edge
from node x

i

to node y
i

. The problem of conditional heavy
hitters is to find top-k heavy hitters with the most aggregate
in-flow weight, and for each detected heavy hitter y, find its
associated top-l nodes that send the highest weights to y.

The other two versions, the one to find nodes with top-
k out-flow weights, and the other version with undirected
edges, can be similarly defined. Therefore, we only present
the algorithm for the problem defined above, which can be
readily converted to solve other versions of conditional heavy
hitter problems.

Algorithm 1. The algorithm to monitor a graph stream G
to report conditional heavy hitters, is shown in Algorithm 1.
Given a graph stream G, two natural numbers k and l, it
outputs (estimates) top-k heavy nodes, with each one asso-

1494

Algorithm 1: Monitoring Conditional Heavy Hitters

Input: a graph stream G, a parameter k, and a parameter l.
Output: top-k heavy nodes, with each top-l heavy neighbors.

1 Initialize a TCM sketch, denote by M;
2 Initialize a global sorted list hh := ;;
3 for each edge e

i

: (x
i

, y
i

; t
i

) in G do
4 Update the TCM sketch M using e

i

;
5 Let in weight := f̃

v

(y
i

,);
6 Let neigbor weight := f̃

e

(x
i

, y
i

);
7 if y

i

is in hh then
8 if x

i

is in y
i

.hn then
9 Update the value in y

i

.hn w.r.t. x
i

to neigbor weight;
10 elseif neigbor weight > y

i

.hn.min weight then
11 if y

i

.hn.size = l then
12 Delete the one in y

i

.hn having the min weight

13 Insert (neigbor weight, x
i

) to y
i

.hn;
14 else // y

i

is not in hh

15 if in weight > hh.min weight and hh.size = k then
16 Delete the one in hh having the min weight;
17 if hh.size < k then
18 Initialize a sorted list hn for y

i

;
19 Insert (neigbor weight, x

i

) to y
i

.hn;
20 Insert (in weight, y

i

) to hh;
21 return hh;

ciated with top-l heavy neighbors. It first builds a TCM
sketch (line 1), and initializes a sorted list to maintain in
order to maintain top-k heavy hitters (line 2). It then pro-
cesses the incoming graph stream edges (lines 3-20). For
each incoming edge, it first updates the sketch (line 4; see
Section 5.1.1), and then estimates its in-flow weight (line 5;
see Section 4.2) and the edge weight (line 6; see Section 4.1).
If the node is already in the maintained top-k heavy hitters,
it updates the associated heavy neighbors (lines 7-14). If its
neighbor is already a hot neighbor (line 8), it simply updates
using the new estimated edge weight (line 9). Otherwise,
when either current visited node has maintained less than
top-l hot neighbors, or it already has top-l hot neighbors
but the new neighbor has a higher weight, it will update the
hot neighbors correspondingly (lines 10-13). In the case the
the currently visited node is not a heavy hitter (line 14),
it first removes the maintained heavy hitter with the small-
est in-flow weight, if the newly inserted node has a higher
weight (lines 15-16). The heavy hitter will be updated by
the new heavy hitter correspondingly (lines 17-20). Note
that, if the new heavy hitter has a less weight than the min-
imum weight in the maintained k heavy hitters, it will not
be inserted since the size of sorted heavy hitter list will not
be updated (i.e., lines 15-16 will not be executed). Conse-
quently, the lines 17-20 will not be executed since the size of
the maintained heavy hitter is k. Finally, it returns the top-
k heavy edges, with each one associated with top-l heavy
neighbors, which reflects the triangle relationships.

Complexity. It is readily to see that each step in the for
loop (lines 3-20) will take constant time. Observe the fol-
lowings. The operations for estimating the in-flow weight
(line 5; see Section 4.2) and the edge weight (line 6; see
Section 4.1) are in constant time. In addition, the cost of
maintaining a sorted list (either the hh or a hn) is also in
cost time, since the sorted list has a bounded size, k for hh

Algorithm 2: Finding Heavy Triangle Connections

Input: a graph stream G, a parameter k, and a parameter l.
Output: top-k heavy edges, with each top-l heavy connections.
1 Initialize a TCM sketch, denote by M(only one w⇤w matrix);
2 Find top-k heavy edges he while processing G;
3 for each edge e : (x, y) in he do
4 connections := ;;
5 for i 2 [1, w] do
6 if M[i][h(x)] > 0 and M[i][h(y)] > 0
7 connections := connections [ext(i);
8 Rank connections by

�
f̃
e

(z, x)⇥f̃
e

(z, y)
�
/
�
f̃
e

(z, x)+f̃
e

(z, y)
�
;

9 Associated top-l connections from the above ranking;
10 return heavy edges and their associated top-l connections;

and l for hn, where both k and l are constants. Hence, in
total, the algorithm runs in O(|E|) time, which is linear to
the input.

B.2 Heavy Triangle Connections
In this section, we study a new problem for community

detection.

Heavy triangle connections. Consider a graph stream
G = he1, e2, · · · , emi. The problem of top-k triangle connec-
tions is first to find top-k heavy edges, and then for each
detected heavy edge (x, y), to find top-l nodes z ranked by
the function

�
f
e

(z, x)⇥ f
e

(z, y)
�
/
�
f
e

(z, x) + f
e

(z, y)
�
.

Intuitively, the problem is to identify frequently communi-
cated node pairs, and then identify nodes that communicate
frequently with both nodes. Naturally, the detected rela-
tionships are in the shapes of triangles. In cyber security,
when finding two suspicious IPs (i.e., heavy edges), it is to
also report other suspicious IPs. Take DBLP for another ex-
ample, when identifying two authors who wrote many papers
together e.g., Philip S. Yu and Jiawei Han, or Divy Agrawal
and Amr El Abbadi, it is to find the ones who work closely
with both of them.

Note that the strategy of using TCM to estimate top-k
heavy edges has been discussed in Section 6.2, Exp-1 (d).
Given top-k heavy edges and only the TCM, it is not pos-
sible to identify the common neighbors since only hashed
values (not the original values) are maintained. To do so,
we show the power of the simple extension as discussed in
Section 5.1.4, the extended graph sketch.

Algorithm 2. The algorithm to compute heavy triangle
connections is shown in Algorithm 2. Given a graph stream
G, two natural numbers k and l, it outputs (estimates) top-
k heavy edges, with each one associated with top-l heavy
connections. It first initializes a TCM sketch (line 1). To
simplify the discussion, we consider only one hash function
(i.e., d = 1), and the case for d > 1 hash functions can be
easily adapted. It then processes the graph stream G, main-
tains the sketch, and finds top-k heavy edges (line 2; see the
discussion in Section 6.2, Exp-1 (d)). It then iteratively pro-
cesses each heavy edge (lines 3-9). It first computes the con-
nections for the edge being processing, using the extended
graph sketch (lines 5-7). It then ranks all connections us-
ing estimated edge weights (line 8) and picks top-l of them
(line 9). Finally, it returns the discovered heavy triangle
connections.

Complexity. It is readily to see that for each edge, finding

1495

edge node conditional path graph heavy

heavy nodes (reachability) (explicit edges labels) triangle connections

TCM 3 3 3 3 3 3
CountMin (edge) or gSketch 3 7 7 7 3 7

CountMin (node) 7 3 7 7 7 7
sample-edge 3 7 7 7 7 7
sample-node 7 3 7 7 7 7

Table 3: Analytics supported by di↵erent sketches

d = 1 d = 3 d = 5 d = 7 d = 9

CountMin 35.6 28.6 26.3 25 24

TCM 35.9 28.6 26.1 24.8 23.9

gSketch 29.8 25.2 23.5 22.5 21.8

TCM (edge sample) 29.4 24.7 23 22 21.4

Table 4: Average relative errors (DBLP)

d = 1 d = 3 d = 5 d = 7 d = 9

CountMin 40.2 13.2 7.9 5.7 4.5

TCM 41 13 7.7 5.6 4.4

gSketch 5.7 3.6 3 2.63 2.4

TCM (edge sample) 5.9 3.6 3 2.6 2.3

Table 5: Average relative errors (GTGraph)

all connections will take O(|V |) time. Ranking all connec-
tions will take O(|V |log|V |) time. Since both k and l are
constants, the total running time of Algorithm 2 is thus
O(|V |log|V |).

C. ADDITIONAL EXPERIMENTS
C.1 Sketch Expressiveness

The types of analytics supported by di↵erent sketches are
summarized in Table 3, which tells the followings:

• For existing sketches, either frequency counts-based or
sample-based, in order to support di↵erent analytics,
they have to build an ad-hoc sketch to support a specific
task, e.g., edge or node.

• gSketch has been proposed to improve CountMin by
considering data distribution. However, due to its in-
herent one-dimensional data structure, they have lim-
ited powered in supported graph analytics, which has
been illustrated in Example 2.

• TCM is much more generalized in supporting many
types of analytics in a single sketch, with the rea-
son that TCM is inherent a two-dimensional struc-
ture, which keeps all graph connectivities in the orig-
inal graph, as explained in Example 3. The improved
power of using a two-dimensional structure vs. a one-
dimensional structure is evident in supporting graph
based applications.

In summary, the above analysis shows that TCM is much
more general than state-of-the-art sketches.

C.2 More Comparisons with gSketch
We further show the comparisons with gSketch using DBLP

and GTGraph data sets.
The result for DBLP is given in Table 4 and for GTGraph is

shown in Table 5, by varying the number d of hash functions
from 1 to 9 with a step of 2. Here, we used 10 data partitions.

The benefit of using data partitions for GTGraph is more
significant than DBLP, in terms of the improved average rel-
ative errors. The main reasons are that (1) the range of

weights for DBLP is smaller, and (2) the size of DBLP is
smaller. In such case, the e↵ect of partitioning the data to
reduce the probability of hash collisions between high and
low weight elements is not significant.

The above results, together with Section 6.2 Exp-1(e),
show that the techniques proposed by gSketch can be eas-
ily integrated to TCM to reduce the average relative er-
rors. Moreover, the average relative errors of gSketch and
improved TCM using edge samples are very close. Again,
it proves the positive result that our generalized sketch can
get very close performance, when being compared with an
ad-hoc solution.

C.3 Effectiveness with NDCG Measure
Normalized discounted cumulative gain (NDCG) [25] mea-

sures of ranking quality, which calculates the gain of a re-
sult based on its position in the result list and normalizes the
score to [0, 1] where 1 means perfect top-k results. Using the
same setting of IP flow for heavy edges/nodes in Section 6.2,
we show the NDCG results below, where he (resp. hn) is
for heavy edges (resp. heavy nodes). It shows that TCM,
as well as CountMin based method, can return top-k results
with good NDCG scores. The results for other data sets are
omitted for similar results and lack of space.

k he (TCM) he (CountMin) hn (TCM) hn (CountMin)
10 0.99 0.99 1 1
100 0.99 0.99 0.99 1
500 0.99 0.99 0.99 0.99

C.4 Query Time
We show the query time of edge queries for GTGraph on

both the sketch and the original graph in the below table.
Each row indicates the number of edge queries. For each
set of edge queries, we first equally partitioned all edges in
10 buckets based on edge weights. We then picked 1/10
edges from each bucket. TCM is stored in an adjacency
matrix and each query is in constant time, hence it is very
e�cient. For the original graph, it can only be stored as
an adjacency list (see Section 6.2 Exp-5 for the discussion),
each query needs a scan to locate the edge, which is thus
very expensive. We then built a hash index on the nodes of
adjacency list to favor it, such that an edge is first to use the
hash index to locate the node and then scan its adjacency
list to find the edge. However, as shown in the last column,
it is still an order of magnitude slower than TCM.
#-queries TCM adjacency list hashed list

(summary) (original graph) (original graph)

100 0.001 secs 5.832 secs 0.013 secs

1000 0.005 secs 164.414 secs 0.072 secs

10000 0.028 secs 2022.682 secs 0.213 secs

The results for the other two data sets, DBLP and IP flow,
are similar and thus omitted due to space constraints. Also,
the e�ciency for the other types of queries have similar con-
clusion, which is thus omitted.

1496

