
Azure Data Lake Store:
A Hyperscale Distributed File Service for Big Data Analytics

Raghu Ramakrishnan*, Baskar Sridharan*,
John R. Douceur*, Pavan Kasturi*, Balaji Krishnamachari-Sampath*, Karthick Krishnamoorthy*,

Peng Li*, Mitica Manu*, Spiro Michaylov*, Rogério Ramos*, Neil Sharman*, Zee Xu*,
Youssef Barakat*, Chris Douglas*, Richard Draves*, Shrikant S Naidu**, Shankar Shastry**,

Atul Sikaria*, Simon Sun*, Ramarathnam Venkatesan*
{raghu, baskars, johndo, pkasturi, balak, karthick, pengli, miticam, spirom, rogerr, neilsha, zeexu, youssefb, cdoug,

richdr, shrikan, shanksh, asikaria, sisun, venkie}@microsoft.com

ABSTRACT
Azure Data Lake Store (ADLS) is a fully-managed, elastic,
scalable, and secure file system that supports Hadoop distributed
file system (HDFS) and Cosmos semantics. It is specifically
designed and optimized for a broad spectrum of Big Data analytics
that depend on a very high degree of parallel reads and writes, as
well as collocation of compute and data for high bandwidth and
low-latency access. It brings together key components and features
of Microsoft’s Cosmos file system—long used internally at
Microsoft as the warehouse for data and analytics—and HDFS, and
is a unified file storage solution for analytics on Azure. Internal and
external workloads run on this unified platform. Distinguishing
aspects of ADLS include its support for multiple storage tiers,
exabyte scale, and comprehensive security and data sharing. We
discuss ADLS architecture, design points, and performance.

Keywords
Storage; HDFS; Hadoop; map-reduce; distributed file system;
tiered storage; cloud service; Azure; AWS; GCE; Big Data

1. INTRODUCTION
 The Cosmos file system project at Microsoft began in 2006, after
GFS [11]. The Scope language [7] is a SQL dialect similar to Hive,
with support for parallelized user-code and a generalized group-by
feature supporting Map-Reduce. Cosmos and Scope (often referred
to jointly as “Cosmos”) are operated as a service—users company-
wide create files and submit jobs, and the Big Data team operates
the clusters that store data and process the jobs. Virtually all groups
across the company, including Ad platforms, Bing, Halo, Office,
Skype, Windows and XBOX, store many exabytes of
heterogeneous data in Cosmos, doing everything from exploratory
analysis and stream processing to production workflows.
While Cosmos was becoming a foundational Big Data service
within Microsoft, Hadoop emerged meantime as a widely used

open-source Big Data system, and the underlying file system HDFS
has become a de-facto standard [28]. Indeed, HDInsight is a
Microsoft Azure service for creating and using Hadoop clusters.
ADLS is the successor to Cosmos, and we are in the midst of
migrating Cosmos data and workloads to it. It unifies the Cosmos
and Hadoop ecosystems as an HDFS compatible service that
supports both Cosmos and Hadoop workloads with full fidelity.

It is important to note that the current form of the external ADL
service may not reflect all the features discussed here since our goal
is to discuss the underlying architecture and the requirements that
informed key design decisions.

1.1 Learnings, Goals, and Highlights
Our work has been deeply influenced by learnings from operating
the Cosmos service (see Section 1.2), and from engaging closely
with the Hadoop community. Tiered storage in ADLS (see Section
1.3) grew out of a desire to integrate Azure storage with Cosmos
[6] and related exploratory work in CISL and MSR [21], and
influenced (and was influenced by) work in Hadoop (e.g.,
[10][15]). Based on customer feedback, an overarching objective
was to design a highly secure (see Section 6) service that would
simplify management of large, widely-shared, and valuable /
sensitive data collections. Specifically, we have sought to provide:

- Tier/location transparency (see Section 1.3)
- Write size transparency (see Section 4.5)
- Isolation of noisy neighbors (see Section 4.7)

This focus on simplicity for users has had a big influence on ADLS.
We have also sought to provide support for improvements in the
end-to-end user experience, e.g., store support for debugging failed
jobs (see Section 4.6), and to simplify operational aspects from our
perspective as cloud service providers (see Section 1.2).

The key contributions of ADLS are:

• From an ecosystem and service perspective, ADLS is the
successor to the Cosmos service at Microsoft, and
complements Azure Data Lake Analytics (ADLA) [1], a
YARN-based multi-tenanted environment for Scope and its
successor U-SQL [30], as well as Hive, Spark and other Big
Data analytic engines that leverage collocation of compute
with data. Thus, ADLA and ADLS together unify Cosmos and
Hadoop, for both internal and external customers, as
Microsoft’s warehouse for data and analytics. ADLS is also a
very performant HDFS compatible filesystem layer for
Hadoop workloads executing in Azure public compute, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’17, May 14–19, 2017, Chicago, IL, USA.
© 2017 ACM. ISBN 978-1-4503-4197-4/17/05...$15.00.
DOI: http://dx.doi.org/10.1145/3035918.3056100

51

as Microsoft’s HDInsight service and Azure offerings from
vendors such as Cloudera and Hortonworks.

• Technically, ADLS makes significant advances with its
modular microservices architecture, scalability, security
framework, and extensible tiered storage. The RSL-HK ring
infrastructure (Section 3) combines Cosmos’s Paxos-based
metadata services with SQL Server’s columnar processing
engine (Hekaton) to provide an extremely scalable and robust
foundation, illustrating the value of judiciously combining key
ideas from relational databases and distributed systems. The
naming service that builds on it provides a flexible yet scalable
hierarchical name space. Importantly, ADLS is designed from
the ground up to manage data across multiple tiers, to enable
users to store their data in any combination of tiers to achieve
the best cost-performance trade-off for their workloads. The
design is extensible in allowing new storage tiers to be easily
added through a storage provider abstraction (Section 5).

ADLS is the first public PaaS cloud service that is designed to
support full filesystem functionality at extreme scale. The approach
we have taken to solve the hard scalability problem for metadata
management differs from typical filesystems in its deep integration
of relational database and distributed systems technologies. Our
experience shows the potential (as in [34] and [3]) in judicious use
of relational techniques in non-traditional settings such as
filesystem internals. See Sections 3 and 4.4 for a discussion.
We now go a little deeper into our experience with Cosmos, and the
notion of tiered storage, before presenting ADLS in later sections.

1.2 ADLS Requirements from Cosmos
The scale of Cosmos is very large. The largest Hadoop clusters that
we are aware of are about 5K nodes; Cosmos clusters exceed 50K
nodes each; individual files can be petabyte-scale, and individual
jobs can execute over more than 10K nodes. Every day, we process
several hundred petabytes of data, and deliver tens of millions of
compute hours to thousands of internal users. Even short outages
have significant business implications, and operating the system
efficiently and reliably is a major consideration.
Cosmos tends to have very large clusters because teams value
sharing data as in any data warehouse, and as new data is derived,
more users consume it and in turn produce additional data. This
virtuous “information production” cycle eventually leads to our
exceeding a cluster’s capacity, and we need to migrate one or more
teams together with their data (and copies of other datasets they
require) to another cluster. This migration is a challenging process
that takes several weeks, requires involvement from affected users,
and must be done while ensuring that all production jobs continue
to execute with the desired SLA. Similarly, such large clusters also
cause resource issues such as TCP port exhaustion.

Thus, a key design consideration was to improve ease of operations,
including upgrades and transparent re-balancing of user data. At the
scale ADLS is designed to operate, this is a big overhead, and
lessons learnt from Cosmos informed our design. Specifically, the
ADLS naming service provides a hierarchical file and folder
namespace that is independent of physical data location, with the
ability to rename and move files and folders without moving the
data. Further, ADLS is designed as a collection of key
microservices (for transaction and data management, block
management, etc.) that are also de-coupled from the physical

clusters where data is stored. Together, these capabilities
significantly improve the ease of operation of ADLS.

Security and access control are paramount. ADLS has been
designed from the ground up for security. Data can be secured per-
user, per-folder, or per-file to ensure proper confidentiality and
sharing. ADLS leverages Azure Active Directory for
authentication, providing seamless integration with the Azure cloud
and traditional enterprise ecosystems. Data is stored encrypted,
with options for customer- and system-owned key management.
The modular implementation enables us to leverage a wide range
of secure compute alternatives (from enclaves to secure hardware).

Finally, we have incorporated some useful Cosmos features that are
not available in other filesystems. Notably, the efficient
concatenation of several files is widely used at the end of Scope/U-
SQL jobs to return the result as a single file. This contrasts with
Hive jobs which return the results as several (usually small) files,
and thus incurring overhead for tracking artificially large numbers
of files. We describe this concatenation operation in Section 2.3.5.

1.3 Tiered Storage: Motivation and Goals
As the pace at which data is gathered continues to accelerate, thanks
to applications such as IoT, it is important to be able to store data
inexpensively. At the same time, increased interest in real-time data
processing and interactive exploration are driving adoption of faster
tiers of storage such as flash and RAM. Current cloud approaches,
such as storing data durably in tiers (e.g., blob storage) optimized
for inexpensive storage, and requiring users to bring it into more
performant tiers (e.g., local HDDs, SSDs or RAM) for
computation, suffer from three weaknesses for Big Data analytics:

1. The overhead of moving all data to the compute tier on
demand affects performance of analytic jobs.

2. Jobs must be able to quickly determine where data is
located to collocate computation. This requires running a
file manager that efficiently provides fine-grained
location information in the compute tier.

3. Users must explicitly manage data placement, and
consider security, access control, and compliance as data
travels across distinct services or software boundaries.

We simplify all this by enabling data location across storage tiers
to be managed by the system, based on high-level policies that a
user can specify (or use system defaults), with security and
compliance managed automatically within a single integrated
service, i.e., ADLS. The location of data is thus transparent to all
parts of the user experience except for cost and performance, which
users can balance via high-level policies.

Figure 1-1: ADLS Overview

52

The architectural context for ADLS is illustrated in Figure 1-1.
ADLS and ADLA are designed for workloads such as Apache
Hadoop Hive, Spark, and Microsoft’s Scope and U-SQL, that
optimize for data locality. The YARN-based ADLA framework
enables such distributed queries to run in a locality-aware manner
on files stored in ADLS, similar to how Scope queries run on
Cosmos or Hive queries run on Hadoop clusters with HDFS. The
query (specifically, the query’s application master or AM) calls
ADLS to identify the location of its data and produces a plan that
seeks to run tasks close to the data they process, and then calls
YARN to get nearby compute resources for each task (i.e., on the
same machines where the task’s data is in local storage, if possible,
or on the same racks). Local storage is durable; users can choose to
always keep data there or to use (cheaper) remote storage tiers,
based on their anticipated usage patterns. If relevant data is only
available on remote storage, ADLS automatically fetches it on-
demand into the machine where the task is scheduled for execution.
Queries can also execute anywhere on Azure VMs (e.g., in IaaS
Hadoop services or Microsoft’s managed Hadoop service,
HDInsight) and access data in ADLS through a gateway.
The rest of the paper is organized as follows. In Section 2, we
present the overall architecture of ADLS. We introduce the
different components, and discuss the flow of the main operations
supported by ADLS. Then in Section 3 we discuss the technology
behind RSL-HK rings, a foundation for many of the metadata
services, before diving into the implementation of each of the
services in Section 4. We examine tiered storage in more depth with
a discussion of storage providers in Section 5. In Section 6, we
focus on security in ADLS, including encryption and hierarchical
access controls. Since composing several complex microservices in
quite complex ways is so central to the architecture of ADLS, its
development involved a laser-like focus on ensuring that each of
the microservices achieves high availability, strong security, low
latency, and high throughput. For this reason, we present
performance data for the individual microservices throughout this
paper. However, a through treatment of end-to-end performance is
beyond its scope.

2. OVERVIEW OF ADLS
In this section, we introduce the basic concepts underlying file
storage in ADLS, the system components that represent files,
folders and permissions, and how information flows between them.

2.1 Anatomy of an ADLS File
An ADLS file is referred to by a URL, and is comprised of a
sequence of extents (units of locality in support of query
parallelism, with unique IDs), where an extent is a sequence of
blocks (units of append atomicity and parallelism) up to 4MB in
size. At any given time, the last extent of a file is either sealed or
unsealed, but all others are sealed and will remain sealed; this last
extent is the tail of the file. Only an unsealed extent may be
appended to, and it is available to be read immediately after any
write completes. A file is also either sealed or unsealed; sealed files
are immutable i.e., new extents cannot be appended, and the file
size is fixed. When a file is sealed, its length and other properties
are made permanent and cannot change. While a file’s URL is used
to refer to it outside the system, a file has a unique ID that is used
by almost all components of ADLS.
The concept of tiered storage is core to the design of ADLS—any
part of a file can be in one (or more) of several storage tiers, as
dictated by policy or performance goals. In general, the design
supports local tiers, whose data is distributed across ADLS nodes
for easy access during job computation, and remote tiers, whose

data is stored outside the ADLS cluster. The set of storage tiers
currently supported includes Azure Storage [5] as well as local
storage in the compute cluster (including local SSD and HDD tiers),
and has a modular design that abstracts tiers behind a storage
provider interface. This interface exposes a small set of operations
on ADLS file metadata and data, but not namespace changes, and
is invariant across all the types of storage tiers. This abstraction
allows us to add new tiers through different provider
implementations such as Cosmos, HDFS, etc.
Local storage tiers are on the same nodes where ADLA can
schedule computation, in contrast to remote tiers, and must provide
enough information about extent storage to allow ADLA to
optimize computations by placing computation tasks close to the
data they either read or write, or both. Remote tiers do not have this
responsibility, but they still need to support parallelism, as an
ADLA computation tends to read (and often write) many extents
simultaneously, and a job executing on thousands of back-end
nodes can create a barrage of I/O requests, imposing significant
requirements on remote storage tiers.
ADLS supports a concept called a partial file, which is essentially
a sub-sequence of the file, to enable parts of a file to reside in
different storage tiers, each implemented by a storage provider (see
Section 5). This is an important internal concept, not exposed to
users. A partial file is a contiguous sequence of extents, with a
unique ID, and a file is represented internally in ADLS as an
unordered collection of partial files, possibly overlapping, each
mapped to a specific storage tier at any given time. Thus, depending
on how partial files are mapped to different storage tiers, a storage
tier may contain non-contiguous sub-sequences of a given file's
extents. The set of partial files must between them contain all
extents of a file, but some extents may be represented in more than
one partial file. For each file, at most one partial file contains an
unsealed extent, and that is the tail partial extent for the file.
Partial files can also be sealed. If for some reason the tail partial file
needs to be sealed, a new partial file is created to support
subsequent appends. Even after a file is sealed, the location of any
of its partial files can still change, and further, the set of underlying
partial files can be modified (split, merged) so long as this set
continues to accurately reflect the sequence of extents of the file. In
Figure 2-1, we show how two example files are represented as
partial files through the various ADLS microservices and storage
tiers. We will use this as an example to illustrate the ADLS
architecture in the next few sections.

2.2 Components of the ADLS System
We first outline the various components of ADLS, illustrated in
Figure 2-2, and return to each of the components in detail in
subsequent sections. An ADLS cluster consists of three types of
nodes: back-end nodes, front-end nodes and microservice nodes.
The largest number of servers, the back-end nodes, is reserved for
local tier data storage and execution of ADLA jobs. The front-end
nodes function as a gateway, hosting services needed for
controlling access and routing requests, and microservice nodes
host the various microservices.
Central to the ADLS design is the Secure Store Service (SSS, see
Section 4.1), which orchestrates microservices and a heterogenous
set of supported storage providers. The SSS acts as the point of
entry into ADLS and provides a security boundary between it and
applications. It implements the API end points by orchestrating
between metadata services and storage providers, applying light-
weight transaction coordination between them when needed,
handling failures and timeouts in components by retries and/or
aborting client requests as appropriate, and maintaining a consistent

53

internal state throughout and ensuring that a consistent state is
always presented to clients. It provides a semantic translation
between files exposed by the ADLS system and the underlying
storage providers. It also hosts adapter code for implementing the
storage provider interface for each supported storage provider.
The RSL-HK Ring infrastructure (see Section 3) is the foundation
for how ADLS supports very large files and folders, providing
efficient, scalable and highly available in-memory, persistent state;
most of the metadata services described below are based on it. It
implements a novel combination of Paxos and a new transactional
in-memory block data management design. The scalability and
availability of RSL-HK is based on its ability to dynamically add
new Paxos rings, and to add machines to an existing Paxos ring.
The Paxos component of RSL-HK is based on the implementation
in Cosmos, which has provided very high availability across
hundreds of rings in production use over many years. The
transactional in-memory block management leverages technology
used in SQL Hekaton [9]. The metadata services run as RSL-HK
rings, with each ring typically having seven dedicated servers.
A hyper-scale distributed Naming Service (NS) (see Section 4.4),
layered over RSL-HK rings, associates file names with IDs and
provides a hierarchical namespace for files and folders across data
centers, supporting renames and moves of files and folders without
copying data [18]. In contrast, traditional blob storage systems lack
the ability to rename or move a container, and require a recursive
copy of contents to a newly created container. NS also enables the
implementation of ACLs on both files and folders and, through its
integration with Azure Active Directory and the ADLS Secret
Management Service (SMS) component (see Section 4.2), provides
enterprise grade secure access control and sharing. ADLS supports
POSIX style ACLs [23], and can support other convenience
features such as recursive ACLs. All ADLS namespace entries and
operations on them are managed by NS, regardless of the tiers
involved in storing the given file or folder (Section 4.4).
The Partial File Management Service (PFM) (see Section 4.3)
maintains the list of partial files that comprise a file, along with the
provider (i.e., storage tier) for each partial file. The implementation
of each partial file, including its metadata, is the responsibility of
the storage provider to which that partial file is mapped.
Accordingly, data and file metadata operations against an ADLS
file are partly handled by delegation to the corresponding storage
providers. For example, when a file is written to, the SSS uses the
file’s ID and the PFM to locate the tail partial file that contains the
extent, and appends to it.
Depending on usage patterns, policies and the age of data, partial
files need to be created on a specific tier, moved between store tiers
or deleted altogether. When a file is created, a single partial file is
immediately created to represent it. Any append to the file is always
to a single partial file on a single tier.
We move partial files between tiers through decoupled copying and
deleting. To change the tier of a partial file, a new partial file is
created in the target tier, by copying data from the source partial
file. For a time, two separate partial files (in two different tiers) are
represented in the PFM, containing identical data. Only then is the
source partial file deleted. When a partial file is no longer needed,
it is deleted, while ensuring that all extents in it also exist in some
other partial file, unless the file itself is being deleted.
The Extent Management Service (EMS) tracks the location of every
extent of every file in a remote storage provider (see Section 5.3),
similar to the HDFS NameNode. Scalability of the NameNode has
long been a challenge in HDFS, and in contrast the EMS, using the
RSL-HK ring infrastructure, achieves very high scalability,

performance, and availability. Notably, ADLS differs from HDFS
in separating naming (and other file metadata), stored in the NS,
from extent metadata, stored in the EMS. This is to handle the
disparate scale characteristics and access patterns for these two
kinds of metadata.
The Transient Data Store Service (TDSS) (see Section 4.6)
temporarily stores output from ADLA computation tasks that is yet
to be used as input to other such tasks, and makes many
optimizations to achieve significant performance improvements.
ADLS is designed to support low-latency append scenarios.
Typically, low-latency scenarios involve appends that are small (a
few bytes to a few hundred KB). These scenarios are sensitive to
the number of operations and latency. The Small Append Service
(SAS) (see Section 4.5) is designed to support such scenarios
without requiring an ADLS client to use different APIs for different
append sizes. It enables a single ADLS file to be used for both low-
latency, small appends as well as traditional batch system appends
of larger sizes that are sensitive to bandwidth. This is made possible
by detecting the write sizes in real-time, storing the appends in a
temporary (but durable) buffer, and later coalescing them to larger
chunks. The small appends are acknowledged immediately and
thus the client can immediately read the tail of the file.

2.3 Flow of Major Operations
This section outlines how ADLS microservices interact with
storage providers to implement the core operations, including
examples drawn from Figure 2-1.

2.3.1 Opening a File
To create a new file, the SSS creates an entry in the NS, and
associates a new file ID with the name. The SSS then chooses the
storage provider for the tail partial file, and associates the provider
and a newly generated partial file ID (as tail partial file) with the
file ID in the PFM for use by subsequent operations. Finally, the
SSS requests the chosen provider to create a file indexed by the
chosen partial file ID. To open an existing file, the flow is similar,
but the file ID is looked up in the NS, the provider ID and tail partial
file ID are looked up in the PFM. In both cases, access controls are
enforced in the NS when the name is resolved.
Using the example from Figure 2-1, consider opening
/myfolder/ABC. The entry for “myfolder” is found in the NS, child
links are followed to the entry for “ABC”, and file ID 120 is
obtained. This is looked up in the PFM, to get the provider ID Azure
Storage and partial file ID 4. These are associated with the returned
file handle and stored in the SSS for later use.

2.3.2 Appending to a File
ADLS supports two different append semantics: fixed-offset
append, and free offset append. In the case of fixed-offset append,
the caller specifies the starting offset for the data and if that offset
already has data, the append is rejected. In the case of free offset
append, ADLS determines the starting offset for the data and hence
the append operation is guaranteed not to fail due to collisions at
the offset. One crucial append scenario is upload of large files,
typically performed in parallel. When the order of data within the
file is not critical and duplicates (due to timeout or job failure) can
be tolerated, multiple threads or clients can use concurrent, free-
offset appends to a single file. (A similar approach to parallel
appends was used in Sailfish [29], with the added generality of
writing in parallel to extents other than the tail.) Otherwise, all
clients can use fixed-offset uploads to their own intermediate files
and then use the fast, atomic concatenation operation described in
Section 2.3.5 to concatenate them in order into a single file.

54

Figure 2-1: Anatomy of a File

Figure 2-2: ADLS Architecture

55

To append to an open file, SSS looks up the tail partial file from the
PFM. Note that the tail partial file is guaranteed to be unique for
any particular file. If there is no tail partial file in PFM, this means
the file is either empty or was sealed for some reason.
In that case, SSS registers a new partial file in PFM, and creates it
in the appropriate storage provider, and opens a handle to this new
tail partial file. Once SSS has a valid tail partial file handle, all
subsequent appends go directly to the storage provider. Neither the
NS nor the PFM is involved. SSS only needs to interact with PFM
again when the current tail partial file is sealed.
In Figure 2-1, consider appending to /myfolder/XYZ. The file ID
in the NS is 123, and according to the PFM the tail partial file is 3,
mapped to the Cosmos provider. The consequence of not involving
PFM in every append is that PFM does not have the up-to-date
information for the tail partial file. Before the tail partial file has
been sealed, requests for the length are delegated to the provider.
When a partial file (and hence also its tail extent) is sealed, the
length is updated in the PFM. If an append operation on a tail partial
file exceeds the storage provider’s file length limit, the operation
fails (locally), causing the SSS to initiate sealing the partial file, and
retry the append. Notably, sealing a partial file is idempotent (a
requirement on the provider implementation), and hence if
concurrent appends experience this local failure, they are all
allowed to succeed, even though only the one that won the race to
seal actually made a change.

2.3.3 Read
There are two methods to read data from ADLS. The first method
is by specifying a byte range to read. Data in the byte range can be
available in multiple storage providers, e.g. in both Cosmos
provider and Azure Storage provider. SSS attaches a numerical
value to each storage provider to indicate its performance relative
to the other stores. If the data is available in multiple storage
providers, SSS selects the “fastest” storage provider to read from.
Once SSS determines which partial file to read from, it sends the
read request to the partial file without PFM being involved.
In Figure 2-1, consider reading bytes 0 to 9 from the file
/myfolder/XYZ, and notice that partial files 1 and 2 both start at the
beginning of the file. Assume both are long enough to contain these
10 bytes. The SSS has a choice of which storage provider to read
from, based on policies. If it chooses file 1, the provider looks up
this partial file in the EMS to find that extent 1 is in blob-m of
storage account Account03. The internal APIs of Azure Storage are
then used to read the required bytes from that blob.
The second method is by accessing extents and their replicas
directly from the local storage providers when compute and data
are collocated. First, the GetFileInformation entry point (described
below) is used to obtain the location of all extents of a file,
including their replicas, across all storage providers. Then the job
chooses the extents it needs and the instances it prefers because of
cost, performance or availability. Computation tasks are collocated
with the extents that are read, and they access them via the store
provider interface through the SSS.

2.3.4 Obtaining File Metadata
The GetFileInformation operation returns file meta data and a
sequence of extent meta data, primarily for use by ADLA in
choosing back-end nodes for placing a job’s computation tasks. File
and extent meta data are split between PFM and storage providers.
This is implemented by looking up the file in the PFM, and then
traversing all the partial file references, following them to the
storage providers to obtain extent metadata including replicas, and
then combining it all in the result. The extent metadata returned is

organized in terms of the user-visible extents: there is one object
returned for each of these extents, which contains the metadata
about extent instances in the storage providers, including their
replicas. (Replica details are only of interest for local tiers—for
remote tiers they are merely a detail of provider implementation.)
The metadata returned includes immutable information such as
extent ID, length, last modified time and CRC.
In Figure 2-1, consider the file /myfolder/XYZ. For a call to
GetFileInformation(), the SSS first contacts the PFM to obtain the
partial files: 1, 2 and 3. Since the first two are mapped to the Azure
Storage provider, the SSS contacts the EMS to obtain metadata for
extents 1 to 101, stored there and it contacts the Cosmos provider
to obtain metadata for extents 101 to 150. The SSS then merges this
information, returns the metadata for all 151 instances of the 150
logical extents, representing the fact that extent 101 has two
instances, one in each of the providers. Thus, a total of 150
metadata records will be returned, one for each extent. The record
for extent 101 will be more complex because it contains both
information about all replicas of the extent in the Cosmos tier, and
also the account and blob mapping for the Azure Storage tier.
Because extent metadata is exposed outside of ADLS, it must
remain the same regardless of the storage provider where the extent
resides at a given point in time, and in practice this means that a
particular extent must always have the same ID, even if it resides
in more than one provider.

2.3.5 Concatenation
This concatenates a set of source files to produce a single target file.
After the concatenation, the source files are effectively deleted. All
source files and partial files in each source file must have been
sealed before concatenation, and this operation will seal them if
necessary. This property allows the size of all partial files to be
known, and makes it safe to combine, and if necessary re-sequence,
the partial file metadata into a single file.
This is implemented purely as a metadata operation in the NS and
PFM, except that sealing a partial file, if necessary, requires the
involvement of the storage provider.
Returning to the example of Figure 2-1, consider concatenating
/myfolder/ABC and /myfolder/XYZ to produce
/myfolder/NEWFILE. Only the contents of the NS and the PFM
will change. First, a new file ID is assigned—say 130. Then, the
PFM is consulted to determine the set of partial file IDs that will
comprise the new file—1, 2, 3, 4. All four corresponding entries in
the PFM atomically have their file ID updated to 130 (from
variously 120 and 123.) Finally, the file entries ABC and XYZ in
NS are atomically replaced with the entry NEWFILE, and the entry
for myfolder is updated to have only NEWFILE as a child.

2.3.6 Enumeration
File enumeration (within a given folder) is mostly a metadata
operation in the NS except that it also returns the file length and the
last modified time. PFM contains the up-to-date length of all sealed
partial files. If the tail partial file is unsealed, SSS queries the
owning storage provider for the tail partial file. File enumeration
requires the appropriate permissions to access the entire path and
the entries to be returned, and these are enforced by the NS.

3. RSL-HK RINGS
ADLS metadata services need to be scalable, highly available, have
low-latency and high throughput, and be strongly consistent. The
set of metadata services in Cosmos, while less extensive, have
similar requirements, and we have long used the Replicated State
Machine approach [2], based on a proprietary Replicated State

56

Library (RSL) that implements the complex underlying replication,
consensus, checkpointing and recovery mechanisms. RSL
implements Viewstamped Replication [22][31], with consensus
based on Paxos [19][20] and improvements described in [16].
RSL-based services are deployed in quorum-based rings, usually
consisting of seven servers, appropriately distributed across failure
domains. There is always a single primary node, which services all
updates, and a new primary is elected if the primary node becomes
unavailable. While RSL is a useful building block, any internal
state that needs to be persistent requires custom (and complex) code
to efficiently leverage the state management features of RSL, and
this has been a source of many issues over the years in Cosmos.
In developing ADLS, we sought to improve RSL by creating a
more declarative foundation for developers to do state
management, based on in-memory tables in the SQL Server
Hekaton Engine. The new service, called RSL-HK Rings, maintains
the underlying Paxos ring (including electing a new primary as
needed, keeping secondaries up-to-date, and hydrating newly
deployed secondaries). It makes it significantly easier to develop
metadata services by providing the following functionality:

• Management of the metadata service’s persistent state: State
is maintained as replicated in-memory Hekaton tables and
indexes, and RSL-HK executes updates using Hekaton.

• RPC handling and dispatch to callback functions: Metadata
operations are written as transactions with ACID semantics
realized via optimistic, lock-free techniques in Hekaton.

• Fault-tolerance of state changes, including checkpointing,
logging and recovery: This includes writing the transaction
log for the primary, and replicating it to secondaries using
RSL; full or incremental backups of log and checkpoint files,
which serves as the basis for cross-datacenter replication to
additional RSL-HK rings; and recovery from local
checkpoint files and logs when a service instance restarts.

The service developer is responsible for defining the structure of
the service’s state, by defining the schema of the Hekaton tables,
and specifying desired indexes on them for performance. The
service developer also defines the RPC callback functions for
service operations as transactions on the Hekaton tables. This
includes ensuring that the semantics of each operation is
appropriately handled (e.g., updates are only allowed on the
primary, and reads are appropriate on secondaries only if the
metadata service can tolerate slightly stale data, given the
asynchronous replication of RSL-HK). Further, the developer must
exercise some care to obtain the best performance, e.g., making
operations non-blocking, and avoiding excessive contention for
individual table rows.
In summary, RSL-HK leverages Hekaton to give service
developers a more declarative way to manage state, and
transparently provides replication and recovery in an application-
agnostic way, thereby freeing service developers to concentrate
solely on the service’s external interface and its logic.
Figure 3-1 shows the architecture of a RSL-HK based service in a
reduced three-node configuration, indicating the flow of transaction
log replication from the primary node to the secondary nodes, and
the fact that each secondary produces its own checkpoints based on
the replicated transaction flow.
The NS performance chart shown in Section 4.4.3 is a good
indication of RSL-HK’s performance. While NS implements non-
trivial service logic over RSL-HK, its performance is dominated by
that of RSL-HK. The results show that (a) RSL-HK achieves high

throughput, and (b) latencies are less than 1ms for read transactions
and less than 10ms for write transactions, and they do not increase
with throughput until CPU saturation.

Figure 3-1: Architecture of an RSL-HK based service

4. ADLS COMPONENTS
Next, we will describe the architecture and behavior of the
individual services that comprise ADLS.

4.1 Secure Store Service (SSS)
The SSS provides the API entry points into ADLS, creates the
security boundary for ADLS, and orchestrates between the
microservices and storage providers.
The SSS communicates with the NS for names of user-visible
objects such as ADLS accounts, folders, files and the access control
lists for these objects. It implements authorization in conjunction
with the NS.
The SSS supports file operations on persistent data and transient
data. Data is compressed and encrypted during append operations
and decrypted and decompressed during read operations, using the
Secret Management Service. As part of its orchestration and
transaction coordination roles, the SSS handles failures and
timeouts in components by retries and/or aborting client requests as
appropriate, maintaining a consistent internal state.
The adapter component of each storage provider is hosted in the
SSS, which uses the storage provider ID associated with each
partial file to route operations to the appropriate provider via the
adapter.
SSS provides a secure endpoint with limited functionality to
untrusted code running in a sandbox, such as an ADLA query, and
trusted endpoints for services internal to Azure Data Lake (ADL),
providing additional functionality. Each request comes with a
security token that has enough information to identify the caller and
do authorization checks as needed to complete the request.
Operations at the SSS are metered and used for billing, diagnosis,
service health monitoring etc. Logs are generated for auditing
purposes and exposed to end users. SSS enforces bandwidth and
throughput limits at ADLS account granularity and at each ADLS
node. A garbage collection service cleans up deleted files and
folders and expired files.

4.2 Secret Management Service (SMS)
In ADLS, a large number of secrets need to be handled with high
throughput and low-latency. This includes internal secrets needed
for the functioning of the other microservices described here as well

57

as customer managed secrets (such as keys to access Azure Storage
for the accounts they will associate with their ADLS accounts).
The Secret Management Service (SMS) has two related roles: (a) a
secret repository, in which secrets can be stored indexed by a tuple
<scope, name>, and (b), a broker for interaction with external secret
repositories, such as Azure Key Vault (AKV), to enable the storage
of secrets for which access is dependent on the SMS’ access to a
master key present in the external secret repository.
In the first model, the client (internal service or the external user)
needs to have the tuple values to use them as a primary key, and the
identity of the client needs to satisfy the authorization policies
associated with the tuples.
The second model extends the first model by allowing the secret
identified by the tuple <scope, name> to be encrypted using a key
identified by a tuple <KeyName, VaultName>. To access the
secret, the client needs to have the tuple values, and the identity of
the client needs to satisfy both the authorization policies associated
with the tuples in the SMS as well as in the AKV identified by the
second tuple (<KeyName, VaultName>). In both cases, only the
security principals satisfying these requirements can access the
secrets—for example, administrators by default do not have the
rights to access secrets.
In addition to secret management, SMS also handles compression,
decompression, encryption, and decryption. The Trusted Software
Module (TSM) component in SMS handles these data
transformations. TSM is a library that is often hosted in a free-
standing process or microservice. Such processes sit behind a
dedicated proxy process that handles both communication with its
paired TSM instance and the proxy processes paired with other
TSM instances.
The security functionality of ADLS is available on every back-end,
front-end and microservice node.
The SMS includes a Secret Store back-end, which stores the two
kinds of secret tuples described above, in its own RSL-HK rings.
Its front-end orchestrates requests from various TSM instances (for
store operations) and the ADLS gateway (for user administration
of accounts and secrets) and depends on the other SMS
microservices. There is a local TSM instance for key management
and its proxy. Finally, there is a cache of secret tuples from the
Secret Store back-end.
Figure 4-1 shows the components in SMS.

Figure 4-1: Architecture of Secret Management Service

This architecture has three main advantages: (a) it can incorporate
external secret repositories for interoperability with other
applications while limiting the amount of traffic sent to any such
store, to avoid burdening them with the key retrieval scalability
needs of ADLS, (b) for the very large files that ADLS supports, it
provides scalable encryption and decryption at a block level, by
allowing it to take place on the back-end nodes where computation
takes place, and (c) the encryption and decryption code can be
separated out into a secure process, to gain additional protection.

4.3 Partial File Manager (PFM)
The Partial File Manager (PFM) maps each file ID to the set of one
or more partial files (and the IDs of their providers) that represent
the file. It is the source of truth for all files in ADLS irrespective of
which provider(s) are used to store them. However, the PFM does
not understand or represent the internal structure of the partial files,
including the extents. This functionality is delegated to the specific
storage provider.
The PFM is the source of truth for following metadata:

1. File to partial file mapping
2. Start and end offset of each partial file, except the tail
3. The storage tier in which the partial file resides
4. Partial file creation and modification date/time
5. File length
6. File and partial file seal state

The current length of an unsealed partial file may not be known to
PFM. It is only when a file is sealed, allowing all partial files to be
sealed, including the one representing the tail, that the PFM can
provide the up to date length of the file. To provide interim length
as a file is being appended to, it is necessary to periodically ensure
that all the other (non-tail) partial files are sealed, and thus able to
provide lengths.
The PFM enforces the requirement that all extents of a file are
represented by at least one partial file.
The PFM is partitioned for scalability, and it adopts the convention
that all partial files for a given file have their metadata represented
in the same partition. Partitions can be added dynamically.

4.4 Naming Service (NS)
At the core of ADLS file management is a scalable, strongly
consistent, highly-available, high-performance, hierarchical
naming service that maps mutable hierarchical paths to fixed
references to objects in other ADLS metadata services. It supports
full hierarchical naming semantics, including renaming elements of
paths, moving subtrees within the namespace, and paged
enumeration of folders. It also supports POSIX-style access
control, with both classic permissions (owner, group, other) and
extended ACLs (access and default).
The service consists of a bank of soft-state front-end proxies and a
set of servers. The proxies route commands to servers, coordinates
execution of multi-server commands (e.g. move), and responds to
changes in namespace partitioning. The server layer persistently
stores namespace state, executes commands, partitions the
namespace among the set of servers, repartitions the namespace as
needed, and informs proxies of changes in namespace partitioning.

4.4.1 Naming Service Server Architecture
The NS server executes on RSL-HK’s low-level (non-relational)
database interface to application code. It uses tables in this database
to store namespace data. Some information, such as ACLs, tends to
be widely duplicated among namespace entries, so it is stored in
normalized form, i.e., in auxiliary tables with a level of indirection

58

that allows multiple entries to refer to the same set of auxiliary
rows, allowing deduplication. This is highly effective in practice,
and a good illustration of the flexibility offered by relational
abstractions in optimizing internal system designs: ACL tables are
orders of magnitude smaller than the main entry tables.
Not all information, however, is stored in its most straightforward
normalized representation. RSL-HK uses Hekaton’s multi-version
concurrency control (MVCC), whose lightning-fast performance is
compromised by transactional conflicts that can arise when data is
fully normalized. For example, POSIX-compliance requires
recording the time at which a folder’s contents were last modified.
Two concurrent changes to the folder’s contents will both try to
modify the last-modified time and will transactionally conflict if
this requires modifying the same row in a table. So, last-modified
time is stored de-normalized in a table that is appended by each
update, and a run-behind thread aggregates this information in the
background. This table is indexed by row-insertion time, so an
efficient lookup can determine the most up-to-date value.
The NS provides strong consistency in its external semantics, both
because this is what users and applications expect from a file
system and also because strong consistency is often needed to
maintain namespace integrity. (For instance, if two concurrent
Move operations use snapshot isolation for their reads, the result
can be an orphaned loop in the namespace.) Therefore, our default
policy is that all write operations use serializable isolation and all
read operations use snapshot isolation. However, because
serializable isolation can lead to a high rate of transactional
conflicts, we carefully reduce the isolation level (at the cost of some
software complexity) when this can be done without compromising
external semantics or namespace integrity.
As an example, because ACLs are de-duplicated, one ACL may be
referred to by multiple namespace entries. When an entry is deleted,
its associated ACL rows should be removed only if no other entries
refer to the ACL. Using reference counting for this would require a
serializable update on every create and delete, which could cause a
high rate of transactional conflicts for popular ACLs. So, instead,
we have an index on the ACL ID in the entry table, and at the time
of deletion, we check whether at least two entries refer to this ACL
ID. This mostly works well; however, we found that under certain
workload patterns, this check leads to a high rate of transactional
conflicts. To minimize such conflicts, this check is performed
optimistically using snapshot isolation and then confirmed using
serializable isolation. It is very common for the first check to
succeed, allowing us to avoid the serializable check. This is
semantically safe because we remove the ACL only if we
serializably confirm that it is not needed. However, when the
snapshot check fails, we might fail to remove an ACL that is no
longer referred to, which is a resource leak. A background process
cleans these up.

4.4.2 Partitioning and Relocation
For scalability, the namespace is partitioned among multiple RSL-
HK rings, with each ring having “custody” over one or more
regions of the namespace. A custody region is specified as a path
terminating in a half-open interval of names, avoiding a hard limit
on folder size. For example, the region /hello/world/[bar,foo)
includes the paths /hello/world/bar, /hello/world/cat, and
/hello/world/doggie/dig/bone, but not /hello/world/foo. This is a
strict generalization of Sprite’s prefix tables [33]. Each server
records its own custody ranges and those it has relocated to other
server rings.

Figure 4-2: Performance of key Naming Service Operations

Each proxy maintains a non-authoritative cache of server custody
ranges. Because this cache can be incomplete or stale, a proxy
might forward a command to an inappropriate server, in which case
the server will respond with an internal error code and any relevant
custody information. The proxy then updates its cache and retries
the request.

4.4.3 Performance
We evaluate the performance of the NS one operation at a time
[17][27], driving that operation towards 100% CPU usage on a
single ring. Figure 4-2 shows that high throughputs, over 140,000
QPS, are attained for read operations like Get (name resolution) and
Enumerate (paging through entries in a folder). The most complex
operation, moving a folder to a point higher in the hierarchy,
achieves well over 40,000 QPS. All are achieved with 99.9%
latencies below 100ms. In production conditions, the average load
on the rings are managed such that the read latencies around 1ms
and the write latencies are around 10ms.
The computers used for the performance tests mentioned in this
section and others are commodity servers with 2 x 12 core Intel®
Haswell CPUs running at 2.40 GHz, 40 Gb NIC, 4 x 2 TB HDDs
and 4 x 500 GB SSDs.

4.5 Small Append Service (SAS)
ADLS provides both high throughput for batch workloads and low-
latency for small appends. ADLS supports low-latency small
appends, a weakness of HDFS, via an ADLS microservice called the
Small Append Service (SAS). It does so transparently to the
application based on file write patterns—the application uses a single
API, and requests are routed appropriately behind it. The Figure 4-3
shows that SAS not only decreases latencies across the board, but it
decreases the worst-case latencies by a wide margin. These results
are based on YCSB simulations [8].
Low-latency, small appends are critical for transactional systems
such as HBase [4][13] on top of ADLS. HBase Write-Ahead Logging
append latency directly impacts HBase transaction rate. Figure 4 3
shows the append latencies with and without SAS enabled.
SAS tracks the history of append patterns at a per-file level. If it
determines that a file’s append pattern is dominated by small
appends, it automatically switches those appends to the small append
path, which uses low-latency storage to store the payload. Appends
on the small append path are durable once acknowledged, like all
other appends. For a file whose append pattern is dominated by large
appends, SAS passes each append to the downstream storage
providers directly. This happens without user intervention.

59

Figure 4-3: SAS Performance

 To minimize metadata overheads and improve read performance,
appends on the small append path are coalesced asynchronously into
larger append blocks before being moved to one of the storage tiers.
When a file’s appends are being processed by the small append path,
only a short section of the tail remains in low-latency storage—the
remainder is periodically flushed to a tier. After a period of no activity
on a file, the remainder is moved to a storage tier, and the file is
forgotten by the SAS. If it is subsequently appended again, its
evaluation for the small append path starts again from scratch.

4.6 Transient Data Store Service (TDSS)
During the execution of ADLA jobs, the amount of temporary data
generated by operations such as shuffle (and used later in the job) can
be large. The Transient Data Store Service (TDSS) is responsible for
storing such intermediate job data, and runs on every back-end
storage/computation node. The temporary data generated by a
computation is stored on the machine where it is generated. In
general, it is subsequently read from a different machine, but the
execution is optimized to collocate reads to the extent possible (e.g.,
schedule the consumption to be on the same machine or rack).
Unlike most data persisted in ADLS, such intermediate job data can
always be regenerated by partially re-running a job, and it is only
needed for a short period of time since it is only consumed within the
same job. This argues for a design that optimizes for higher
performance and lower cost at the cost of occasional re-generation:

1. Only one copy of the data is required. If that copy is lost,
the computation that generated it can be re-run.

2. Data can be simply persisted to the filesystem cache.
3. Jobs don’t interact with each other, so the security of

transient data can be job-centric rather than user or
account-centric.

As a practical matter, we note that to support the U-SQL debugging
features it is necessary to keep transient data around after the job
completes. For jobs that succeed, the transient data is only retained
for a few extra hours. For jobs that fail, the transient data is retained
for several days. From our Cosmos experience, we have found such
support for debugging to be a valuable feature.
These optimizations mean that all appends are to the filesystem
cache, but reads (many from remote machines) don’t always come
from the disk cache. The net effect is that appends are significantly
faster than reads, the reverse of a typical store.
Figure 4-4 shows the performance for reading and writing of 4MB
blocks on local HDD and SSD on a single machine, for the optimal
throughput/latency tradeoff. Four drives of each type were striped for
this test and the TDSS client was configured to use 10 threads each

Figure 4-4: TDSS Performance
doing synchronous requests. It shows the importance of caching by
comparing results with and without the cached reads.
TDSS maintains an expiration time for each job’s temporary data to
help facilitate debugging. As with persistent data, all temporary data
is encrypted at rest, and all communication is across secure channels.

4.7 Throttling Service (TS)
Each account has an individual quota for bandwidth and number of
operations (both read and write) associated with it. The TS is
responsible for collating information from all instances of SSS and
identifying which accounts have exceeded their quota. Every 50 ms,
each SSS sends to the TS the latest per-account request counts and
byte counts observed during that period. The TS is shared for
scalability and aggregates the data from all SSS instances, and
identifies a list of those accounts that should be throttled and returns
this list to the SSS. The SSS uses this list to block requests for the
indicated accounts for the next 50ms period. The global knowledge
provided by the TS allows the entire cluster to react to changing per
account activity with a lag of no more than 50ms. The TS and SSS
together prevent accounts from impacting each other, thereby
alleviating the noisy neighbor problem.

5. STORAGE PROVIDERS
A storage provider is essentially a flat-namespace, append-only
object store, where each object is a partial file. Storage providers are
not required to implement any hierarchical namespace or map any
part of ADLS namespace.
Storage providers don’t communicate directly with each other or with
the microservices. As mentioned previously, the SSS coordinates
between microservices and storage providers. This design pattern
leverages existing and future ADLS features to accrue to the storage
providers. Authentication, authorization, encryption, hierarchical
namespace management, etc. are examples of such features.
Furthermore, the addition of storage providers cannot weaken
ADLS’ data durability and availability. That does not mean data in
individual storage providers must be highly durable and available. It
means the combination of all copies in all storage providers needs to
be durable and available. Each storage provider may have different
levels (or probability) of data durability and availability. For
example, typically three copies of an extent are maintained in the
Cosmos Storage Provider to provide durability.
A storage provider may be built specifically to implement an ADLS
tier, or it may have been designed and implemented independently
[5][32]. Either way, its implementation consists of some distributed
storage system, together with a storage adapter that implements the
simple, low-level storage provider interface. The storage adapter
runs as part of the SSS. It contains all logic needed to translate
between the storage provider interface and the underlying storage
system. (This can vary considerably in complexity, depending on the
size of the semantic gap.) It is also responsible for reliable, efficient
communication with the underlying storage system.

60

5.1 Local Storage Providers
Local storage providers store their extents distributed across the
ADLS nodes so that they can be accessed quickly by computation
tasks executing on these nodes. Of course, the distribution of extents
must also meet the needs of scalable and durable distributed storage,
with replicas distributed across failure domains. There can be more
than one local provider, typically utilizing different classes of storage
hardware on the computation nodes.
The Cosmos Storage Provider is a local storage provider based on
Cosmos which is designed to support high performance, massive
scale analytics by storing data on computation nodes. Its
implementation is beyond the scope of this paper, but at a high level
it consists of a single, partitioned RSL-based service that fills both
the roles of naming and extent management, and an extent storage
service that resides on every computation node and is responsible for
the extents that are stored on that node. Ideally, computation tasks
rely mostly on extents stored on the node on which they execute, but
the extent storage service also supports remote read and append
requests.

5.2 Remote Storage Providers
The Azure Storage Provider is remote in the sense that the data is
stored in one or more separate Azure Storage clusters. The specific
location of ADLS extents in Azure Storage is of no interest to ADLS,
but high bandwidth, low-latency access to them is of great interest.
Because of bandwidth constraints imposed on Azure Storage
accounts, an ADLS cluster uses multiple accounts, and each ADLS
partial file is separately striped across these accounts, with each
ADLS extent represented by a single Azure Storage blob. Extent IDs
are hashed to determine the Azure Storage account in which they are
stored. This means that each Azure Storage account contains extents
from many different ADLS partial files, from many ADLS files,
belonging to many ADLS accounts. This is illustrated in Figure 2-1.

5.3 Extent Management Service (EMS)
To incorporate a remote storage provider into ADLS, in many cases
it is necessary to introduce extent management—a way to map from
a partial file to the extents that comprise it, and how those extents are
represented in the underlying storage provider. For this, we have
developed a generic EMS. Specifically, the EMS is used to provide
extent management for data stored in the Azure Storage provider.
Given a partial file and offset, the EMS resolves them to an offset
within an extent. It is the source of truth for the following extent
metadata:

1. Logical size of the extent (while physical size is managed
by Azure Storage)

2. Index of an extent for a given partial file
3. Offset range that an extent covers for a given partial file
4. Location of the extent in the storage tier

Consequently, the EMS is critical for executing read and append
operations, translating logical offsets in partial files to physical extent
locations in the data node.
The EMS also enforces the pre-defined extent size limit, by sealing
the current extent and starting a new one when necessary. It also
ensures that a block does not cross an extent boundary. Furthermore,
it deals with rejecting fixed offset appends when the specified offset
does not match the end of the file.
The EMS is built on top of the RSL-HK infrastructure, but the scale
of ADLS requires several rings to represent all extents. To achieve
this the EMS supports extent range partitioning. It groups sequences
of consecutive extents of a partial file into an extent range, which is

the unit of partitioning for this service, and is not exposed outside this
service. The number of extents in an extent range is limited by the
available memory in a partition. Every partial file has a root EMS
partition which stores the sequence of partition IDs and extent ranges.
To support dynamic rebalancing of partitions (to deal with request
hotspots), an extent range can be moved from one partition to another
without downtime. When a partial file is deleted, the EMS retains its
extent metadata for a configured time to support recovery. A garbage
collector within the EMS handles the eventual deletes, together with
compaction to reduce memory usage.

Figure 5-1: Performance of key EMS operations

We have evaluated the performance of EMS by stressing five rings
to 90% CPU utilization for thousands of hours from over 100
clients. Each ring experienced 150,000 QPS as reads and 50,000
QPS as writes. The median, 99% and 99.9% latencies are shown in
Figure 5-1. In production conditions, the average load on the rings
are managed to keep the read latencies under 1ms and the write
latencies under 10ms.

6. SECURITY
ADLS is architected for security, encryption, and regulatory
compliance to be enforced at scale. Key security requirements such
as user authentication, including multi-factor, and Role-Based
Access Control (RBAC) are performed through integration with
Azure Active Directory (AAD) as the identity provider. ACLs are
enforced using POSIX-compliant permissions [12][24] on files and
directories using the NS. As the ADLS APIs are HDFS-compliant,
they allow ACL data in a manner respecting the POSIX standard
[14]. Data flowing into and through ADLS is encrypted in transit
and at rest. In ADLS, overall security responsibility rests with the
SMS, described earlier. Next, we describe in detail the enforcement
of security and encryption, in terms of the SSS and other
components.

6.1 Authentication and Authorization
Every ADLS API requires a valid OAuth token from a supported
identity provider. AAD allows ADLS to support users and service
principals from managed tenants (customers' hosted Active
Directory instance), federated tenants (on premise Active Directory
instances) and Microsoft accounts. When an ADLS API call is
made and an OAuth token is not provided, one is acquired by
redirecting the call to AAD. Next, the token is augmented with the
user’s security groups, and this information is passed through all
the ADLS microservices to represent user identity.

61

Authorization for ADLS operations is a two-step process. First,
Azure RBAC is used to check the user's broad permissions: an
account owner has rights that override the individual storage
entities ACLs. Second, additional checks are made against the
ACLs stored in the NS during name resolution, etc. Each entry in
the NS contains a set of Access Control Entries (ACEs) that
describe the scope, qualifiers, and which of read, write, and/or
execute permissions are applicable. The SSS orchestrates with the
NS to execute the second step. Authorization is invariant with
respect to the entry point for the operation (portal, application built
in top of one of our SDKs, REST APIs, etc.) A security audit trail
is provided at multiple granularities for all operations.

6.2 Encryption
ADLS provides encryption at rest for all data. Each append block
is encrypted separately, using a unique key, ensuring that the
amount of cypher text produced using any given key is small. The
emphasis that ADLS places on extremely large files makes this
especially important. The header for every block contains metadata
to allow block-level integrity checks and algorithm identification.
Both service-managed and user-managed keys are supported by
integrating with AKV for enterprise-grade key management.
Integration with AKV and isolation of encryption and decryption
are performed by the SMS. Various encryption and decryption
services, software and hardware, can be plugged in.
Three types of keys are used to encrypt data: Master Encryption
Key (MEK), Data Encryption Key (DEK), and Block Encryption
Key (BEK). For every ADLS account, a MEK is generated (by the
user or the service) and stored in AKV. All other keys used in the
account are encrypted using the account’s MEK. The user can
generate the MEK, store it securely in AKV, and provide access to
ADLS to encrypt and decrypt data using the MEK but without
access to the MEK itself. For service-managed keys, the account
MEK is generated by the SMS and stored securely in AKV. The
lifecycle of a user managed MEK is managed by the user directly
in AKV. The use of MEK to encrypt other keys in the account
enables the ability to “forget” all data by deleting the MEK. ADLS
also supports periodic MEK and DEK rotations.
An account’s DEK is generated by SMS, and forms the root key for
all the subsequent file encryption keys. The DEK is encrypted using
MEK and is stored in the ADLS cluster. The BEK is generated for
each data block using the account’s DEK and the block’s ID in the
TSM, and is used to encrypt the block. It is this key that minimizes
the surface area as described above. Encryption, decryption,
compression. decompression, and key derivation are performed in
a separate security boundary [26] in the TSM.
Encryption and decryption might be expected to introduce
significant overheads. However, in executing a broad mix of U-
SQL queries on ADLA, producing a 60/40 read/write mix of data
traffic, encryption and decryption only added 0.22% in total
execution time (on a baseline of over 3000 hours).

7. CONCLUSION
ADLS has made significant improvements over Cosmos, notably
in its support for open-source analytic engines from the Hadoop
ecosystem, its security features, scale-out microservices and tiered
storage. It is replacing Cosmos for Microsoft’s internal big data
workloads and is an externally-available Azure service. Feedback
from users has been very positive and has also helped us identify
feature areas to address, such as avoiding migrations while
supporting ever-larger datasets, and querying data that is
geographically distributed.

8. ACKNOWLEDGMENTS
We are grateful for the work of the ADLS team and ADLA teams
in implementing the design and demonstrating its practicality at
scale. We would also like to thank the Azure Storage, Azure
Networking, MCIO, CISL and MSR teams for working closely
with us. Individually, we wish to acknowledge the help of the
following people: Nachiket Acharya, Nischay Anikar, Sai Prasanna
Annamalai, Omkar Aradhya, Manjunath Ballur, Avigdor Boyko,
Dave Campbell, Kiran Chandra, Pushkar V. Chitnis, Manuel Costa,
Sudheer Dhulipalla, Vishwajeet Dusane, Joe Gagne, Jeffrey Gruen,
Kushagr Gupta, Solom Heddaya, Herodotus Herodotou, Chris
Hescott, Jon Howell, Khaled Ibrahim, Virajith Jalaparti, Sandeep
Paul Karedi, Lucky Katahanas, Sai Charan Koduru, Lanyue Lu,
Saugat Majumdar, Scott Marks, Fayssal Martani, Sumant Mehta,
Jilin Meng, Vinit Ogale, Kavan Patil, Yashwant Patil, Puneeth
Poduri, Mihail Popescu, Sriram Rajamani, Sriram Rao, Joseph
Raisanen, Vivek Ratan, Padmashree Ravindra, Shradha Revankar,
Jitendra Sangwan, Sukanya Sreshta, Shravan Srinivas, Chakrapani
Bhat Talapady, Pradeep Tamma, Aditya Telidevara, Sneha
Vijayarajan, Gaoxiang Xu, and Fan Zhang. Finally, thanks to the
many people who reviewed the paper and provided feedback.

9. AUTHORS’ ADDRESSES
*Microsoft, One Microsoft Way, Redmond, WA 98052 USA
+1 425 882 8080
**#9, Vigyan, Lavelle Road, Floors Gr, 2 &3, Bangalore, KA,
560001, India
+91 (80) 66586000

10. REFERENCES
[1] https://docs.microsoft.com/en-us/azure/data-lake-

analytics/data-lake-analytics-overview
[2] J.I. Aizikowitz. Designing Distributed Services Using

Refinement Mappings, Cornell University TR89-1040.
[3] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J.M.

Hellerstein, R. Sears. Boom Analytics: Exploring Data-
Centric, Declarative Programming. In Eurosys 2012.

[4] J. Baker, C. Bond, J.C. Corbett, J.J. Furman, A. Khorlin, J.
Larson, J.M. Léon, Y. Li, A. Lloyd, V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In CIDR, 2011.

[5] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J.
Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S.
Mainali, R. Abbasi, A. Agarwal, M. F.ul Haq, M. I. ul Haq,
D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S.
Sankaran, K. Manivannan, and L. Rigas. Windows Azure
storage: a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP), pages
143-157, 2011.

[6] D. Campbell and R. Ramakrishnan. Tiered Storage.
Architectural Note, Microsoft, Nov 2012.

[7] R. Chaiken, B. Jenkins, P-A Lar.son, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. 2008. SCOPE: easy and efficient
parallel processing of massive data sets. Proc. VLDB Endow.
1, 2 (August 2008), 1265-1276.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and
R. Sears. Benchmarking cloud serving systems with YCSB.
In ACM SoCC, 2010.

62

[9] C. Diaconu, C. Freedman, E. Ismert, P-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, M. Zwilling. Hekaton: SQL
Server’s Memory-Optimized OLTP Engine. Proceedings of
the 2013 ACM SIGMOD International Conference on
Management of Data, pages 1243-1254.

[10] C. Douglas and V. Jalaparti, HDFS Tiered Storage, 2016
Hadoop Summit, June 28-30, San Jose, California.

[11] S. Ghemawat, H. Gobioff, and S-T. Leung. The Google file
system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43,
New York, NY, USA, 2003. ACM Press.

[12] A. Grünbacher. Access Control Lists on Linux. SuSE Lab.
[13] http://hbase.apache.org/.
[14] HDFS Permission Guide

http://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsPermissionsGuide.html

[15] HDFS-9806: Chris Douglas. “Allow HDFS block replicas to
be provided by an external storage system”
https://issues.apache.org/jira/browse/HDFS-9806

[16] J. Howell, J. R. Lorch, and J. Douceur. Correctness of Paxos
with replica-set-specific views. Technical report MSR-TR-
2004-45, Microsoft Research, 2004.

[17] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West. Scale and
performance in a distributed file system. ACM Transactions
on Computer Systems (TOCS), 6(1):51-81,1988.

[18] H.T. Kung and John T. Robinson, “On Optimistic Methods
for Concurrency Control,” ACM Transactions on Database
Systems, vol. 6, no. 2, pp. 213-226, June 1981.

[19] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[20] L. Lamport. Paxos made simple. SIGACT News, 2001.
[21] L. Lu, H. Herodotou, R. Ramakrishnan, S. Rao, G. Xu.

Tiered Storage Based Hadoop on Azure, Microsoft, 2013.

[22] B. Oki and B. Liskov. Viewstamped replication: A new
primary copy method to support highly available distributed
systems. ACM PODC 1988.

[23] POSIX FAQ
http://www.opengroup.org/austin/papers/posix_faq.html

[24] Draft Standard for Information Technology – Portable
Operating System Interface (POSIX) – Part 1: System
Application Interface Amendment #: Protection, Audit and
Control Interfaces [C Language], IEEE Computer Society,
Work Item Number: 22.42. Draft P1003.1e #17, 1997.

[25] J. Rao, E. J. Shekita, and S. Tata. Using Paxos to build a
scalable, consistent, and highly available datastore.
Proceedings VLDB., 4(4):24-254, 2011.

[26] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M.
Peinado, G. Mainar-Ruiz, M. Russinovich, VC3:
Trustworthy Data Analytics in the Cloud using SGX, in
IEEE Symposium on Security and Privacy, 2015

[27] P. Schwan. Lustre: Building a file system for 1000-node
clusters. In Linux Symposium, 2003.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1-10, 2010.

[29] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovslannikov, D.
Reeves. Sailfish: a framework for large scale data processing.
In ACM SoCC, 2012.

[30] http://usql.io/.
[31] R. Van Renesse and F. Schneider. Chain replication for

supporting high throughput and availability. In OSDI, 2004.
[32] S. Weil, A. Leung, S. Brandt, and C. Maltzahn. Rados: a

scalable, reliable storage service for petabyte-scale storage
clusters. In Workshop on Petascale Data Storage, 2007.

[33] B. Welch, J. Ousterhout. Prefix Tables: A Simple
Mechanism for Locating Files in a Distributed System, 6th
ICDCS, 1986.

[34] WinFS, en.wikipedia.org/wiki/WinFS

63

	1. INTRODUCTION
	1.1 Learnings, Goals, and Highlights
	1.2 ADLS Requirements from Cosmos
	1.3 Tiered Storage: Motivation and Goals

	2. OVERVIEW OF ADLS
	2.1 Anatomy of an ADLS File
	2.2 Components of the ADLS System
	2.3 Flow of Major Operations
	2.3.1 Opening a File
	2.3.2 Appending to a File
	2.3.3 Read
	2.3.4 Obtaining File Metadata
	2.3.5 Concatenation
	2.3.6 Enumeration

	3. RSL-HK RINGS
	4. ADLS COMPONENTS
	4.1 Secure Store Service (SSS)
	4.2 Secret Management Service (SMS)
	4.3 Partial File Manager (PFM)
	4.4 Naming Service (NS)
	4.4.1 Naming Service Server Architecture
	4.4.2 Partitioning and Relocation
	4.4.3 Performance

	4.5 Small Append Service (SAS)
	4.6 Transient Data Store Service (TDSS)
	4.7 Throttling Service (TS)

	5. STORAGE PROVIDERS
	5.1 Local Storage Providers
	5.2 Remote Storage Providers
	5.3 Extent Management Service (EMS)

	6. SECURITY
	6.1 Authentication and Authorization
	6.2 Encryption

	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. Authors’ addresses
	10. REFERENCES

