
Wide Table Layout Optimization based on Column
Ordering and Duplication

Haoqiong Bian1, Ying Yan2∗, Wenbo Tao3, Liang Jeff Chen2, Yueguo Chen1∗,
Xiaoyong Du1, Thomas Moscibroda2

1DEKE Key Lab (MOE), Renmin University of China; 2Microsoft Research; 3MIT
1{bianhq, chenyueguo, duyong}@ruc.edu.cn,

2{ying.yan, jeche, moscitho}@microsoft.com, 3wenbo@mit.edu

ABSTRACT
Modern data analytical tasks often witness very wide tables, from
a few hundred columns to a few thousand. While it is commonly
agreed that column stores are an appropriate data format for wide
tables and analytical workloads, the physical order of columns has
not been investigated. Column ordering plays a critical role in I/O
performance, because in wide tables accessing the columns in a
single horizontal partition may involve multiple disk seeks. An
optimal column ordering will incur minimal cumulative disk seek
costs for the set of queries applied to the data. In this paper, we aim
to find such an optimal column layout to maximize I/O performance.
Specifically, we study two problems for column stores on HDFS:
column ordering and column duplication. Column ordering seeks an
approximately optimal order of columns; column duplication com-
plements column ordering in that some columns may be duplicated
multiple times to reduce contention among the queries’ diverse re-
quirements on the column order. We consider an actual fine-grained
cost model for column accesses and propose algorithms that take
a query workload as input and output a column ordering strategy
with or without storage redundancy that significantly improves the
overall I/O performance. Experimental results over real-life data
and production query workloads confirm the effectiveness of the
proposed algorithms in diverse settings.

1. INTRODUCTION
The challenge of Big Data has shifted the design of data analytical

systems from single machines to large-scale distributed systems.
While there are many distributed data analytical systems in the
market and their runtime specialties vary greatly, they all share a
common core as their underlying storage engine: HDFS (Hadoop
Distributed File System). In HDFS, a common data modeling is to
represent data as two-dimensional tables. A table is horizontally
partitioned to scale out and to leverage multi-machine parallelism.
At runtime, each table partition, a.k.a. a row group, is read and
processed individually by mappers in each machine.

The physical layout of a row group plays a fundamental and
critical role in system I/O performance [27, 34, 29, 30]. Existing

∗Yueguo Chen and Ying Yan are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA.
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035930

studies have focused on two aspects in organizing data in a row
group: i) column store vs. row store and ii) row group size. A row-
oriented store serializes a row as a blob and allows an application
to retrieve one row at a time. While this data format is common in
conventional databases, modern data analytical systems on HDFS
have primarily opted for column stores, e.g., RCFile [29], ORC
File [5] and Parquet [3]. A column store serializes a whole column
in a row group as a blob. This is good for I/O performance for two
reasons: First, many queries only access a small number of columns,
even though the underlying table is very wide; second, storing a
column in its entirety facilitates compression. It has been shown
that when the row group size is sufficiently large, the additional cost
incurred by row reconstruction can be amortized and is eventually
almost negligible [30]. In practice, the row group size is set to
a value that ensures massively parallel data processing while still
keeping re-do cost reasonable in case of a mapper/reader failure.

In this paper, we study a new dimension of organizing data in a
row group: column ordering. Column ordering in a column store
specifies how columns are physically ordered so that two adjacent
columns can be accessed with sequential reads. Column ordering
is not an important issue when a table only has dozens of columns.
However, in Bing Microsoft, data analysis pipelines commonly
feature very wide tables with thousands of columns. These tables
are either raw logs or products of cooking logs to facilitate other
analysis jobs down the pipeline. Very wide tables are common
in modern data analytical systems, because of their advantages in
analytical processing compared to normalizing/partitioning data
into less wide tables (e.g. [36]). In one specific instance, an in-
production table contains 1187 columns and grows at a pace of 5TB
per day. For such a wide table, finding the right column order can
lead to dramatic differences in performance.

To understand the benefits of column ordering, we select three
frequently-executed queries from Bing Microsoft’s data analytical
pipeline, namely A, B and C, following the query template

SELECT coli1 , coli2 , . . .
FROM TargetTable
[WHERE cond]
[GROUP BY colj1 , colj2 , . . .]
[ORDER BY colk1 , colk2 , . . .]

and measure their performance on a column store with different
column orders. We execute the queries on the default 1187-column
table (unordered) in the actual production environment, as well as on
its duplicate whose columns are manually ordered so that columns
accessed by the queries are physically close. The results show that
column ordering reduces end-to-end query execution time by up to
70%. These results are understandable. In this workload, disk I/O is
the main cost of query execution and disk seek is a dominant factor
in disk I/O. If columns accessed by a query are physically placed

299

together, disk I/O only involves one seek. By comparison, when a
table is very wide and accessed columns are far apart, the number of
disk seeks of executing one query increases, significantly bogging
down I/O performance.

Choosing an appropriate column order is thus critical in improv-
ing I/O performance for queries on very wide tables. However, the
solution is non-trivial given that there are thousands of columns and
the queries accessing them have complex patterns. For instance,
the query workload for the above wide table contains thousands of
queries, each accessing from a few to several hundreds of different
columns. Organizing the columns to efficiently accommodate one
query may negatively impact the performance of many other queries.
We thus seek an algorithmic solution to choose a column order that
optimizes the overall performance across all queries.

While a column-ordering algorithm tries to strike a balance among
different queries, contention is still unavoidable in general. This
challenge can be tackled by column duplication. Storage capacity is
usually the least concerned factor in the overall cost of a large-scale
data processing system. Column duplication takes advantage of
storage redundancy and duplicates certain columns, placing each
copy in a different position to ease the contention among queries.
While causing space overhead, this technique is effective in reducing
disk seek costs. Column duplication adds an additional dimension to
the problem of column ordering, and hence demands new algorithms
that co-optimize column ordering and duplication.

In this paper, we show that column ordering plays a key role in
data analytics performance on wide tables. Specifically, we make
the following contributions:

• We propose an I/O cost model for column stores in HDFS
based on an empirical performance study of modern disks.
We then formalize the column ordering problem with optional
column duplication so that the I/O cost of a query workload
is minimized.

• We propose an algorithm, namely SCOA (Simulated Anneal-
ing based column ordering algorithm), that efficiently finds
an approximation of the optimal column order. We further
optimize I/O throughput by combining SCOA with a storage-
constrained column duplication algorithm.

• We use in-production data and query workloads and perform
an experimental study on the cost model and the proposed
algorithms. The results show that our solutions achieve sig-
nificant gains in all tested settings, in some cases by up to
73.9% I/O performance gain. We can get additional 12%
performance gain by column duplication with less than 5%
storage headroom.

2. PRELIMINARIES
In this section, we first review the design of hard disks and give a

formal definition of disk seek cost. We then review data layout in
today’s HDFS-based column stores and formalize the problem of
column ordering.

2.1 Disk Seek Cost
Hard disk drives (HDDs) are the most common media for storing

a large volume of data in HDFS, due to their large capacity, low price
per storage unit and much better durability. In HDD, seek cost is the
main performance bottleneck when data is not read sequentially [22].
Disk seek cost is mostly considered as a constant value (i.e., the
average seek cost) in the literature [16, 45, 15]. In this paper, we
use a simple yet accurate model (Appendix A) to quantify disk seek
cost for optimizing big wide table layout.

In file systems, data is stored in files, which are conceptually byte
arrays. A data reader inputs the starting offset and the length in
bytes to read a chunck of data. Therefore, we model the seek cost
as a function of the seek distance in bytes. More formally, given a
data object i (e.g., a column), let s(i) be the size of the data object
i (number of bytes that i occupies). Assume that a data object is
sequentially written to a file through the OS API. Let b(i) be the
offset of the first byte of the data object i in the file; and e(i) be the
offset of the byte next to the last byte of i, thus e(i) = b(i) + s(i).

DEFINITION 1 (SEEK DISTANCE). Given two data objects i
and j, where i is the data object that has just been read, and j is the
data object to be read next. The seek distance from data object i to
j is defined as dist(i, j) = |b(j)− e(i)|.

DEFINITION 2 (SEEK COST). Given two data objects i and j,
where i is the data object that has just been read, and j is the data
object to be read next. The seek cost from i to j is modelled as

Cost(i, j) = f(dist(i, j)). (1)

A direct consequence of our approximation is that function f is
not linear and may vary across different disk models from various
manufacturers (see Appendix A). In the paper, this issue is tackled
by an empirical approach: on a specific HDFS system using a
certain category of disks, we run a large number of experiments
measuring disk seek response time and seek distance to fit the non-
linear function f . Our layout optimization algorithms, on the other
hand, are agnostic to a specific form of f . They can be used in any
HDFS-based column store, as long as its function f is measured.
Details on how to model function f will be discussed in Section 5.

2.2 Table Layout in a HDFS Column Store
Column stores are the de-facto design of HDFS-based data ana-

lytical systems. Representative systems include RCFile [29], ORC
File [5] and Parquet [3]. In a HDFS-based column store, a table is
horizontally partitioned into row groups, each containing a number
of rows. Within each row group, data is organized by columns. Each
column is compressed and stored sequentially. These columns are
indexed by a small piece of meta-data at the end of the row group,
so that each column can be located efficiently. At the physical level,
one row group generally fits into one HDFS block, the physical unit
of HDFS data. A HDFS block is stored as a local file in the disk
drive of a data node. In practice, HDFS-based column stores often
recommend that a HDFS block holds only one row group [3, 30].
For sake of simplicity, we follow this convention in the following
and use a row group and a HDFS block interchangeably. A high-
level picture of the table layout in a HDFS-based column store is
given in Figure 1.

… Columns

HDFS

…

�� �� �� �� …

�� �� �� �� …

�1 �2

��

��

Big Data Table

Row Group

Metadata Footer

Row Group

… Metadata Footer

Row Group

Metadata Footer

Figure 1: An illustration of the table layout in a HDFS-based
column store, where ci is a column and qi is a query.

In today’s column stores, columns in a row group are ordered as
defined in the table schema. We refer to this order the default order.

300

We aim to find a new order algorithmically, such that total seek cost
of all queries can be reduced and therefore improves the overall I/O
performance. Column order is formally defined as follows.

DEFINITION 3 (COLUMN ORDER). Given a table with n
columns, 1, 2, . . . , n, a column order S = {c1, c2, . . . , cn} is a
permutation of the column set where 1 ≤ ci ≤ n and ci �= cj when
i �= j.

A column order S = {c1, c2, . . . , cn} dictates how columns are
arranged in a row group. In most columnar layouts on HDFS, when
data is read from the physical store, the data engine by default
searches the needed columns in a row group from the first column to
the last, a behavior that is not affected by order-sensitive operators,
such as ORDER BY and GROUP BY. Indeed, in MapReduce-based
analytical systems (e.g Spark, Hive), column reading and tuple
reconstruction are done at the beginning of the map stage, while
ORDER BY and GROUP BY are done in the shuffle and reduce
stages where intermediate I/O and network communications are
performed. The table scan and data shuffling are decoupled and the
column reading order is not affected by the shuffle relied operators
such as ORDER BY and GROUP BY. Therefore, we focus on the
data layout optimizations without stepping into the optimization of
query plan and execution.

3. COLUMN ORDER OPTIMIZATION
In this section, we first give a formal definition of the column

ordering problem and show that computing an optimal order for
a given query workload is NP-Hard. We then design a heuristic
algorithm that achieves approximations of the optimal solution with
reasonable efficiency for production workloads.

3.1 Column Ordering Problem
The goal of column ordering is to improve I/O efficiency by

optimizing the table layout according to the data access patterns
of a query workload. In the workload of wide table analytics, a
query q typically accesses only a small subset of all columns. Let
Cq = {cq,1, cq,2, . . . , cq,m},m ≤ n be the sequence of columns
that q accesses (i.e., a column access pattern) following the column
order S. Notice that our approach can capture arbitrary column
access pattern.

Let cq,i be the ith column accessed by query q. Given two
columns cq,i, cq,j accessed by query q, cq,i must appear before cq,j
in S if i < j. In other words, the read task of query q fetches the
required columns following the column order S, and will not yield
zig-zag patterns during the table scan. Such column access pattern
has minimal seek cost when reading columns in a row group, and it
is applied in column stores such as Parquet [3]. A seek will occur
if columns cq,i and cq,i+1 are not adjacent in S. As such, the seek
cost of a query is defined as:

DEFINITION 4 (QUERY SEEK COST). Given a column order
S = {c1, c2, . . . , cn}, and the column access pattern Cq = {cq,1,
cq,2, . . . , cq,m} of query q, over a table with N row groups, the
seek cost of q is

Cost(q, S) = N × (ε+

m−1∑
i=1

Cost(cq,i, cq,i+1)), (2)

where ε is the initial seek cost of seeking to the first column in a row
group.

The initial seek cost ε is incurred when seeking from one row
group to another and from the metadata footer to the first column

in a row group. In some data analytical systems like Spark, the
metadata footer can be cached in memory so that the seek cost from
the metadata footer to the first column is eliminated. During query
execution, the read sequence of the row groups is arbitrary so that
the initial seek distance is random. Initial seek cost therefore can be
approximated as the average seek cost of the disk. Note that every
row group in a table has the same size and columns in each row
group also have very similar size. That is why we can calculate the
query seek cost by multiplying the seek cost of one row group by
N .

Given a workload Q containing a set of queries and a column
order S, the seek cost of the workload is defined as:

DEFINITION 5 (WORKLOAD SEEK COST). Given a weight wq

for each query q ∈ Q, the seek cost of the workload Q is

Cost(Q,S) =
∑
q∈Q

(wq × Cost(q, S)). (3)

The weight wq captures the execution frequency or importance of
query q.

When the number of columns of a table is small (e.g < 50),
the seek cost may not be significant, compared to the sequential
reading cost. However, in many real-world production environments,
(e.g. the table of log analytics in Bing Microsoft), the number of
columns exceeds 1000, and keeps increasing every month. In such
scenarios, the seek cost becomes a major part of the I/O cost and
indeed constitutes a significant fraction to the job’s overall end-to-
end latency. Finding an efficient column ordering therefore becomes
essential. The problem is formally defined as follows:

DEFINITION 6 (COLUMN ORDERING PROBLEM). Given a work-
load Q, find an optimal column order S∗, such that the seek cost of
Q is minimized

S∗ = argmin
S

Cost(Q,S). (4)

THEOREM 1. The Column Ordering Problem is NP-Hard.

We prove Theorem 1 by reducing the classic Hamilton Path Problem
[7] to the decision version of the column ordering problem. See
proof in Appendix B.

3.2 Column Ordering Algorithm
We propose a probabilistic algorithm called SCOA (Simulated

Annealing based column ordering algorithm) to solve the column
ordering problem. As shown in Algorithm 1, SCOA leverages basic
properties of Simulated Annealing (SA) [35] to solve the column
ordering problem and generates an approximation of the optimal
column order.

In SCOA, a specific column order corresponds to a state of the
algorithm. Intuitively, if there is a ‘good’ column order S, it is
likely that there is a better state S′ ‘close’ to S (S′ and S are
similar in terms of the orders of columns). Such a heuristic greatly
reduces the search space without searching all possible states. In
SCOA, the energy of a state is measured by its seek cost. Different
from other simple heuristic algorithms, SCOA makes decisions
between accepting or rejecting the neighbor state probabilistically.
The distribution of the acceptance probability is determined by
the annealing schedule. This ensures that SCOA is unlikely to be
trapped into an undesirable local minimum.

Given a workload Q, and an initial column order S0, SCOA
returns an preferable state S, so that the total I/O cost of Q is
significantly reduced. In Algorithm 1, the main loop (lines 2-8)
shows the iterative search process based on an annealing schedule

301

Algorithm 1: SCOA

Input: The set of queries Q = {q1, q2, ..., qm};
The initial column order S0 = {c1, c2, ..., cn}
Output: The optimized column order S;

1 S := S0, e := Cost(Q,S0), t := t0;
2 for k := 1 to kmax do
3 t := Temperature(t, cooling_rate);
4 S′ := Neighbor(S);
5 e′ := Cost(Q,S′);
6 if (e′ < e)||(exp((e− e′)/t) > random(0, 1)) then
7 S := S′;
8 e := e′;

9 return S;

proposed in [35]. The Temperature function is the core function of
the annealing schedule. In this algorithm, the temperature shrinks at
a rate of (1− cooling_rate). Function Neighbor(S) is to generate
a candidate neighboring state from the current state S, achieved
by swapping the positions of two randomly picked columns in S.1

Parameter settings of SCOA are discussed in Appendix C.

3.3 Incremental Computation of Seek Cost
When the access pattern of a query follows the global column

order (as adopted by existing systems such as HDFS), we can incre-
mentally compute the seek cost of a query to speed up SCOA, given
that a neighboring state S′ is derived from the current state S by
randomly swapping two columns. Consider the example in Figure 2.
Query q accesses 4 columns Cq = {c4, c2, c6, c8}. When deriving
a new state by swapping two columns in Cq (e.g., c2 and c6 in
Figure 2(a)), the seek cost of this query clearly remains unchanged
(both equal to f(s(c5)) + f(s(c1) + s(c3)) + f(s(c7) + s(c9)),
for reading a row group).

c2 c1 c6 c9 c8c4 c5 c3 c7

q

(a) Swap c2 and c6

(b) Swap c3 and c9

c2 c1 c6 c9 c8c4 c5 c3 c7

(c) Swap c2 and c7

c2 c1 c6 c9 c8c4 c5 c3 c7

Figure 2: Three cases of the delta query cost

A more complex case occurs when neither of the two swapped
columns is accessed by the query q (e.g., c3 and c9 in Figure 2(b)).
The pseudo code for handling this case is presented in Algorithm 2.
The SeekCost2ndCase function takes as input the current state S
and two swapped columns cx and cy , and outputs the seek cost of
the neighboring state S′ for q. Let suc(ci) be the first succeeding
column of ci in Cq , and pre(ci) be first preceding column of ci in
Cq . For example, in Figure 2, suc(c1) = c6 and pre(c1) = c2.
According to Algorithm 2, it is clear that Cost(q, S′) = Cost(q, S)
if suc(cx) = suc(cy). Otherwise, at most two terms in Equation 2

1We have also tested various other neighboring state selection heuris-
tics, including substantially more complicated ones. However, none
of them outperformed the simple ‘column-swap’ heuristic. For the
sake of simplicity, we thus limit ourselves to the presentation of this
most basic version of the algorithm.

Algorithm 2: SeekCost2ndCase

Input: A query q and sorted set Cq;
Current column order S, and its seek cost Cost(q, S);
Two swapped columns, cx /∈ Cq and cy /∈ Cq .
Output: The seek cost of the neighboring state S′,

Cost(q, S′)
1 if suc(cx) = suc(cy) then
2 return Cost(q, S);

3 delta := 0;
4 if pre(cx) �= null and suc(cx) �= null then
5 delta −= f(b(suc(cx))− e(pre(cx)));
6 delta += f(b(suc(cx))− e(pre(cx))− s(cx) + s(cy));

7 if pre(cy) �= null and suc(cy) �= null then
8 delta −= f(b(suc(cy))− e(pre(cy)));
9 delta += f(b(suc(cy))− e(pre(cy))− s(cy) + s(cx));

10 return Cost(q, S) + delta;

will be affected and it will be updated according to Lines 4-6 and
Lines 7-9, respectively.

The last case occurs when exactly one swapped column is ac-
cessed by q (e.g. Figure 2(c)), which can be handled in a similar
way to Algorithm 2. An important difference from the previous two
cases is that Cq will be updated if the SA algorithm accepts this
neighboring state S′.

Time Complexity. To maintain the sorted set Cq efficiently,
we use a binary balanced search tree to insert, remove and query
preceding and succeeding elements. All these operations run in
O(logR) time. The overall time complexity of computing seek
costs is O(|Q| · logR), where R is the average number of columns
accessed by a query. Compared to the naive approach of sorting all
the columns for every new ordering, this incremental approach is R
times faster. On the production data we tested, R is 32 and SCOA
with incremental seek cost computation only requires a few minutes
to converge.

Besides simulated annealing (SA), we have tried several other
meta heuristics. Particularly, we have also tried to apply genetic
algorithm (GA) [37, 51] in Appendix D and AutoPart [41] algorithm
in Appendix E. Results show that SA performs much better.

4. STORAGE CONSTRAINED COLUMN DU-
PLICATION

Suppose we have extra storage headroom, we may be able to
further reduce the overall seek cost by duplicating some popular
columns and inserting them into carefully selected positions within
the derived column orders. Consider the simple example in Figure
3. In Fig. 3(a), the seek cost of both q1 and q2 is 0 while the seek
cost of q3 is f(s(c3) + s(c6)) (Note that the initial seek cost ε can
be ignored as it is constant). In Fig. 3(b), however, if we duplicate
c1, insert it between c6 and c7, and let q3 access the new replica of
c1, the seek cost of all three queries becomes 0.

We formally define the column duplication problem as follows.

DEFINITION 7 (COLUMN DUPLICATION PROBLEM).
Given a workload Q and the storage headroom H , identify a set of
duplicated columns with an ordering strategy SD such that 1) the
total size of duplicated columns is not greater than H and 2) the
seek cost of Q is minimized.

In this section, we first introduce the basic idea of the duplication
process in Section 4.1 and then provide details of how to optimize it
in Section 4.2.

302

c2 c1 c6 c9 c8c4 c5 c3 c7

q1 q2 q3

(a) Column ordering produced by SCOA

(b) Duplicate c 1 and insert it between c 6 and c 7

c2 c1 c6 c9 c8c4 c5 c3 c7

q1 q2 q3

c1’

Duplicate c 1

Figure 3: An example of column duplication

Algorithm 3: Duplication Algorithm

Input: Column order SO produced by SCOA;
Additional storage headroom H;
Workload Q.
Output: A column order SD containing duplicated columns.

1 Calculate Cq for each q based on SO;
2 SD := SO

3 used_volume := 0;
4 while used_volume < H do
5 for column c in SO do
6 for pos := 0 to |SD| do
7 cost_reduced = cost_reduce(SD , c, pos, Q);
8 if cost_reduced > max_reducec then
9 max_reducec := cost_reduced;

10 best_posc := pos;

11 c_dup := the column in SO with the largest max_reducec
s(c)

;

12 Insert c_dup into SD as the best_posc_dup -th element;
13 used_volume+ = s(c_dup);
14 Update Cq for all q in Q;

15 return SD;

4.1 Duplication Algorithm
The basic idea of the duplication algorithm is to find and insert

duplicated columns into the column order SO produced by SCOA
in a greedy fashion (see Algorithm 3). We repeatedly find a column
to duplicate until the storage headroom is used up (Line 4). In each
iteration, we enumerate the column to be duplicated (Line 5) and the
position to which it will be inserted (Line 6). For each (c, pos) pair,
we use the cost_reduce function to calculate how much absolute
seek cost reduction is achieved when inserting a replica of column
c as the pos-th element of the current ordering SD . The variable
max_reducec records the maximum seek cost reduction we can
get when duplicating c and best_posc is the corresponding insertion
place. We identify the column c_dup with the largest max_reducec

s(c)

value among all columns where s(c) is the column size, and insert
it into SD as the best_posc_dup-th element (Lines 11-12). After
identifying c_dup and best_posc_dup, we need to update Cq if the
seek cost decreases when q accesses the new replica c_dup (Line 14).
The above algorithm without optimization is used as the baseline
version algorithm.

Note that we start from the column order SO produced by SCOA
because, intuitively, compared to other uninformative orderings such
as the default column order, this optimized ordering enables us to
select the most suitable (c, pos) pairs for duplication. An empirical
evaluation also justified this intuition: under a constraint of 15%
extra storage, the duplication algorithm starting from the default
initial ordering achieved 10.6% average I/O performance gain while
that starting from the optimized ordering achieved 12.4% average

c2 c1c4 c3

q1

q2

c4’ c2 c1c4 c3

q1

q2

c4’…… …… …… ……

(a) Duplicate c4 to improve q1 (b) Swap c1 and c4’ to improve q2

Figure 4: An example of periodical refine

I/O performance gain (due to the randomness of the SA process, we
ran the algorithms for 10 times).

4.2 Detailed Optimizations

4.2.1 Periodical Refinement
Duplicating a column c can help queries accessing c achieve

smaller seek cost. On the other hand, queries not accessing c may
experience larger seek cost if they have to seek over the new replica
of c. We call this extra cost produced by duplication the additional
seek cost. For example, in Figure 4(a), although duplicating c4
reduces the seek cost of q1 from f(s(c2)) to 0, it introduces an
additional seek cost for q2 because q2 has to seek over the new
replica of c4.

Figure 5 depicts the relationship between the relative seek cost
reduction evaluated by the seek cost function and the number of
duplicated columns of one run of our baseline approach (5% extra
storage). We can see that at the beginning of the run, duplicating
only a few columns achieves considerable seek cost reduction. This
is because duplicated columns provide more options for queries
accessing them and the additional seek cost incurred on queries not
accessing them is negligible. However, as the number of duplicated
columns increases, the additional seek cost incurred by duplicated
columns becomes evident and counterbalances the benefit of du-
plication. Thus, the overall seek cost reduction due to duplication
converges.

1%

2%

3%

4%

5%

6%

7%

8%

9%

 20 40 60 80 100 120 140 160 180 200R
el

at
iv

e
se

ek
 c

o
st

 r
ed

u
ct

io
n

Number of Duplicated Columns

Figure 5: #Duplicated columns v.s. seek cost reduction

To decrease the additional seek cost and improve the achievable
performance gain, we use the SA algorithm to periodically refine
the ordering S′ (e.g. each time after duplicating a fixed number
of columns). The intuition is that SA refinement is able to adjust
the relative positions of replicas with regard to the non-duplicated
columns to reduce the additional seek cost. For example, in Figure
4(b), swapping columns c1 and c′4 decreases the seek cost of both
q1 and q2 to 0.

4.2.2 Running Time
Each iteration of the baseline algorithm runs in O(n · (n+ d) ·

|Q| · R logR), where n is the number of columns in the original
table, d is the number of duplicated columns and R is the average
number of columns accessed by a query. When n and d are large,
this algorithm is not efficient.

303

Therefore, we provide two simple heuristics to tradeoff the du-
plication effect for running time efficiency. First, rather than enu-
merating all columns for possible duplication, we only consider the
most popular ones. Here, we define the popularity of a column as
the summation of the seek distances (Definition 1) from it to its
neighbor columns (if two columns are both accessed by a query,
they are neighbor columns). Second, instead of enumerating all
possible insertion places, we can enumerate separated indices (e.g.
indices that are a multiple of 10). The motivation is that inserting a
replica into very close positions produces similar performance gain.

5. IMPLEMENTATION
In this section, we first present an overview of the adaptive data

layout optimization solution that has been deployed in our real-
world log analytical pipelines. Then we drill down to details of
modeling the seek cost function f(·) and column redirection when
column duplication is applied. An accurate seek cost function is the
core of layout optimization while column redirection is necessary
for query execution on duplicated layouts.

5.1 Adaptive Layout Optimization

Applications

Layout Generator Seek Cost Evaluator

Workload Manager

Table Layout Optimization System

Column Redirector

Query Agency

Analytical System
(Spark/Scope/Hive)

File System
(HDFS/Cosmos)

Query State,[Redirected Query]

Layout Strategy Seek Cost Function

Result Query

Figure 6: The framework of adaptive data layout optimization

To add data layout optimization feature to existing wide table
analytical pipeline, there are some trade-offs to deal with in query
performance, availability and system complexity. We successively
follow the principles: 1) do not affect the availability of existing
systems like Spark and HDFS so that our solution is safe to deploy,
2) minimize hacks to the source code of existing systems so that our
solution is easy to deploy, and 3) minimize additional performance
overhead produced by the new features. As shown in Figure 6, the
adaptive data layout optimization solution has five key components:
Query Agency provides an HTTP interface to the applications. An
application submits a query to Query Agency before it is submitted
to the analytical system. Column duplication is enabled as a separate
and optional feature in our solution. All wide tables have an ordered
data layout without column duplication and may have an additional
copy of data layout with duplication. Query Agency will check if
column duplication can be applied to the query (whether a query can
apply column duplication is discussed in Appendix F) and returns
the result (state) in the response to application. When the state is
True, which means that column duplication can be applied to the
query, the Query Agency will get the redirected query (in which
columns are redirected to the appropriate replicas) from Column
Redirector and attach the redirected query in the response.
Workload Manager continuously maintains the most recent work-
loads Q within a certain period. Queries from applications are
loaded into the Workload Manager by the Query Agency. Query
workload statistics such as their frequency, the number of accessed
columns and timestamps are maintained. These statistics are used
to assign different weights to prioritize the queries. The workload

statistics will be used by the Layout Generator to periodically pro-
duce a new data layout. The access pattern of each query is also
maintained by the Workload Manager.
Column Redirector is called by the Query Agency and is responsi-
ble for picking an appropriate replica for each accessed duplicated
column. It returns a new query which accesses the appropriate col-
umn replicas. To minimize the additional performance overhead,
in-memory data structures and efficient column replica lookup algo-
rithm are designed to guarantee a low latency column redirection.
Details are discussed in Section 5.3.
Seek Cost Evaluator approximates the seek cost function f(·) ac-
cording to the underlying storage hardware. Details are discussed in
Section 5.2.
Layout Generator implements the SCOA algorithm and the column
duplication algorithm to generate a new data layout. It records
the averaged seek cost C of the workload when a new data layout
strategy is applied, and continuously monitors the average seek cost
C′ for queries in Q based on the current data layout and workload.

Once the layout generator detects that C′
C

exceeds a certain threshold
(e.g., 1.05), it assumes that the current data layout is not good enough
for the current workload, leading to an adaptive re-ordering process
for generating a new data layout. Details of how to update data
layout without reloading the historical data are given in Appendix F.

To ensure the availability and simplicity, we do not use a query
interceptor to make query rewriting transparent to users. In modern
analytical systems like Spark and Impala, any slave node can be the
driver of a query. Query result is directly delivered to applications
through the driver. An interceptor can help user applications submit
the query and make everything transparent. But it may become the
only single point of failure and the performance bottleneck. In case
that query agency in the optimization system fails, applications can
short-circuit the optimization system and submit queries directly to
the analytical system and get benefits from ordered (without column
duplication) layout (discussed in Appendix F). Our solution is easy
to deploy and works with existing systems.

5.2 Seek Cost Evaluation
The seek cost evaluator is responsible for deriving the seek cost

function (Definition 2), according to the underlying hardware and
file systems. As discussed in Appendix A, for a given hard disk,
the seek cost can be modeled as a function of seek distance [22, 42,
31]. But deriving an effective seek cost function is challenging, due
to that seek cost is also affected by the relative position of cylin-
ders [22] as well as many specifications of disk and system, which
are hidden to applications. We therefore designed an empirical solu-
tion to evaluate the seek cost statistically. In the solution, a number
of real seek operations at the same specific distance are performed
on HDFS files. The average seek time of each specific distance d
is used as the statistical seek cost of d. Linear interpolation is then
applied to derive a curve of the seek cost function from the statistical
seek costs. We then obtain a piecewise seek cost function from the
real disk without knowing the hidden disk parameters and system
characters. Figure 7 demonstrates the seek cost function obtained
over three typical hard disk models listed in Table 1.

Table 1: Parameters of three disk models
Model Disk Interface Capacity (GB) Spindle Speed (rpm)

SAS-2T (ST2000NM0033[13]) SAS 2000 7200
SAS-900G (ST9900805SS[12]) SAS 900 10000
SATA-2T (ST2000DM001[11]) SATA 2000 7200

The basic form of seek cost function has been discussed in the
hardware community [31, 42, 22]. An example form of theoretical
function is shown in Figure 7 to verify that the seek cost function
derived from our solution is reasonable. Details about the theoretical
seek cost function are discussed in Appendix A.

304

0
2
4
6
8

10
12
14

0 3 5 8 10 13 15 18 20 23 25 28 30 33 35 38

Se
ek

 C
os

t (
m

s)

Seek Distance (MB)

SAS-900G SATA-2T
SAS-2T Theoretical

Figure 7: Seek costs of three different disks v.s. that of a theo-
retical model

When evaluating seek cost on HDFS, we only perform in-block
seek operations which is most commonly used in real data analytics.
In Figure 7, we use the average seek cost of 100 seeks of the specific
distance starting from different offsets inside different HDFS blocks.
The difference between two adjacent seek distance is 50KB. We can
see that the seek cost of all disks trend to increase as the seek distance
increases. But in the first several megabytes of seek distance, this
monotonic pattern is not always true. This is due to the effects
of platter rotation. As discussed in Appendix A, when the seek
distance is relatively small, the seek operation is likely to seek only
a few cylinders so that the delay of arm movement is dominated by
a relatively small settle time. The delay of platter rotation become a
major part of the seek cost. Although the initial offset of the seek
is random in our solution, with the same seek distance, there is a
statistical expectation of the rotation delay. Especially when the
seek distance is smaller than the capacity of a cylinder (1-2MB
for the three disk models here), the seek operation is likely to be
fitted in the same cylinder so that the seek cost become linear to
seek distance which is also linear to the angle of platter rotation.
Such a feature is important for column layout optimization because
in a row group (eg. 128MB) with more than 1000 columns and a
minority of the columns being large string columns, most columns
are much smaller than 1-2MB. This gives us more opportunities
to optimize the column ordering by putting frequently accessed
columns nearby. Other disk parameters such as spindle speed and
the number of sectors per track can affect the shape of the function
curve. For example, disks with higher spindle speed usually have
lower maximum seek time (cost), so that the seek cost function
curve may converge to a lower maximum seek cost (Figure 7).

5.3 Column Redirection
When column duplication is applied, some columns may have

more than one replicas. When a query arrives, the system rewrites
the column names to their proper replicas. The replica selection
strategy will affect the query performance. Beside analytical queries,
data loading statements (in the form INSERT INTO TABLE... SE-
LECT... FROM...) are also rewritten to duplicate the columns. This
is simply done by replacing the original column name in SELECT
with column_name AS replica_name. So we mainly discuss column
redirection for analytical queries.

Given that the duplication algorithm has already output the opti-
mal <column set, access pattern> hash map PL, where column set
is the set of columns (not column replicas) to be accessed by a query
and access pattern is the sequence of columns or column replicas to
be accessed by a query. For the query whose column set exists in
the current workload, we can find its access pattern directly from
PL. For the query with a new column set, it is costly to find an
optimal access pattern by enumerating all possible access patterns.
Therefore, we need an efficient mechanism to find an viable replica
access pattern.

Our solution is to maintain an inverted bitmap index in memory by
Column Redirector. The bitmap index has a bitmap for each column

(not column replica). The bitmap has a bit for each query to indicate
whether or not the column is accessed by the query. The bitmap
index is rebuilt periodically with the updates of table layout. When
serving a query q without exact match in PL, Column Redirector
looks up the index and select the bitmaps of the columns that are
accessed by q. These selected bitmaps are merged by bitwise AND
operation to find the query whose column set is a superset of q’s. If
more than one such query is found, the query with smallest column
set is chosen. Then the access pattern of the query is used to generate
the access pattern of q. If no such query can be found, we search for
the query with most number of common columns as q. This is done
by counting the number of set bits (TUREs) on each specific bit in
the selected bitmaps. It is more efficient than calculating union of the
queries’ column sets. It can be done within milliseconds. The access
pattern of the retrieved query is used to generate the access pattern
of q. In this case, there will be some unmatched columns within
q. We perform a first-fit strategy which scans the column order
sequentially and get the first occurred column/replica as the right
column/replica of each unmatched column. After the access pattern
is determined, the original column names in q are replaced with
the names of corresponding column replicas. As shown in Figure
8, if the 3rd, 2nd and 1st replicas of column Market, QueryHour
and DistinctQCount are the best ones for this example query, the
redirection result can be found in the right part of the figure. Then
the rewritten query is returned to the application through Query
Agency. While Column Redirector will continue searching the best
access pattern for q , add it to PL and update the bitmap index, so
that q and other new queries may directly benefit from it next time.

SELECT Market�AS Dim_Market,
QueryHour AS Dim_DateTime,
DataCenter AS Dim_DataCenter,
SUM(DistinctQCount)�AS DSQ

FROM Log

SELECT Market_3 AS Dim_Market,
QueryHour_2 AS Dim_DateTime,
DataCenter AS Dim_DataCenter,
SUM(DistinctQCount_1)�AS DSQ

FROM Log

Query�Re-write�by�column�Re-direction

Figure 8: Query re-write example

6. PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness and efficiency of

our column ordering and duplication solutions. All experiments are
done on real-life production workloads and log data.

6.1 Production Data and Query Workloads
The real-life production workloads and data we use are from Bing

Microsoft’s Web search data mining pipeline. Some statistics of
data (one specific table) and workloads collected by our Workload
Manager are listed in Table 2. Most of the queries in the workloads
are aggregation queries with templates like SELECT... FROM...
[WHERE... GROUP BY... ORDER BY...].

1

10

100

1000

#C
ol

um
ns

Query
(a) Number of columns
accessed by query

1

10

100

1000

10000

Ac
ce

ss
 C

ou
nt

Column
(b) Column’s access
count

Figure 9: Statistical patterns of the workload

Considering both query workload and the data layout, we summa-
rize the statistical workload patterns in Figure 9. As shown in Figure
9(a), the number of columns accessed by a query follows a long-tail

305

Table 2: Statistics of Production Data and Workloads
Feature Statistics

Column Count 1187

Column (Data Type, count)
(int,1008)(string,109)(boolean,36)

(double,23)(long,9)(datetime,2)

Query Count 4000+ queries per month

Data Size about 5T new data per day

Schema Update Frequency schema slightly changes within 3-6 months

Query Update Frequency less than 5% queries change within a month

distribution. The ‘smallest’ query accesses only 2 columns while
the ‘largest’ query accesses 591 columns which is half of the whole
table. This is one of the reasons of not vertically partitioning the
table - maintaining a wide table can reduce the join cost compared to
vertically partitioning the table into narrow ones. 77.5% of queries
access 7 to 20 columns. The average number of columns accessed
by a query is 32. Figure 9(b) summarizes the number of queries that
each column is accessed by, which also follows a long-tail distribu-
tion. We analyze 4343 queries subscribed within a month. The most
popular column is accessed by 4267 queries. There are 10 columns
accessed by more than 1000 queries and 60% of the columns are
accessed by 50-150 queries. On average, each column is accessed
by 128 queries.

As shown in the above statistics, wide table analytical workloads
differ substantially from analytical workloads (e.g., TPC-H [14]
and SSB [10]) in traditional data warehouse. In TPC-H, there are
22 queries, the fact (largest) table has only 16 columns. In SSB,
there are 13 queries, the fact table has only 17 columns. Therefore,
existing solutions which work well on traditional data analysis may
not be effective when being applied to wide tables.

6.2 Evaluation Settings
The machine used in the evaluation is equipped with two Intel

Xeon E5-2670 2.6GHz CPUs (16 cores and 32 threads in total)
and 24GB memory. One SAS-900G disk and one SAS-2T disk
listed in Table 1 are directly attached for data storage without RAID
configured as RAID is not recommended for HDFS [50]. SAS-
2T is used as the default disk in our evaluations. The OS of the
machine is CentOS Server 6.4 and the kernel release is 2.6.32-
358.el6.x86_64. The disks are formatted with ext4 file system. The
versions of the systems used in the evaluations are: Hadoop (1.2.1),
Parquet (parquet-hadoop-1.6.0.rc4) and Spark (1.2.0). Three types
of environments are set-up for our evaluations:

• Single Node α: single node HDFS + Spark. The data repli-
cation factor of HDFS is 1;

• Cluster β: 5-node HDFS + Spark (one node is assigned as
the HDFS namenode and Spark master, the other four nodes
as HDFS datanodes and Spark slaves). The network is Gigabit
Ethernet. The data replication factor of HDFS is 3;

• Cluster γ: 64-node HDFS + Spark (one node is assigned
as the HDFS namenode and Spark master, the other nodes
as HDFS datanodes and Spark slaves). The network is Gi-
gabit Ethernet. The data replication factor of HDFS is 3.
We change the number of slave nodes (HDFS data nodes
and Spark slaves) in this cluster to perform the evaluation at
different scales.

Single Node α and Cluster β use separate machines which are not
in the production cluster. Cluster γ shares machines with production
cluster. To ensure that our experiments do not interfere with pro-
duction workloads, we perform most of the experiments on Single
Node α and Cluster β. Experiments on Cluster γ are performed
when the production cluster is idle.

In this section, four column ordering strategies are evaluated:

• Default: the default column order used in production;

• Naive: frequently used columns are in the front of row group;
• AutoPart-C: the column ordering algorithm based on Au-

toPart [41]. See details in Appendix E;
• SCOA: our ordering algorithm proposed in Section 3.

In the evaluations, queries with the same column access pattern
are considered as the same type of queries and only the one with the
highest weight is evaluated. So that only 547 queries out of 4343 are
evaluated. Late materialization [18] of the query results is enabled
as the default feature in wide tables stored as Parquet format.2

6.3 Effects of Column Ordering Solutions
In this experiment, we evaluate the I/O efficiency of different

column ordering solutions. The experiments are conducted in Single
Node α using 1.2TB (390GB after encoding) data. We compare
SCOA with the Default, Naive and AutoPart-C. The read latency is
measured from the latency of Parquet Reader which directly reads
the parquet files from HDFS. According to the results of Figure
10, if we take Default as the baseline, on average, Naive reduces
25.3% read latency, AutoPart-C reduces 43.7% read latency and
SCOA reduces 65% read latency. If we take Naive as baseline, on
average, AutoPart-C saves 23.4% read latency while SCOA reduces
52.7% read latency. If we take AutoPart-C as the baseline, SCOA
reduces 38.1% read latency. Compare to Default, the maximum gain
of SCOA is 73.9% and the minimum gain is 2.5%, which means
that every single query benefits from the re-ordering. Compare to
AutoPart-C, the maximum gain of SCOA is 57.9% and the minimum
gain is -14.1%. SCOA is only outperformed by AutoPart-C on
three queries. Actually, we have not ever encountered a case that
default column order was better the SCOA optimized one. Since the
performance of Default is very poor, in the following evaluations,
we take the column order from Naive as the baseline for evaluation.

The experiments in Figure 10 are tested in Single Node α with a
single thread Parquet Reader. To confirm the effectiveness of SCOA
in real query execution, we conduct the experiments in the same
environment with real Spark SQL queries (Figure 11). We configure
64 threads (tasks) per node in Spark. Elapsed time of table scan
(map) stage of the queries is recorded as query read latency. If we
take Naive as the baseline, SCOA reduces 42.0% read latency on
average while AutoPart-C reduces 17.9%. If we take AutoPart-C as
the baseline, SCOA outperforms it by 28.3% on average. The gain
in Spark is lower than that of a HDFS file reader. This is caused by
additional overheads beyond I/O, which is discussed in Section 6.4.

Besides the performance gain, running time is another feature
of the column ordering algorithms. We implemented both SCOA
and AutoPart-C with Java. Taking the workloads and table schema
in this paper as input, SCOA converges in a few minutes, while
AutoPart-C takes about 3 hours with the same runtime settings.

6.4 Effects of Concurrent Reading Tasks
There are two main factors that affect I/O performance gain of

column ordering on Spark: 1) I/O competition of concurrent reading
tasks; and 2) Overhead beyond reading, such as task scheduling,
map-side shuffle write and Java garbage collection. The concurrent
reading tasks may compete for I/O channels and affect the read
behaviors of the disk. The overhead beyond reading may reduce
the proportion of I/O cost in the query’s end-to-end latency thus
reducing the overall gain of column ordering solutions.

To understand the impact of concurrent reading tasks, we conduct
an evaluation with different number of concurrent tasks (threads)
on Spark in Single Node α. 1.2TB (390GB after encoding) data is
used. The result is shown in Figure 12. Naive is used as the baseline.

2In parquet, columns in a row group are read and filtered before
reconstructing them into records [4, 3].

306

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350 400 450 500 550

R
ea

d
 L

at
en

cy
 (

s)

Query ID Ordered by AutoPart-C’s Latency

Default
Naive
AutoPart-C
SCOA

Figure 10: Read performance of different solutions on Single Node HDFS

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 50 100 150 200 250 300 350 400 450 500 550

R
ea

d
L

at
en

cy
 (

s)

Query ID Ordered by AutoPart-C’s Latency

Naive
AutoPart-C
SCOA

Figure 11: Read performance of different solutions on Single Node Spark

It can be seen in Figure 12(a) that the gain of SCOA remains stable
(above 42%) as the number of concurrent reading tasks ranges from
8 to 96. The machine used in the evaluation has 16 cores and 32
physical threads. As shown in Figure 12(b), when increasing the
number of concurrent tasks from 8 to 64, the query latency decreases,
due to better parallelism. After that, with 96 and 128 concurrent
tasks, the latency increases. This is due to the negative effect of
I/O competition among concurrent threads. It confirms that I/O
competition of concurrent reading tasks does have an effect, but
it does not significantly affect the gain of column ordering when
operated with a reasonable number of concurrent reading tasks.

The comparison of SCOA’s gain over Naive in Figures 10 (with
52.7% average gain) and 11 (with 42.0% average gain) shows that
overheads beyond reading drastically affect performance. Figure 10
is evaluated by calling the API of Parquet without task scheduling,
map-side shuffle write and Java garbage collection overheads while
Figure 11 is evaluated on Spark with these overheads.

32
36
40
44
48

8 16 24 32 40 48 56 64 72 80 88 96 104112120128

A
V

G
 G

ai
n

 %

Number of Concurrent Map Tasks

(a) Average gain (read latency reduced by percent-
age) of SCOA over Naive

0
200
400
600
800

1000
1200
1400

8 16 24 32 40 48 56 64 72 80 88 96 104112120128

R
ea

d
 L

at
en

cy
 (

s)

Number of Concurrent Map Tasks

Naive
SCOA

(b) Average read latency

Figure 12: Column ordering’s performance of different num-
ber of concurrent map (reading) tasks in Spark

6.5 Effects of Different Cluster Sizes
To evaluate the effects of different cluster sizes, we perform

evaluations on Spark in production Cluster γ with 64 threads (tasks)

per node. The data size is 1.2 TB per node. The result is shown in
Figure 13. The x-axis is the number of slave nodes in the cluster
and the y-axis is the average gain of SCOA compared to Naive.
To reduce the evaluation cost and minimize interference with the
production workload, we pick 50 most frequently issued queries
from the whole workloads. It can be seen from Figure 13(a) that the
gain is stable (around 43%) under different cluster scales. It can be
seen from Figure 13(b) that the query’s read performance does not
degrade significantly when the cluster scales out. When the cluster
scales from 4 nodes to 64 nodes, average query latency of SCOA
increases by 4.31%, while average query latency of Naive increases
by 3.35%. We can conclude from the evaluation that performance
gain of column ordering is stable with different cluster sizes.

36
38
40
42
44
46
48

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

A
V

G
 G

ai
n

 %

Number of Slave Nodes

(a) Average gain (read latency reduced by percent-
age) of SCOA over Naive

400
600
800

1000
1200
1400
1600

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

R
ea

d
 L

at
en

cy
 (

s)

Number of Slave Nodes

Naive
SCOA

(b) Average read latency

Figure 13: Column ordering’s performance of different cluster
scales in Spark

6.6 Effects of Different Row Group Sizes
For a table of certain size, larger row group size results in larger

columns inside the row group but smaller number of row groups.
The seek distance inside a row group and the total number of seeks
differs for different row group sizes. In this experiment, we compare
the read performance of both SCOA and Naive under three different
row group sizes. Since there is only one row group per HDFS block

307

and the row group size approximately equals to the HDFS block
size (the metadata footer in each HDFS block is relatively very
small), the effects of different block size can be addressed by this
experiment. The evaluations are conducted in Single Node α with
Parquet Reader. 1.2TB data is used in the evaluations. In Parquet,
the row group size is controlled by the parameter parquet.block.size,
which is the size of a row group object in memory. When writing
data into Parquet format, the data is first written into memory and
after an entire row group is constructed, it is then flushed into HDFS.
Figure 14 demonstrates the performance of different row group sizes.
For better visualization, we only report the results of the first 10
frequently executed queries.

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

 0 1 2 3 4 5 6 7 8 9

R
ea

d
 P

er
fo

rm
an

ce
 G

ai
n
 %

Query ID

256MB
512MB
1GB

Figure 14: Read performance gain (read latency reduced by
percentage) of SCOA over Naive with different row group sizes

From Figure 14, for different row group sizes, 256MB, 512MB
and 1GB, SCOA shows significant performance gain over Naive.
For the whole workload, average gains of SCOA under the three
row group settings are 52.7%, 48.0% and 45.8% respectively, while
average read latencies of SCOA are 344.3s, 252.4s and 196.7s respec-
tively. As the row group size increases, the average gain decreases.
This is because that to read a table of specific size, the larger row
group size leads to less row groups and less number of total seeks
(the number of seeks inside a row group is the same with the same
column order) while the total seek distance is the same. As shown
in Section 3.1, the seek cost function is not linear, two short seeks
are likely to have higher cost than one long seek with the same
total seek distance. That is why the average read latency of both
SCOA and Naive under 512MB and 1GB row group settings are
smaller than that of 256MB. The default value of parquet.block.size
is 128MB and the maximum value to set is 2GB. In our production
environment, we use a relatively larger value for wide tables. But
larger row group size leads to much more memory consumption
during data loading and query processing. Therefore, 256MB and
512MB are appropriate values for most cases. 256MB row group
size is used by default in our experiments.

6.7 Effects of Different Seek Cost Functions
Seek cost function is a core part for our table layout optimization.

In this experiment, we evaluate the effects of different seek cost
functions. As discussed in Section 5.2, the seek cost functions for
SCOA are obtained by performing seek and read operations on the
real data in HDFS. Here we use an intuitive linear seek cost function
in SCOA (SCOA-Linear) and compare it to SCOA with seek cost
function derived by Seek Cost Evaluator (SCOA-Evaluated). Note
that the linear seek function is not correct; we compare it to SCOA
in order to highlight the importance of a correct cost function. The
evaluation is conducted with Parquet reader and Spark SQL queries
in Single Node α with 1.2TB data. The results of end-to-end Spark
queries are shown in Figure 15.

For the read latency on the whole workload evaluated by Parquet
Reader, taking Naive as the baseline, SCOA-Linear has 42.4% gain
while SCOA-Evaluated has 52.7% gain. For the query latency on

Table 3: Column Duplication: percentage I/O (read perfor-
mance) gain under different SCOA refine periods.

Refine Period 1 5 25 45 65 85

Average I/O gain 10.7% 10.0% 8.4% 6.2% 5.9% 4.6%

the whole workload evaluated in Spark, taking Naive as the baseline,
SCOA-Linear has 31.4% gain while SCOA-Evaluated has 39% gain.
This verifies that seek cost function derived by our Seek Cost Evalua-
tor can more accurately demonstrate to the seek cost in real data read
tasks. In Figure 15, SCOA-Linear sometimes outperforms SCOA-
Evaluated. This is because the column ordering algorithm aims to
minimize the I/O cost of the whole workloads, not individually. So
a small minority of queries may not benefit from SCOA-Evaluated.

6.8 Effects of Different Disks
In this subsection, we show that SCOA works well on different

disk models. We conduct a group of evaluations on the workloads
with the same amount of data as shown in Figure 10 (Single Node
α with 390GB encoded data), but the underlying disk for HDFS
changes from SAS-2TB to SAS-900GB. Results show that SCOA
on SAS-900GB disk also has significant performance gain. Taking
Naive as the baseline, the average gain of SCOA on SAS-900G is
50.7%. On SAS-2TB disk, the corresponding gain is 52.7%.

6.9 Effects of OS Caching Policies
In this experiment, we compare the read latency of the queries

with OS cache enabled and disabled. The evaluations are conducted
in Single Node α with 1.2TB data. The queries are executed by
Spark, and the elapsed time of the table scan stage is recorded as
the read latency. The results are shown in Figure 16. It can be seen
that comparing enabling to disabling OS cache, the results do not
have significant difference. This is because the data size is much
larger than the memory capacity and the OS cache is flushed. So
we can conclude that the OS cache does not have significant impact
on our solution in the production environment. Actually, the OS
invests additional CPU and memory resources to maintain the cache.
This can be an overhead in some large sequential reads over HDFS
[43]. In Figure 16, some queries was indeed hurt by caching polices.
But since most queries in our workloads are I/O intensive (not CPU
intensive) the effect of OS caching is insignificant.

6.10 Column Duplication
Finally, we examine the effectiveness of our column duplica-

tion solution as introduced in Section 4. The duplication I/O gain
is computed as 1-latencyduplication/latencyorder and measured
from the average gain of the whole workloads. Experiments are
conducted in Cluster β with 4.8 TB raw data. We first examine
the effect of different refine periods (number of duplicated columns
between adjacent SCOA refinements). Using the same ordering
produced by the SCOA algorithm, we ran the duplication algorithm
with refine periods 1, 5, 25, 45, 65 and 85 under a constraint of 15%
extra storage to compare their I/O gains. Due to the randomness
of the SCOA process, we ran the above process 5 times. The aver-
age I/O gain of each period is shown in Table 3. We can see from
this table that the performance gain decreases as the period length
increases, which shows the importance of timely SCOA refinement.

Figure 17 demonstrates the I/O gains over the column order gen-
erated from SCOA with different sizes of storage headroom. We
compare the duplication algorithms with (refine period = 5) and
without optimizations. As the storage headroom becomes larger, the
gain keeps increasing. The gain with optimization is much larger
than that of the baseline approach without optimization. From the
result, we see that we can use less than 5% extra storage for an-

308

 0
500

1000
1500
2000
2500

 0 5 10 15 20 25 30 35 40 45 50
Q

u
er

y
 L

at
en

cy
 (

s)

Query ID

Naive SCOA-Linear SCOA-Evaluated

Figure 15: End-to-end query latency of SCOA with two different seek cost functions: SCOA-Linear for linear seek cost function and
SCOA-Evaluated for seek cost function evaluated in read environment

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9

R
ea

d
 L

at
en

cy
 (

s)

Query ID

Cache Enabled
Cache disabled

Figure 16: Read latency of different OS cache policies

0%

2%

4%

6%

8%

10%

12%

14%

0.001% 0.010% 0.100% 1.000% 10.000%R
ea

d
 P

er
fo

rm
an

ce
 G

ai
n
 %

Storage Headroom % (Log)

No Optimization
With Optimization

Figure 17: Read performance gain of column duplication with
and without optimization

other 12% gain from duplication after column re-ordering. This
confirms the effectiveness of our duplication algorithm. Actually,
we also considered a column duplication algorithm based on Au-
toPart (discussed in Appendix E), but it does not provide any gain
over AutoPart-C.

Except the read performance gain, there are some side effects of
column duplication: 1) except the storage overhead, the data loading
time is also increased; 2) the queries have to be redirected to read
the right column replicas. The solution of redirecting column for
queries is shown in Section 5.3. Our solution can rewrite the column
names for query in milliseconds so that the overhead of column
redirection is insignificant compared to the hundreds-of-seconds
query execution time. We mainly evaluate the overhead in data
loading. The results are shown in Table 4. In the evaluation, we
load 4.8 TB raw data into the column-duplication table (in Parquet
format) in Cluster β by Hive. 8 writing threads (map tasks) on each
node is used for data loading. In Table 4, we can see for the table
without duplication, data can be loaded in 296 minutes, when the
columns are duplicated, the data loading time increase approximate-
linear with the number of total columns in the tables. This is because
data loading is main bounded by CPU time cost on encoding and
packing data into columns.

7. RELATED WORK
For enterprise-level big data analysis (e.g, 100+TB of log data is

Table 4: Elapsed time of loading data into the duplicated table
Storage Headroom 0 0.1% 1% 5%

#Cloumns 1187 1211 1291 1354

Data Loading Time 296min 301min 319min 335min

generated every day at Bing Microsoft), I/O cost typically plays a
major role in the overall computational cost. There are many efforts
towards reducing the I/O cost of large scale data analytics.

Big Data Analytical Systems: Hive [48] and Pig-Latin [40] are
early big data analytical systems running on HDFS. They bene-
fit from the fault tolerance and scalability of Hadoop to support
SQL-like big data analysis on top of a large cluster of commercial
machines. SQL queries are translated into MapReduce jobs to pro-
cess the data on HDFS. Recent systems such as Presto [9], Impala
[2], Drill [1] and Spark SQL [8] replace the early version of Hive,
by using optimized query engines. They try to avoid dumping large
amounts of intermediate results to disks by optimizing the shuffle
strategies and utilizing memory more extensively. But HDFS is still
used as the common underlaying distributed file system because it
has become the defacto standard of big data storage. HDFS offers an
inexpensive, scalable, fault-tolerant and generic storage layer for big
data analysis. In Bing Microsoft’s log analysis applications, Spark
[53] is also widely employed. It is a full-stack system supporting
SQL-based analysis, stream processing, machine learning and graph
computation. Spark also reads original data from HDFS, but it is
much more efficient than MapReduce in both I/O and computation
aspects. These efforts on big data analysis systems can be con-
sidered as complementary works to the table layout optimization
solution proposed in this paper, since our solution does not need to
change any component of those systems.

Columnar File Formats on HDFS: Columnar storage has been
considered as a very I/O efficient data layout for read-only analytical
jobs [45]. As such, file formats such as RCFile [29], ORC File [5]
and Parquet [3] apply columnar storage techniques [17, 15, 45]
to HDFS, where the data is split into blocks without exposing the
structure and contents of the blocks.

By applying columnar file formats, data analytical jobs on top of
HDFS can avoid to read unnecessary columns and further benefit
from type-specific data compression. In RCFile, data within an
HDFS block is first partitioned into row groups [29] whose size
is approximately 4MB for each. Within each row group, data is
arranged in a columnar manner. A metadata header is stored in each
row group for indexing the columns. ORC File is an improvement
over RCFile. It applies a larger row group size (256 MB by default)
to improve the I/O performance [30]. ORC File uses a technique
called data decomposing[5] to decomposes complex data types such
as Map and Struct to multiple columns with primitive data types. It
also supports type-specific encodings for each column [5]. ORC File
is now mainly supported by Hive. Parquet is similar to ORC File.
It also uses a relatively larger row group size (128MB by default),
and supports data decomposition and type-specific encoding [3] as
well. Parquet is now widely supported by systems such as Spark,

309

Hive, Impala, Pig-Latin and Drill [6]. These columnar formats on
HDFS are also used in our analytical pipelines at Bing Microsoft.
Our optimization solution can be applied to all the above columnar
file formats.

Except applying columnar storage inside HDFS blocks, CIF [24]
format stores columns of a row group in separate HDFS blocks and
co-locate the blocks on the same node. This method has significant
performance improvement compared to RCFile in small row group
(4MB) settings. But this solution needs to hack into existing systems
and it is shown in experimental study [30] that when large row group
size (eg. 265 MB) is applied in later formats like ORC File and
Parquet, it is not necessary to store columns of row group into
multiple physical blocks.

Column Grouping Table Layout: While columnar layout is
confirmed to be efficient enough for most analytical workloads [30,
33], there are some applications where queries are likely to access
different sets of columns. Some studies [27, 34] try to utilize such
access patterns to group some columns together. In Trojan [34],
a column grouping layout on HDFS is proposed. However, the
algorithm scales exponentially in time with the number of columns.
Given a wide table with thousands of columns, this algorithm cannot
be directly applied. But the idea of grouping columns, which is also
used in data partitioning works such as AutoPart [41], is used in
designing our baseline. Moreover, the idea of putting column groups
of a row group within in HDFS block (no store them into separate
blocks) is used in our baseline solution.

Horizontal Partitioning Optimization: As data is horizontal
partitioned into blocks in HDFS-like systems, there are research
works [46, 54] focused on optimizing horizontal data partitioning.
Sun’s [46] proposed a fine-grained blocking technique to better pack
tuples into blocks and enable queries to skip blocks. Zhou’s [54]
discussed how partitioning techniques are used in data shuffling and
query execution. Since we focus on table layout inside blocks and
do not modify existing systems, these works can be complementary
works and directly applied on top of ours to further boost query
performance.

Beyond HDFS environment, database community has done exten-
sive works on data partitioning [41, 28, 26, 38, 23, 20, 21, 32, 33].
HYRISE [26], Ailamaki’s [20] and DataMorphing [28] focus on
cache performance optimization. They reorganize data in memory
to reduce cache miss of processors. Although they have a different
objective, their methods have been learned by disk-based analytical
databases [44, 33] and data layout designing on HDFS [29, 34].
Hill-Climb algorithm in DataMorphing [28] is evaluated to be very
efficient in boosting I/O performance of disk-based analytical work-
loads [33]. Although it scales exponentially in both time and space
with the number of columns [26] and thus cannot be directly used
in wide table layout optimization, we use the idea of merging two
columns/column groups at a time in designing the baseline.

Navathe’s [38] and Schism [23] focus on data partitioning meth-
ods for OLTP workloads. Navathe’s [38] studied how to maximize
local and in-memory transaction processing by vertical partition-
ing data into fragments. Its partitioning algorithm is also used in
O2P [32] to support online data partitioning in analytical workloads.
Online and adaptive partitioning is also studied in H2O [21]. We
learn lessons from adaptive storage and applied the methodology
in our adaptive layout optimization framework. Schism [23] uses a
graph-based algorithm to horizontally partition tuples into groups
and minimize the number of distributed transactions. In addition,
techniques for approximate query evaluation through sampling also
target to optimize I/O performance [52, 19] by not reading the
whole data. They are only applicable to aggregation queries and
only provide approximate results.

AutoPart [41] proposed a workload-based vertical partitioning
algorithm for large scientific databases. The algorithm is also evalu-
ated to be very efficient in boosting I/O performance of disk-based
systems [33]. The application and addressed problem of AutoPart
are not the same as that in this paper. So that AutoPart can not
be directly applied in column ordering/duplication. We tailored
AutoPart and integrated it with Hill-Climb in designing the baseline
in this paper. Similar to vertical data partitioning, some colum-
nar databases such as C-Store [45] enable users to group different
columns into multiple overlapping projections or materialized views.
Each projection is sorted on the same attribute so that a query can
be solved using the most advantageous projection without joining
columns with different sort keys. Data in a projection is still stored
in columnar manner. So even when the best projection contains
unnecessary columns, the query does not need to read them. But
for wide table workloads such as that in Section 6.1, building a
projection for each query will cost 121 times more storage space
which is impractical for large production data, while solving queries
with limit storage overhead comes back to our storage constrained
column duplication problem. Furthermore, store column groups into
separate distributed files in HDFS may cause a query to perform
distributed joins to reassemble tuples which is far more expensive
than I/Os inside blocks [36]. Even store column groups into separate
local files and co-locate them on the same node like [24] need to
hack into existing systems and is proved to have not performance
gains when large row group size is applied [30]. However, the idea
of storing data inside a column group in columnar manner is used in
our baseline solution.

8. CONCLUSION
Column store is widely used for efficient data analytics. The

order in which columns are physically stored has not received any
attention because it has been commonly assumed that the number
of columns in a big table is small, and thus the impact of different
column orderings is irrelevant. When analyzing multiple materi-
alized views. Disk seek cost can be saved if the needed columns
of a query can be just fitted in Bing Microsoft’s search log, how-
ever, we found a large number of very wide tables with thousands
of columns in the data analysis pipeline. In such wide tables, the
order of columns can greatly affect I/O performance, and thus we
propose in this paper to optimize the column order according to
the disk access patterns derived from the workloads. Investing a
small amount of extra storage headroom, we show that we can com-
bine column duplication with column ordering to achieve further
I/O gains. We verify our algorithms using real-world production
workloads on a real implementation. The results show that after
applying the proposed ordering strategies, we can save up to 73%
query processing end-to-end cost compared to the default columnar
layout. With less than 5% storage headroom, we achieve another
12% gain using column duplication.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive com-

ments. This work is supported by the National Science Founda-
tion of China under grant (No. 61472426 and 61432006), Sci-
ence and Technology Planning Project of Guangdong under grant
(No. 2015B010131015), the Ministry of Science and Technology of
China, National Key Research and Development Program (Project
Number: 2016YFB1000700), and the Fundamental Research Funds
for the Central Universities, the Research Funds of Renmin Univer-
sity of China No. 14XNLQ06. Du Xiaoyong’s work is supported by
ECNU-RUC-InfoSys Joint Data Science Lab.

310

10. REFERENCES
[1] http://drill.apache.org/.

[2] http://impala.io/.

[3] http://parquet.apache.org/documentation/latest/.

[4] https://berlinbuzzwords.de/sites/berlinbuzzwords.de/
files/media/documents/ted_dunning-
what_and_why_and_how_apache_drill.pdf.

[5] https://cwiki.apache.org/confluence/display/hive
/languagemanual+orc.

[6] https://cwiki.apache.org/confluence/display/hive/ parquet.

[7] https://en.wikipedia.org/wiki/hamiltonian_path_problem.

[8] http://spark.apache.org/sql/.

[9] https://prestodb.io/.

[10] http://www.odbms.org/2014/03/star-schema-benchmark/.

[11] http://www.seagate.com/staticfiles/docs/pdf/
datasheet/disc/barracuda-ds1737-1-1111us.pdf.

[12] http://www.seagate.com/staticfiles/docs/pdf/
datasheet/disc/savvio10k5-fips-data-sheet-ds1727-4-1201-
us.pdf.

[13] http://www.seagate.com/www-content/
product-content/constellation-fam/constellation-
es/constellation-es-3/en-us/docs/constellation-es-3-data-
sheet-ds1769-1-1210us.pdf.

[14] http://www.tpc.org/tpch/.

[15] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and
S. Madden. The design and implementation of modern
column-oriented database systems. Foundations and Trends in
Databases, 5(3):197–280, 2013.

[16] D. J. Abadi, P. A. Boncz, and S. Harizopoulos.
Column-oriented database systems. PVLDB, 2(2):1664–1665,
2009.

[17] D. J. Abadi, S. Madden, and N. Hachem. Column-stores vs.
row-stores: how different are they really? In SIGMOD, pages
967–980, 2008.

[18] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden.
Materialization strategies in a column-oriented dbms. In
ICDE, pages 466–475, 2007.

[19] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In EuroSys, pages
29–42, 2013.

[20] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, pages
169–180, 2001.

[21] I. Alagiannis, S. Idreos, and A. Ailamaki. H2o: a hands-free
adaptive store. In SIGMOD, pages 1103–1114, 2014.

[22] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Hard disk
drives. In Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.80 edition, May 2014.

[23] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a
workload-driven approach to database replication and
partitioning. PVLDB, 3(1-2):48–57, 2010.

[24] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata.
Column-oriented storage techniques for mapreduce. PVLDB,
4(7):419–429, 2011.

[25] K. S. G., H. S. G., and M. B. Taghadosi. Importance of the
initial conditions and the time schedule in the simulated
annealing. In R. Chibante, editor, Simulated Annealing,
Theory with Applications, chapter 12, pages 217–234. Sciyo,
August 2010.

[26] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux,

and S. Madden. Hyrise: a main memory hybrid storage engine.
PVLDB, 4(2):105–116, 2010.

[27] S. Guo, J. Xiong, W. Wang, and R. Lee. Mastiff: A
mapreduce-based system for time-based big data analytics. In
CLUSTER, pages 72–80, 2012.

[28] R. A. Hankins and J. M. Patel. Data morphing: an adaptive,
cache-conscious storage technique. In VLDB, pages 417–428,
2003.

[29] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu.
Rcfile: A fast and space-efficient data placement structure in
mapreduce-based warehouse systems. In ICDE, pages
1199–1208, 2011.

[30] Y. Huai, S. Ma, R. Lee, O. O’Malley, and X. Zhang.
Understanding insights into the basic structure and essential
issues of table placement methods in clusters. PVLDB,
6(14):1750–1761, 2013.

[31] D. M. Jacobson and J. Wilkes. Disk scheduling algorithms
based on rotational position. Citeseer, 1991.

[32] A. Jindal and J. Dittrich. Relax and let the database do the
partitioning online. In BIRTE, pages 65–80, 2011.

[33] A. Jindal, E. Palatinus, V. Pavlov, and J. Dittrich. A
comparison of knives for bread slicing. PVLDB,
6(6):361–372, 2013.

[34] A. Jindal, J. Quiané-Ruiz, and J. Dittrich. Trojan data layouts:
right shoes for a running elephant. In SOCC, page 21, 2011.

[35] S. Kirkpatrick et al. Optimization by simmulated annealing.
Science, 220(4598):671–680, 1983.

[36] Y. Li and J. M. Patel. Widetable: An accelerator for analytical
data processing. PVLDB, 7(10):907–918, 2014.

[37] T. W. Manikas and J. T. Cain. Genetic algorithms vs.
simulated annealing: A comparison of approaches for solving
the circuit partitioning problem. 1996.

[38] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical
partitioning algorithms for database design. TODS,
9(4):680–710, 1984.

[39] Y. Nourani and B. Andresen. A comparison of simulated
annealing cooling strategies. Journal of Physics A:
Mathematical and General, 31(41):8373, 1998.

[40] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD, pages 1099–1110, 2008.

[41] S. Papadomanolakis and A. Ailamaki. Autopart: Automating
schema design for large scientific databases using data
partitioning. In SSDBM, pages 383–392, 2004.

[42] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. Computer, 27(3):17–28, 1994.

[43] J. Shafer, S. Rixner, and A. Cox. The hadoop distributed
filesystem: Balancing portability and performance. In ISPASS,
pages 122–133, 2010.

[44] D. ŚlÈl’zak, J. Wróblewski, V. Eastwood, and P. Synak.
Brighthouse: an analytic data warehouse for ad-hoc queries.
PVLDB, 1(2):1337–1345, 2008.

[45] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, et al. C-store: a column-oriented dbms. In VLDB,
pages 553–564, 2005.

[46] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin.
Fine-grained partitioning for aggressive data skipping. In
SIGMOD, pages 1115–1126, 2014.

[47] H. Szu and R. Hartley. Fast simulated annealing. Physics
letters A, 122(3):157–162, 1987.

311

[48] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using hadoop. In ICDE, pages
996–1005, 2010.

[49] R. Van Meter. Observing the effects of multi-zone disks. In
The Usenix Technical Conference, pages 19–30, 1997.

[50] T. White. The hadoop distributed file system. In Hadoop: The
Definitive Guide. O’Reilly Media, Inc., 4 edition, March 2015.

[51] D. Whitley. A genetic algorithm tutorial. Statistics and
computing, 4(2):65–85, 1994.

[52] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling for
analytics on big sparse data. PVLDB, 7(13):1508–1519, 2014.

[53] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
HotCloud, page 95, 2010.

[54] J. Zhou, N. Bruno, and W. Lin. Advanced partitioning
techniques for massively distributed computation. In
SIGMOD, pages 13–24, 2012.

APPENDIX
A. DISK CHARACTERS AND SEEK COST

A hard disk drive (HDD) is physically comprised of a number
of platters vertically aligned together. On top of each platter there
is a head reading from and writing to the platter surface. A head
reads/writes one circular path at a time as the platter spins, and
each circular path is referred to as a track. All heads are mounted
on an actuator arm, and as a result all heads move together over
the platters’ tracks with the same radius. The tracks with the same
radius are commonly referred to as a cylinder. A disk seek is
a movement of the arm (and all the heads) from one cylinder to
another. Hence, a disk seek occurs when we read two pieces of data
from two cylinders.

When data is written to a new file through the OS API, OS will
continuously requests disk pages one after another until all data is
persisted. From the disk side, the disk controller always allocates
“the next page” to accommodate the continuous page requests for
creating a file. While the actual location of “the next page” may
vary, depending on the location of last page, allocation follows the
following precedence: a disk page on the same track of the same
platter, a page on a different platter but in the same cylinder, and
finally a page on an adjacent track in the current or a different platter
(i.e., an adjacent cylinder). This precedence ensures that (1) a file
will be placed in one cylinder if it fits, resulting in no disk seek
when reading the file, and (2) when the file size exceeds the capacity
of one cylinder, the file will be placed in consecutive cylinders.
Therefore, the seek cost of reading two pieces of data is highly
related to the number of cylinders they are apart.

In hardware community, seek cost is generally modeled as a
function of the distance in number of cylinders. In particular:

1) For very short seeks (say less than 2-4 cylinders), the seek cost
is dominated by the settle time of arm [42].

2) For short seeks (say less than 200-400 cylinders), the arm
accelerates up to the halfway point in a constant-acceleration phase,
then decelerates and settles, given a seek cost of the form t =
a+ b

√
s, where s is the seek distance in cylinders [42, 31].

3) For long seeks (say more than 200-400 cylinders), the arm
reaches and moves at its maximum velocity. The seek cost is a
linear function of the distance in cylinders[42, 31, 22].

As in a file system, we are willing to know the seek cost from one
offset to another, i.e. in the distance of bytes, we have to consider
the capacity of cylinders been skipped by a seek. In fact, cylinder
capacity varies as radius changes. Cylinders in a disk are divided

into a number of zones [22, 49]. Cylinders in the outside zone have
large capacity than those in the inside zones. The capacity of a zone
is generally quite large (in GBs) [49]. Within the same zone, seek
distance in bytes is linear to the distance in cylinders. After seeking
to the target cylinder, the reader has to wait the right sector been
rotated under the head. So that disk rotation latency is also included
in the cost of a seek operation in a file system.

With these disk characters, we can build a seek cost function of
the seek distance. In practice, however, many detailed parameters
of disks are impossible to obtain. Disk manufacturers usually show
only the average seek time or min/max seek time in their manuals.
Moreover, hidden details in file systems / operating systems between
file reader and disks may also influence the seek cost. This is why
we build the seek cost model by empirical approach in this paper.

B. PROOF OF THEOREM 1
PROOF. We first introduce the classic Hamilton Path Problem

(HPP[7]): given an undirected graph G with n nodes and m edges,
decide if there exists a path that traverses each node exactly once.
We prove Theorem 1 by reducing the HPP problem to the deci-
sion version of the Column Ordering Problem (DCOP): decide if
Cost(Q,S∗) is less than or equal to a given number K.

Given an HPP instance, we construct a DCOP instance as follows.
We first remove any duplicated edges or self-loops in the graph
G. For each node x, we construct a column Cx with an arbitrary
positive size. For each edge connecting two nodes x and y, we
construct a query with weight 1 which will access columns Cx and
Cy . We define the f function mentioned in Definition 2 as:

f(dist) =

{
0, dist = 0
1, dist > 0

Then we set K in the DCOP to m− n+ 1.
Next, we prove that these two instances are equivalent. Note

that the seek cost of a query in this DCOP instance is 0 if the
two columns it accesses are adjacent in the column ordering and 1
otherwise. Because we removed duplicated edges, the lower bound
of Cost(Q,S∗) will be m − n + 1 because there are only n − 1
adjacent pairs in any ordering. Thus, it is clear that Cost(Q,S∗) is
less than or equal to m− n+ 1 if and only if there exists a column
ordering such that each of its n− 1 adjacent pairs is accessed by a
query, which is equivalent to a Hamilton Path in the HPP instance.

Clearly, we reduce the Hamilton Path Problem to the desicion
version of our Column Ordering Problem in polynomial time. There-
fore, the Column Ordering Problem is NP-Hard.

C. PARAMETER SETTINGS IN SCOA
SCOA has three important parameters: the initial temperature

t0, the cooling_rate and the maximum number of iterations kmax.
These parameters are set following the best practices of SA. Parame-
ters t0 and cooling_rate have been studied in SA literature [25, 39,
47, 35]. The impacts of t0 and cooling_rate are shown in Table 5.
Considering that the SCOA algorithm works in an offline manner,
the quality of the result is far more important than the algorithm’s
running time. As suggested in [25, 39], we set t0 to be slightly
larger than the seek cost (energy) of S0.

The parameter kmax controls the number of iterations executed
in the main loop (Line 2) of Algorithm 1. We do not apply the
seek cost (energy) of candidate column orders (states) as a terminat-
ing condition because the seek cost varies significantly for various
workloads, which makes it hard to set an appropriate termination
threshold. The final temperature at the end of algorithm execution

312

is t0 ∗ (1 − cooling_rate)kmax . So kmax and cooling_rate are
set to ensure that the temperature can be cooled down to near zero
within a given computational time because the algorithm is more
likely to be trapped in a local minimum during the stage of lower
temperature. As t approaches zero, the algorithm is unlikely to
transit to a worse candidate state with a higher seek cost, which
finally leads to convergence.

Table 5: The impacts of the initial temperature and cooling rate
in SA

Running time Optimisation

Initial temperature ↑ ↑ ↑
Initial temperature ↓ ↓ ↓

Cooling rate ↑ ↓ ↓
Cooling rate ↓ ↑ ↑

D. COLUMN ORDERING BASED ON GE-
NETIC ALGORITHM

Genetic Algorithm (GA) is another well-known meta-heuristic to
solve hard optimization problems [51]. It is an iterative procedure
that attempts to mimic evolution by maintaining a population of
candidate solutions (individuals). Each individual is represented
by a data structure called chromosome. In each iteration (called a
generation), individuals are evaluated by the fitness of their chromo-
somes. Best fit individuals in a generation are selected as parents
by a selection process. Then, the selected individuals are used to
generate children for the next generation by means of crossover and
mutation. After a computation budget is exhausted, GA returns an
viable solution.

c2 c5

c2 c5

c5 c2

c5 c2

parent�1�

parent�2�

off�spring�1�

off�spring�2�

Figure 18: The crossover function in a GA-based column order-
ing algorithm

In the GA-based column ordering algorithm, each column or-
der is defined as an individual. The fitness function is the seek
cost function. In each generation, a number of column orders are
evaluated, and the fittest ones among them are selected to generate
the offspring. To do so, in the crossover function, two parents are
crossed by randomly swapping a pair of columns (Figure 18). Each
offspring column order is then mutated by randomly swapping two
columns. Such crossover and mutation functions are similar to the
random swapping method used in SCOA to generate the neighbour
column order.

We implemented both SA and GA based column ordering al-
gorithms and compared their performance. We tried our best to
optimize both implementations. As shown in Figure 19, we found
that the GA-based algorithm quickly got trapped in a local min-
imum while the SA-based algorithm always converged to much
better solutions.

In both GA and SA, we further evaluated different heuristic rules,
such as putting two columns which are frequently accessed in the
same queries together instead of swapping two randomly chosen
columns. However, it turns out that none of the adapted heuristics
we tried helps. On the contrary, they make both algorithms get
trapped in local minima faster and finally output worse column
orders. Ultimately, in our evaluations, the SA-based algorithm
with random neighbour generation works better and this is why we
decided to focus on this algorithm in the paper.

E. COLUMN ORDERING BASED ON AU-
TOPART

As far as we know, there is no existing research work on solving
column ordering and duplication problem for big wide tables. How-
ever, as discussed in Section 7, there are highly related works on
vertical data partitioning. In this paper, we take the AutoPart algo-
rithm in [41] as prototype in designing a baseline column ordering
algorithm named AutoPart-C in this paper. AutoPart is evaluated to
be very effective in boosting I/O performance of disk-based analyti-
cal system [33].

AutoPart partitions the data in two steps: 1) horizontally partitions
the table by the categorical information of queries such that each
partition is accessed by a different subset of queries. 2) vertically
partitions each horizontal partition so that queries do not need to
read unnecessary attributes (columns). In step 2, Auto part firstly
generates the set of atomic fragments (partitions). A vertical parti-
tion is atomic there are no queries access a subset of attributes in it.
Data in a fragment is stored as row-wise. I/O overhead on atomic
fragments is considered to be minimal [41]. Thereafter, to reduce
joining cost, in each iteration of a loop, the fragments are combined
into a set of composite fragments. Attributes may be replicated
among multiple fragments.

To apply AutoPart in column ordering, we need a few points of
modifications: 1) as our workload do not have the ’false sharing’
(query do not actually share the same horizontal partitions) features,
we do not need the first horizontal partitioning stage; 2) as we are
solving column ordering problem, we need to ensure there is no
replications of columns; 3) since seek cost is proven to be the main
overhead for our workloads and reducing seek cost is the goal of
column ordering, we need to replace the cost model in AutoPart
with ours.

For point 2 above, we consider using the partition merging strat-
egy in HillClimb in [28]. HillClimb focuses on cache-efficient
attribute layout within a data page. It starts from pure column layout.
In each iteration of a loop, the algorithm finds and merges two verti-
cal partitions which provide the most significant gain when merged.
There is no column replicated in HillClimb.

Algorithm 4: AutoPart-C

Input: The set of queries Q = {q1, q2, ..., qm};
The initial column order S0 = {c1, c2, ..., cn}
Output: The optimized column order S;

1 Q := SortByWeight(Q), F := ∅, S := S0;
2 for each q in Q do
3 af := AtomicFragment(q.columns);
4 F.insert(af);

5 while F.size > 1 and Cost(F.columnOrder) < Cost(S)
do

6 S := F.cloumnOrder;
7 (fi, fj) := getBestPair(F);
8 F.remove(fi, fj);
9 F.insert(Combine(fi, fj));

10 return S;

In AutoPart-C, we take a fragment as a subset of ordered columns.
As shown in Algorithm 4, AutoPart-C firstly sorts the queries in
workload Q by the weight (gives priority to query with higher
weight) and then generates the initial list of fragments F (line

313

2-4). AtomicFragment function maintains the set of columns
processed by it and generates the atomic fragment by removing pro-
cessed columns from q’s accessed column set. insert function of F
inserts a fragment into F at the best location (with maximum gain).
After that, at each iteration of a loop (line 5-9), AutoPart-C finds and
combines two fragments which provide the most significant gain
when combined. Duplicated fragments are removed in line 8. The
algorithm will converge when the workload’s seek cost on F can
not be further reduced or there is only one fragment in F .

Taking our workload and table schema in this paper as input.
AutoPart-C generates 64 atomic fragments and takes 17 iterations
to converge. Each iteration runs in O(|S0| · |Q| · |F |3), so that
AutoPart runs very slowly, takes about three hours to converge in
our evaluations. While our SCOA converges in a few minutes.

Actually, we also considered applying AutoPart in column dupli-
cation. We remove the F.remove statement (line 8) from AutoPart-
C. But the algorithm converges in a few iterations without providing
any gain over AutoPart-C.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0
60

8
12

16
18

24
24

32
30

40
36

48
42

56
48

64
54

72
60

80
66

88
72

96
79

04
85

12
91

20
97

28
10

33
6

10
94

4
11

55
2

12
16

0

Se
ek

 C
os

t (
N

or
m

al
ize

d)

Elapsed Time (s)

SA GA

Figure 19: Performance comparison: GA-based algorithm vs.
SA-based algorithm

F. DATA LAYOUT UPDATING
In our adaptive data layout optimization solution, new data layout

is applied only to the incoming data, without reloading the historical
data. The reasons are: 1) In most analytical workloads, historical
data may be very large and it is very expensive to reload the histori-
cal data. 2) It is common that queries in log analytical workload are
executed periodically (e.g. daily or weekly) for generating reports

and building data caches, so most of the queries access recent data
and rarely scan long-term historical data. It is therefore most impor-
tant for us to optimize the column layout of the new coming data
which is frequently accessed by the current workload.

But it is possible that a query accesses both old and new data
when the new column layout is applied. This may cost problems
to query execution. Column duplication is currently a separate and
optional feature in our solution, so we discuss this problem for
column ordering and duplication separately:

1. Column ordering layout (without column duplication):
Queries can access both old and new data without any efforts in
modifying or configuring the existing storage or data analytical sys-
tems. During query execution, the access order of the columns is
determined by the metadata inside of each row group and is transpar-
ent to the data analytical system. Take Parquet as an example, the
set of columns to be read in the query plan is structured as a HashSet
without order. This set of columns are mapped to the data schema
store in the metadata footer of each Parquet file (each Parquet file
contains only one HDFS block as recommended by [3]). So SQL
queries can access the row groups of different column order without
even noticing the difference. Further more, legacy queries in the
workload are not likely to have worse performance on both old and
new data. In Figure 10, the minimal gain of a query of SCOA over
Default in the workload is 0.9%, which means that not a single query
is punished by column ordering. Since legacy queries are part of the
both old and new workload which are used to produce the old and
new column ordering layout, they are not likely to have worse per-
formance (compared with the query performance on default column
order) on both old or new data.

2. Column duplication. For queries which access both old
and new data, duplication is not used. These queries are directed
to the column ordering layout (without column duplication). In
production, most of the jobs are recurring jobs running daily or
weekly while data layouts are generally updated monthly. Therefore,
in most cases, queries only access new data and column duplication
is applicable. To address the problem of accessing both old and new
data on a column duplication layout, we need to make changes to
the data analytical systems. We are in the process of developing
such changes inside Spark. Data with different duplication layouts
will be handled in the map stage (doing table scan and filter) of the
Spark query plan and is transparent to applications.

314

