
Data Management in Non-Volatile Memory

Stratis D. Viglas
School of Informatics

University of Edinburgh, UK
sviglas@inf.ed.ac.uk

ABSTRACT
Non-volatile memory promises to bridge the gap between
main memory and secondary storage by offering a univer-
sal storage device. Its performance profile is unique in that
its latency is close to main memory and it is byte address-
able, but it exhibits asymmetric I/O in that writes are more
expensive than reads. These properties imply that it can-
not act as a drop-in replacement for either main-memory or
disk. Therefore, we must revisit the salient aspects of data
management in light of this new technology. In what follows
we present the current work in the area with a view towards
identifying the open problems and exposing the research op-
portunities. In particular, we address issues like: (a) in-
corporating non-volatile memory into the data management
stack, (b) supporting transactions and ensuring persistence
and recovery, and (c) query processing.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems; D.4.2 [Storage
Management]: Secondary storage

Keywords
Non-volatile memory; Persistence; Performance; Recovery;
Query processing

1. INTRODUCTION
Non-volatile memory (NVM), also referred to as persis-

tent memory, is a new type of storage medium that aims
to bring forth, for the first time, a universal storage de-
vice. That is, a device that bridges the gap between volatile
main memory and non-volatile, block-based secondary stor-
age. Its performance characteristics are such that it is close
to main memory (DRAM) in terms of access latency—albeit
slower—but much faster than flash memory and magnetic
disks (see also Figure 1 for a comparison). The key prop-
erties of non-volatile memory, apart from its performance
and persistence, are byte-addressability and write-read cost
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Figure 1: Typical access latency in processor cycles
on a 4GHz processor (figure adapted from [33])

asymmetry. Byte-addressability means that NVM is not a
block-storage device and it is certainly feasible, depending
on how vendors choose to expose it to the system, for it to
be accessible through memory load/store operations. Like-
wise, we can perform byte-level I/O as opposed to block-level
I/O without having to amortize the I/O cost by increasing
the block size. At the same time, NVM exhibits some of
the pathologies of flash memory: writes are more expen-
sive than reads both in terms of response time (i.e., they
simply need longer to be completed) and in terms of how
they affect the lifetime of the medium. Note, however, that
the physical mechanisms used in contemporary NVM de-
signs are not the same as those in flash memory [2, 22]—see
also Section 2.1. As such, NVM requires new techniques for
masking this asymmetry from the users.

Given the above, the question is how do we expose NVM
to developers and users? Treating persistent memory as per-
sistent storage means that we will be downplaying its per-
formance merits and using algorithms and techniques that
have been designed for a different medium. Treating persis-
tent memory as volatile memory means that we will need to
rethink our data structures in light of the new available ca-
pacity and assume that everything can be memory-resident.
In both alternatives, by treating persistent memory as yet
another persistent storage device or yet another additional
volatile memory device, we are effectively reusing a prior
abstraction that has been originally built for different per-
formance characteristics. In doing that, we are missing an
opportunity to bring out the best of each abstraction and
drop all the bloat that it may be carrying with it.
Objectives In this work, our aims are: (a) to present
this new type of storage technology in more detail and focus
on what makes it different and why it requires a study of
its own; (b) to give insight into how this technology can be
seamlessly integrated into the data management stack; (c) to
give an overview of the recent work in the area and explain
the key techniques in more detail; (d) to identify both the
immediate research opportunities and the longer-term fun-
damental problems that require attention; and (e) to jump-
start researchers and practitioners in the area.
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2. BACKGROUND
NVM is a class of memory, rather than a specific type of

storage medium. There are many competing implementa-
tions that are classified as NVM even though they do not
necessarily share the same underlying technology. We will
first present an overview of the different technologies that
have been proposed in the literature and have picked up sig-
nificant traction to be considered as the forerunners when
NVM becomes mainstream. After addressing the technolog-
ical side of NVM we will look at how it can be introduced
into the system stack, i.e., we will present ways that exist-
ing systems can immediately start using NVM as a drop-in
replacement for either DRAM or for secondary storage. We
will next turn our attention to the use-cases that are most
relevant to data management. We will start with the most
basic guarantee that NVM provides: persistence. Persis-
tence is guaranteed by the medium, but only at the level
of ensuring that data is not lost if power is lost. There are
various aspects that need to be addressed when higher-level
workflows like database systems are taken into account. Im-
mediately following persistence is recovery. Not only do we
want to ensure long-term access to the data, we also need
to have sufficient mechanisms in place to allow us to recover
portions of the database in the event of a power failure.
This is a departure from the typical database architecture
where all processing takes place in a DRAM-backed buffer-
pool and I/O is performed in blocks. The runtime must now
guarantee the recoverability of each individual byte change,
as NVM is byte-addressable. A repercussion of different per-
sistent and recovery mechanisms is that we need to develop
new mechanisms for transactional support as well. Finally,
we will address query processing. We will discuss how the
fundamentals of query processing need to be revisited in the
context of NVM. In the last part of the presentation we will
focus on the open challenges in the area with an eye towards
identifying future research directions. A more detailed dis-
cussion of the various topics follows.

2.1 The inner workings
NVM is an umbrella term that encompasses both read-

only memories and persistent random-access memories. The
most widely used underlying technology used in NVMs is
the floating-gate transistor, which acts as a single memory
cell. It works by having the device controller apply device-
specific operating voltages to the gate to trap or release elec-
trical charge. The recorded value can then be read by sens-
ing the charge (no charge equals 0, charge equals 1). This
technology forms the basis of various implementations like
the (Electrical) Erasable Programmable Read Only-Memory
(EEPROM), or the most widely used flash memory. In flash
memory, multiple cells are blocked and are not individu-
ally set. Operations take place at the granularity of an en-
tire block, which is erased and reprogrammed (also referred
to as the the erase-before-write property of flash memory).
Floating-gate transistors can only go through a limited num-
ber of erase/program cycles, thus reducing the lifetime of the
device. Limited endurance and block-level I/O, combined
with the physical property of setting voltage taking longer
than sensing, result in writing to flash memory being much
slower than reading. The key difference between flash mem-
ory and the wider class of NVMs is the method by which
information is stored and sensed: rather than storing and
sensing charge, NVM technologies alter some physical prop-

erty of the medium thereby changing its electrical resistance,
which they then sense to read back the information.

Phase-Change Memory, or PCM, is the most widely known
NVM technology. Information is recorded using a mecha-
nism similar to that of optical media. A heating element
heats the silicone of each memory cell, either changing it to
an amorphous state, or crystallizing it. The two different
states, or phases, have different electrical resistance, thus
recording one bit. An electrical current is applied to mea-
sure the electrical resistance and sense the state of each cell.
There are various other phases in between an amorphous
and a completely crystallized state. Thus, a single cell can
record more than one bit of information. The main merit of
PCM is its high density. Its main disadvantage is that it is
not a purely electrical device as it requires a heating element
for programming and thus it is more power-hungry and dis-
sipates more heat during operation. Additionally, there is
considerable voltage drift due to the resistance of the amor-
phous state increasing over time according to a power law.
So, as times goes by, it becomes increasingly difficult for the
device to store multiple bits in a single cell, thus losing ca-
pacity. Therefore, even though the technology is capable of
high density in the offset, this capability is lost over time.

Resistive Random Access Memory, or ReRAM, works in
a similar way to PCM. The main difference is that instead
of affecting the crystallization of the medium, a heating el-
ement physically opens a conduction path on the material
for the current to pass. That physical path can be closed
on demand. The existence (or not) of the physical path af-
fects the electrical resistance of the material, which can thus
be used to record information. As electrical current passing
through the material, in addition to sensing the electrical
resistance, is used to read the stored information.

Magnetoresistive Random Access Memory, or MRAM, em-
ploys the magnetic properties of the medium in addition to
its electrical ones. The memory cells are magnetic storage
elements formed by two magnetic plates separated by a thin
insulating layer, each capable of holding a magnetic field.
One of the plates is a permanent magnet, whereas the other
plate’s field can be set at will. The two fields generate a mag-
netic tunnel, whose electrical resistance changes depending
on the orientation of the two fields. The electrical resistance
can be measured if current is supplied to the two plates.
The polarity of the fields of the plates results in two levels
of resistance that can record one bit of information.

All these technologies support byte-addressable fine-grained
control of the medium and alleviate some of the performance
problems associated with the large-scale erase-to-program
operations of flash memory. However, setting the physical
properties takes as long a time and requires a heating ele-
ment (for PCM and ReRAM) or polarization of the medium
(for MRAM); in all cases, energy consumption is greater.
Thus, the problem has only been alleviated and writes still
hurt performance more than reads, whether the performance
metric is response time, energy consumption, or device life-
time. All vendors aim to produce NVM at high densities,
and thus capacities, but at a much lower energy consump-
tion point, thereby making NVM cost-effective.

2.2 Integrating NVM into the stack
NVM presents a new level in the memory hierarchy so

a salient decision is how to best integrate it with the rest
of the system stack. There are two main options: the first
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option is to treat NVM as secondary storage and use file
I/O operations to access it. If that is the case, we need
to optimize the I/O substrate of the system for persistent
memory, as opposed to optimizing the memory subsystem
for persistence. The second option is to treat NVM as byte-
addressable DRAM with persistence guarantees through per-
sistent memory regions. We then need to extend the system
to support NVM through either: (a) changes to the mem-
ory controller so that it can guarantee persistence through
its firmware; or (b) extending the system’s instruction set
architecture to expose persistent memory to the developer
through specialized memory load/store operations; or (c) ex-
posing a higher-level API to the operating system and then
relying on software to guarantee persistence and to decide
on data placement. These alternatives can be refined further
into four main designs that have been used in practice.
RAM disk The first approach is to employ a memory-
mounted filesystem over NVM. RAM disks are lightweight
filesystems that bypass disk-related overheads. They do not
incur disk I/O, though they support persistence. RAM disks
bypass the filesystem cache with writes and reads being syn-
chronous to the portion of main memory allocated to the
RAM disk. Therefore, RAM disks bridge the mismatch be-
tween block devices and byte-addressable NVM by employ-
ing filesystem practices to manage NVM.
Byte-addressable filesystem The second option is to
use a filesystem optimized for persistent memory such as
PMFS [13] or BPFS [9]. These are typically implemented as
kernel extensions and thus reduce the overhead of system
calls and employ low-level fine-grained persistence primi-
tives to implement file-level access through cpu load/store
instructions, thereby minimizing overhead.
Heap-based approaches The third option is to substi-
tute the runtime’s memory allocator (e.g., malloc()) with
one that uses the non-volatile memory for allocations, as
opposed to the system’s heap (see, e.g., [8, 40] for two ap-
proaches). This affects the memory allocator, but not the
way by which data structures allocate memory. In applying
this approach we use main memory data structures imple-
mented for volatile memory. Thus, we may be using patterns
that are not optimized for NVM. Consider, for instance, a
dynamic array like a C++ vector. C++ vectors have an ini-
tial capacity; when that capacity is reached they allocate a
memory chunk twice as big as their current capacity; copy
the elements over; and release the memory they had pre-
viously occupied. The doubling of allocated memory and,
more importantly, the copying of elements over are far from
ideal for NVM as they incur a large number of writes.
Optimized blocked memory Finally, we can use a com-
bination of the previous options. We can keep the interface
of a heap-based allocator, but change the implementation
of our data structures so they use lightweight logging ap-
proaches to record changes to NVM and export a byte ad-
dressable interface to the user. Such an approach has been
proven to decouple the persistence guarantees from the im-
plementation of data structures and the memory allocator
and incurs a minimal overhead [39].

2.3 Persistence
Persistent regions have been proposed to support persis-

tent virtual memory and user-accessible heaps [17, 34, 44].
These attempts either provide persistence guarantees for
heap-allocated data, or employ a mapping to block-level I/O

devices and file abstractions to implement persistence. Re-
coverability relies on staging persistence and logging through
combining volatile main memory and persistent disk storage.
In [25], the authors use battery-backed DRAM for persisting
the file cache [5]. They also invoke disk-based I/O and uses
a coarse-grained region approach to log undo information.

Two recent proposals [8, 40] provide implementations of
heaps for persistent memory to user applications. Such sup-
port can act as a drop-in replacement for malloc() and en-
ables the developers to seamlessly integrate persistent mem-
ory regions into their applications. Moreover, heaps in NVM
can be used as building blocks for programmers to create and
manage their own recovery protocols. Fang et al. [14] pro-
pose an NVM-based log manager for DBMSs, which relies on
a client-server design and uses epoch barriers to guarantee
persistence. Giles et al. [15] address embedded transaction
management in user code. They introduce custom hardware
to force parts of the log to NVM before committing, while
keeping user updates in a dedicated buffer before persisting
the log. Other recent work [16] explicitly addresses redo log-
ging without in-place updates. Similarly, [47] embeds trans-
action management in user code by assuming the existence
of a non-volatile cache that is used as a drop-in replacement
for a log. Finally, [3] studies the update semantics of NVM
data in lock-based code (as opposed to transactional code)
and the mechanisms used for logging and recovery in NVM.

2.4 Recovery
Prior to NVM, researchers proposed battery-backed DRAM

and buffer manager extensions to support recoverability [28].
For instance, [10] uses battery-backed DRAM with an ARIES-
like protocol, and assumes page-level I/O for data and log
updates. DBMSs optimized for volatile memory [11, 19] can
be used as starting points for integrating persistent memory,
even though they are sometimes subject to the inefficiencies
of a block-based design towards durability.

Pelley et al. [32] address the problem of supporting dura-
bility for OLTP workloads executed over NVM. They first
show that NVM can act as a drop-in replacement for disk
drives and gives almost instantaneous recovery in the event
of failure. However, this comes at the price of a reduction
in throughput during transactional processing. They iden-
tify the barrier latency in NVM as one of the main cul-
prits for this discrepancy, and introduce distributed logging
and group commits for mitigating the impact of subopti-
mal barrier implementations. Similarly, [41] examines more
closely the impact of NVM and non-uniform memory access
on multicore and multi-socket architectures. The authors
argue that distributed logging is not elected but enforced
by the environment and propose passive group commit as
an implementation mechanism for distributed logging. Pas-
sive group commit exhibits a minimal overhead and enables
distributed commit to scale well in logging-intensive work-
loads. Along the same lines, Oukid et al. [30] proposed a
framework by which NVM is combined with DRAM for re-
covery. The insight is that updates should happen in-place
on NVM but in small batches to better take advantage of
the performance profile of NVM. Doing so results in almost
instantaneous restart in the event of failure.

Logging and recovery for NVM is also addressed in [4]
where the authors present REWIND: a user-mode library
approach to managing transactional updates directly from
user code written in an imperative general-purpose language.
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REWIND starts from write-ahead logging and adapts it for
NVM. It relies on a custom persistent in-memory data struc-
ture for the log that supports recoverable operations on it-
self. The scheme also employs a combination of batching
in the memory layout of the log data, non-temporal up-
dates, persistent memory fences, and lightweight logging to
optimize performance. The authors show that such an op-
timized logging scheme can be orders of magnitude faster
than disk-based approaches ported to persistent memory, or
than data-structure-specific recoverability extensions.

Other work has considered more general data manage-
ment tasks. For instance, [35] compares both DBMSs and
file systems to custom alternatives; while [18] quantifies the
overhead of several dbms functionalities. There has also
been recent interest in extending file systems for NVM. For
example, [31] presents an extended transactional and recov-
erable I/O interface for multiple, non-consecutive blocks.

2.5 Query processing
There has been a large body of work dealing with query

processing but in the context of flash memory. Research has
focused on flash-specific bufferpool management schemes [20,
21, 29, 45], query evaluation techniques [12, 27, 36], or in-
dexing [23, 24, 38, 42, 43, 46]. Though this host of work
addresses the write-read asymmetry of the medium, it does
not cater for byte addressability. The differences in block-
vs. byte-level access suggest that considerable effort will be
necessary to port these approaches to persistent memory.

Chen et al. [6] explored how database algorithms need to
be changed in the presence of phase-change memory. The
authors argued for a radical reimplementation of algorithms
by eliminating data copying and using pointers to data in
order to reduce memory stores. This resulted in substan-
tial benefits both in terms of performance and in terms of
lifetime and power consumption of the device.

A strand of work tackles algorithms for query processing,
when these algorithms work over data stored in NVM. For
example, [37] describes the necessary optimizations if sorting
is to be applied over data in PCM. The authors propose and
evaluate mechanisms for using a small DRAM buffer ahead
of PCM to optimize performance. Similarly, [39] introduces
write-limited algorithms for fundamental query processing
operations. These are families of algorithms for sorting and
join processing that trade expensive writes for cheaper reads
with the goal of achieving the same performance as tradi-
tional query processing algorithms, but at a fraction of the
write cost. Write-limited algorithms are accompanied by a
runtime that dynamically tracks reads and writes and de-
cides whether intermediate results should be materialized,
or deferred and regenerated on demand from their primary
sources. Further, different ways of incorporating NVM into
the stack are also explored, along the lines of Section 2.2.
The choice of algorithm in addition to the choice of how to
best access NVM from query processing code is a compli-
cated problem that requires a carefully crafted cost model
and runtime, if informed decisions are to be made.

Data structures have also been tackled in the context of
NVM. In [7], the authors present three schemes to optimize
B+-trees for phase-change memory: keeping node entries
unsorted, allowing underflow in nodes, or allowing overflow
chains. All three methods aim to optimize write perfor-
mance. The authors show that the three proposed schemes
can reduce the response time and improve device lifetime

and energy consumption. Similarly, [38] proposes the in-
troduction of controlled imbalance in the B+-tree to cope
with asymmetric I/O. The observation is that if we know
the write-to-read cost ratio of the device we can afford to
introduce imbalance as that will manifest as extra reads,
which are cheaper than writes. Once the savings from those
extra reads are spent, we can rebalance the tree. The un-
balanced B+-tree exhibited performance improvements over
the traditional B+-tree in a variety of settings.

Finally, query optimization has been addressed in [1]. The
authors argue that even though the optimization algorithm
is robust, its cost models are suboptimal when dealing with
asymmetric storage. The reason is that the big differentiat-
ing factor in performance so far has been random vs. sequen-
tial I/O. In asymmetric media, however, it is the number of
write vs. the number of read operations that should be used
as the basis for cost functions. The authors implement an
asymmetry-aware cost model for PostgreSQL and show how
it can lead to more efficient execution plans. In addition,
they propose mechanisms by which the system can automat-
ically tune the cost model to the host hardware. It would be
interesting to extend and refine this work to account for the
byte addressability of NVM. This can be further improved
with main memory execution models that take the CPU’s
cache hierarchy into account [26].

3. OUTLOOK
Non-volatile memory has the potential to become a uni-

versal storage device that bridges the gap between main
memory and secondary storage. Even though non-volatile
memory is a general term encompassing a multitude of tech-
nologies, regardless of the specific type of technology the
performance profile of non-volatile memory is unique. Non-
volatile memory is asymmetric with writes being more ex-
pensive than reads, and it is also byte-addressable. The
combination of these factors requires that all aspects of data
management are revisited: from transactional processing, to
persistence and recovery, to query processing. A related, but
salient question, apart from the actual use of non-volatile
memory for data management, is how to best integrate non-
volatile memory in the data management stack at the system
level. There has been some preliminary work on non-volatile
memory, but the area is certainly fresh with plenty of op-
portunities for original and high-impact work.
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