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ABSTRACT 
 Couchbase Server is a rethinking of the database given the 
current set of realities. Memory today is much cheaper than disks 
were when traditional databases were designed back in the 1970’s, 
and networks are much faster and much more reliable than ever 
before. Application agility is also an extremely important 
requirement. Today’s Couchbase Server is a memory- and 
network-centric, shared-nothing, auto-partitioned, and distributed 
NoSQL database system that offers both key-based and secondary 
index-based data access paths as well as API- and query-based 
data access capabilities. This is a major change from Couchbase’s 
roots; in its early days, its focus was entirely on high performance 
and highly available key-value (memcache) based caching. 
Customer needs and competitive pressures in the evolving non-
relational database market also accelerated this change.  
 This paper describes the architectural changes needed to address 
the requirements posed by next-generation database applications. 
In addition, it details the implementation of such an architecture 
using Couchbase Server and explains the evolution of Couchbase 
Server from its early roots to its present form. Particular attention 
is paid to how today’s Couchbase Server cluster architecture is 
influenced by the memory-first, high-performance, and scalability 
demands of typical customer deployments. Key features include a 
layer-consolidated cache, a consistency-controllable interplay 
between updates, indexes, and queries, and a unique “multi-
dimensional” approach to cluster scaling. The paper closes with a 
look at future plans for supporting semi-structured operational 
data analytics in addition to today’s more OLTP-like, front-facing 
use cases 

1. INTRODUCTION 
Today’s operational or OLTP applications have very different 
requirements than those of the past. Flexibility, scale, availability, 
and performance requirements have all seen dramatic changes. 
With population-scale user bases, the workload and throughput 
requirements have grown in many cases to hundreds of thousands 
of reads and/or writes per second. In addition, with the need to 
offer rich, on-line user experiences at high throughput, latency 
requirements are being pushed ever lower, with 1-3 milliseconds 
being a common latency expectation for applications like user 
profile stores. Applications such as catalog and SKU management  

 

 

 

systems need the ability to change and update information on the  
fly. All of these requirements come with the additional need to 
scale elastically with demand while being always available. These 
requirements call for a next-generation of database systems.  
  This paper begins by providing some general background on 
NoSQL systems followed by a brief history of Couchbase. We 
then describe the design choices that a database system needs to 
make to support OLTP workloads (vs. OLAP workloads) with a 
focus on the core principles underlying Couchbase Server. This is 
followed by an in-depth look at both its external interfaces and its 
under the hood architecture. We close with a look into the future. 
  NoSQL is a term applied to a class of DBMSs that are generally 
designed for use in high data volume, high throughput, and web-
scale applications [3, 7]. NoSQL databases are sometimes also 
called non-relational databases because many of the systems in 
this category allow nesting and have no fixed schema, thus 
enabling the storage of complex entities as well as semi-structured 
data and allowing more flexible use by developers. Most have 
provided non-SQL-based APIs for accessing data since they were 
popularized primarily through grass roots developer adoption. 
However, over time, some have added query-based interfaces in 
addition to their APIs or MapReduce-style paradigms. 
  Common characteristics for NoSQL databases include horizontal 
scalability via a clustered approach and greater schema flexibility 
than relational databases. Beyond these characteristics, NoSQL 
databases are often classified into four categories, as indicated in 
Figure 1. Over time, these categories are starting to converge [10], 
and we believe that as NoSQL systems mature further, a single 
platform should be capable of supporting most of the features 
found in these categories today. 
i. Key-Value Stores 
Key-value stores provide fast access to a value when its key is 
known. They are the foundation of NoSQL databases and are 
typically implemented via a distributed hash table where each 
entry has a unique key plus an associated data value. 

 
Figure 1. NoSQL database categories 
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The key-value model is the simplest and the easiest to implement. 
It also provides the highest raw performance; applications that 
need massive scale along with very low latency and/or high 
throughput are often implemented using this approach today. If 
the key for a given item (value) or set of items (values) is not 
knowable a priori, however, key-value systems are not a 
particularly good fit; most of the querying and management of 
relationships would then have to be handled in the application tier. 
Examples of key-value systems include Aerospike, Redis, and 
DynamoDB. 

ii. Column Family Databases 

Column family databases provide a bit more flexibility than key-
value databases. A key is still needed to access the data, but the 
data value itself can consist of multiple columns. Schemas are 
flexible, and each keyed item can have its own set of columns 
(distinct from those of other items). Columns are organized as 
column families, and some such systems provide the ability to 
query by more than just the key. Examples of column family 
databases include BigTable, HBase, and Cassandra. 

iii. Document Databases 

Document databases provide still greater flexibility. The primary 
access path in a document database is still the key, but the value is 
typically based on a semi-structured data format like JSON (or 
XML). This allows complex objects and entities to be represented. 
These systems also typically provide more than just key-based 
access. Limited querying is usually supported as well, either 
through an API-based approach, MapReduce-based querying, or a 
(SQL-like) query language. Document database examples include 
Couchbase, MongoDB, and MarkLogic. 

iv. Graph Databases 

Graph databases build on document databases by adding a flexible 
graph model. Data is modeled as nodes, edges and properties. 
Typically these databases also use a semi-structured format like 
JSON to represent data. APIs are common to provide access to 
data, both for values and for following relationships, but support 
for full SQL-like query capabilities is rare since their focus is 
largely on querying graph structures. Examples of graph database 
systems include Neo4j and OrientDB. 

1.1 Brief Couchbase History  
Couchbase, Inc. was created through the merger of Membase, Inc. 
and CouchOne, Inc. in 2011. This combined two technologies, 
Membase Server and CouchDB. Membase Server was a key-value 
distributed database based on memcached, while CouchDB was a 
single-node document database supporting JSON. The goal of the 
merged company was to combine the strengths of Membase as 
well as CouchDB to create a highly scalable, high-performance, 
document-oriented database capable of addressing the needs of 
next-generation web, mobile and IoT applications.  

1.2 Membase Server 
When Couchbase began, Membase Server was a distributed key-
value store built on top of memcached. Memcached itself is a 
widely used single-node caching technology in the Internet 
application space. It provides consistent, low-latency access to 
objects. Objects are binary in nature and similar to BLOBs in 
databases. Membase used memcached for its integrated caching 
layer and offered an API similar to the memcached API for user 
access to data.  

 

Figure 2. Membase deployment architecture 

Membase added several major capabilities to the pure memcached 
system, including a distributed hash-partitioning scheme for 
scaling out, asynchronous persistence to disk to handle workload 
spikes at memory-first speeds, and asynchronous data replication 
within a cluster to achieve high availability. 

Figure 2 illustrates a typical deployment of Membase for a web 
application. Since the caching layer is now consolidated with a 
persistent key-value data store, an additional external cache is no 
longer required for efficiently serving requests. Requests from the 
application servers are distributed across the collection of 
Membase nodes based on document hashing. 

1.3 CouchDB 
CouchDB was initially built as a single node database system with 
no partitioning capabilities and with several major differences 
from relational database systems. The first difference was schema 
flexibility. CouchDB chose JSON to serve as its data format, 
allowing agile application development without the need to 
conform to a strict schema. This difference also eliminated the 
need to perform complex multi-way joins just to reassemble 
normalized data.  

The second difference from traditional relational database systems 
was tunable consistency between data and the associated indexes. 
Direct document access using a key was always consistent, but 
query access based on indexes was eventually consistent by 
default. A user could, however, specify a desired level of 
consistency at query submission time based on their type of data 
and their application’s needs. CouchDB does support database-to-
database replication (not partition level) to bring data closer to 
users. Figure 3 illustrates a CouchDB deployment with replication 
enabled.  

 

Figure 3. CouchDB deployment architecture 
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2. COUCHBASE SERVER OVERVIEW 
2.1 Towards a Next-Generation DBMS 
Couchbase set out to achieve specific technology goals, targeting 
new applications and their new requirements as explained earlier, 
through its merging of the Membase and CouchDB technologies. 
In general, many new applications (as well as some existing 
applications), including user profile services, custom content and 
metadata applications, and custom catalog or asset management 
applications, do not require a full relational database management 
system (RDBMS). Over time, their performance, scale, and 
flexibility needs outweigh their transactional requirements. 

With Couchbase Server, it is not necessary to normalize natural 
application objects into multiple tables. As in CouchDB, objects 
can be stored in their unnormalized form as JSON documents. In 
addition, Couchbase Server allows users to access their data using 
either the key-value approach or a query-based approach. This 
means that applications that require high performance as well as 
the flexibility to access a sub-set of their data or parts of an object 
don’t have to use two different systems; one database can support 
both of those access approaches.  

RDBMs have dominated the IT industry for almost 40 years. 
However, NoSQL systems are now reaching a point where 
substantial functionality from the RDBMS world is available 
without the associated disadvantages of rigid schemas or lack of 
scaling. There are still areas, like transactionality, where further 
rethinking is needed regarding what is practical and needed by the 
next generation of applications, but the time seems right for next 
generation databases (such as Couchbase, of course) to transcend 
the relational model for many applications.  

2.2 The OLTP vs. OLAP Design Tradeoff 
Today, Couchbase Server is focused on handling OLTP-like 
workloads (i.e., OLTP workloads that do not need strong, multi-
operation ACID transactionality). It offers a range of capabilities 
to manage and access data in real-time and allows users to isolate 
their workloads via a multi-dimensional scaling (MDS) approach. 
This will be explained in more detail in Sections 2.3.1 and 4.4. 
Couchbase Server can also handle limited OLAP-style workloads 
using pre-computed aggregates provided by a view index. N1QL, 
its query language, has many of the capabilities of SQL, but in 
general, its internal query processing architecture has very much 
been aimed at handling small, low-latency queries. This can be 
seen by comparing and contrasting the query execution pipeline 
described later in Section 4.5.3 with the data-parallel strategies 
found in parallel relational database systems that target large, 
warehouse-style use cases [5]. 

The longer-term goal and vision of Couchbase Server is to 
provide a single, unified platform that can be used for nearly all 
types of operational workloads – including operational analytics. 
Going forward, the support of such new analytic functionality 
cannot be added at the expense of the (sacred!) front-end OLTP 
workloads. To protect the front-end, there are some core 
principles that have been incorporated in the architecture and will 
be applied to future architectural changes as well.  

2.3 Core Design Principles 
2.3.1 Scaling workloads independently 
This first core principle is applied to any service that manages 
data or data derived from the core key-value data set. Termed 
multi-dimensional scaling, this concept allows for services to be 

scaled up or out independent to one another from a hardware 
perspective. Each database workload has different needs, with 
some needing more I/O bandwidth and some needing more 
memory. Using this concept, hardware can be optimized based on 
the workload also making for more efficient use of hardware 
resources. This principle has been applied to Couchbase Server’s 
data service, index service, and query service as well as to the 
services that will be introduced in the future like those for text 
search and analytics. Details of the implementation can be found 
in Section 4.4.  

2.3.2 Asynchronous approach to everything 
Relational databases mostly take a synchronous approach to data 
handling, which implies incurring a latency “hit” (penalty) at the 
time of a write (e.g., update, insert, or delete). However, given 
that the need for higher throughputs and lower latencies has only 
increased over time, Couchbase Server made a design choice to 
update all other components of the database asynchronously when 
a data update occurs. As a result, no immediate latency penalty is 
incurred at write time. This approach is used even for persisting 
updated data to disk.It is important to recognize that the rates at 
which new data can arrive and existing data can change may 
ultimately still be I/O limited, as, in the limit, the system must still 
be able to absorb the load offered by an application. However, 
asynchrony “buys time” for the system to handle spikes in the 
load; it also provides an opportunity for repeated updates to an 
object to be aggregated at the level of persistence.  

Couchbase Server’s asynchronous approach results in a world in 
which the data and its on-disk copy, the data and its replicas, 
and/or the data and its indices may become slightly out of sync. 
To make it easier for users to manage in such a world, Couchbase 
Server provides options for durability as well as consistency.  

Durability guarantees 

At write time, Couchbase provides client applications with the 
option to wait for replication and/or for persistence on a per 
mutation basis. This allows each application to make its own 
choice, based on its requirements, regarding taking (or not) the 
performance penalty associated with these options. Given that the 
latency expectations for modern large-scale OLTP applications 
are in sub-milliseconds, most users choose to receive a response 
immediately once the data hits memory or in some cases may 
choose to first replicate the data to one other node for safety. 
Since replication is memory-to-memory, the latency hit with the 
replication option is significantly less than waiting for persistence, 
especially when using spinning disks. 

Configurable consistency for queries 

Given that indexes in Couchbase are asynchronously updated, 
they can be out of sync with the data when a query makes a scan 
request. Couchbase supports two flavors of querying: N1QL and 
view queries. Both flavors allow users to specify the tolerable 
level of staleness on a per query basis. This means that users can 
choose between accessing an index as it is or waiting for the index 
to be updated up to the point in time when the query was initiated. 
The implementation of this concept for view queries is discussed 
in Section 3.1.2, and Section 3.2.3 discusses its implementation in 
the case of N1QL query processing. 

2.3.3 Memory-first architecture 
Couchbase follows a memory-first architecture when reading data 
as well as when distributing updates to the various components of 
the system. Almost all components are updated via DCP, which is 
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the server’s internal, in-memory database change protocol. This 
memory-first architecture makes it easier for all components to 
keep up with the system’s high-throughput front-end loads. 

3.  COUCHBASE SERVER DATA BASICS 
Couchbase Server is a distributed document database that supports 
various types of access paths and is built to scale in multiple ways 
[4]. It has a memory-first architecture that includes both an 
integrated caching layer and in-memory replication capabilities.  

Couchbase Server stores data in JSON documents, where each 
document is a JSON object consisting of a number of fields. An 
application object can be stored using one or more documents, 
and the object’s attributes become fields in the document(s). 
Documents are stored within a key space called a Couchbase 
bucket, and they can be directly accessed using a (user-provided) 
document ID much as one would use a primary key for lookups in 
an RDBMS.  

The generally available version of Couchbase Server is currently 
version 4.1, with a preview of version 4.5 being available as of 
this writing. This paper’s architectural description is thus based 
primarily based on version 4.1. The futures section will provide 
more insights into the system’s upcoming capabilities and plans, 
including some of the highlights of version 4.5. 

3.1 Client Access 
Couchbase provides numerous client SDKs, including support for 
Java, .NET, php, Ruby, C, Python, node.JS and GoLang. Each of 
the client SDKs provides language-specific APIs or methods to 
access data via the various access paths available.  

There are three main access paths by which a client application 
can talk to Couchbase Server: 

1. Read / write JSON documents using key-value access via the 
primary key  

2. Read / query JSON documents using the View API  

3. Read / query JSON documents using N1QL queries 

3.1.1 Key-value access using the primary key   
 

Read access to DB 

Couchbase provides a key-based lookup mechanism where the 
client is expected to provide the key, and only the cluster node 
hosting the data with that key will be contacted. 

Write access to DB 

Couchbase updates happen at the document level if the key-value 
API is used.  A client SDK will retrieve a document that needs to 
be updated from the server, the user will modify certain fields, 
and the client SDK will then send the document back to the server 
for update.   

To provide the required degree of isolation for concurrent access, 
Couchbase provides a CAS (compare and swap) mechanism for 
optimistic locking: 

 When the client retrieves a document, a CAS ID (much like a 
revision number) is attached to it. 

 While the client is manipulating the retrieved document 
locally, another client may modify this document. If this 

happens, the CAS ID of the document at the server will be 
incremented. 

 Now, when the original client submits its modification to the 
server, it can choose to include the original CAS ID in its 
request.  The server will then check this ID against the 
current ID in the server. If they differ, the document has been 
updated in between and the server will not apply the update.  

 The original client can re-read the document (which now has 
a newer ID) and re-submit its modification.   

Couchbase also offers its users a stricter locking mechanism; an 
application can opt to request a hard lock at the document level 
when performing its updates. (This lock will be released after a 
certain timeout to avoid deadlocks.) 

Optimistic locking is what most large-scale online applications 
and production deployments use, as isolation is important to them, 
but not at the cost of a major performance penalty.  

3.1.2 Read / query JSON using View API 
Similar to the materialized view concept in the RDBMS world 
[11], Couchbase Server provides a MapReduce-style index called 
a view. A Couchbase view is essentially just a local (distributed) 
index that can be queried. A view is defined using a Map function 
that extracts data from the documents in a key space (bucket) and 
optionally a Reduce function that aggregates the data objects 
emitted by the map function.  These are defined using JavaScript. 
A Couchbase view thereby provides a functional way to specify a 
materialized (and distributed) query result that client applications 
can directly utilize to improve their performance. 

Queries that use views are static, meaning that a view needs to be 
defined and materialized before it can be used for querying data. 
An emit( ) function that must be included in the Map( ) function 
of a view is similar in its role to the query that would be specified 
in an RDBMS’s CREATE MATERIALIZED VIEW statement. 
Every document that is a part of the key space upon which a view 
is defined will be processed by the view’s Map( ) and Reduce( ) 
functions.  

Once a view is materialized, it can then be queried for specific 
key(s) or a range of keys as follows: 

 Return all values (as JSON) matching the supplied key, or 

 Return all values (as JSON) matching any of the supplied 
keys, or 

 Return all values (as JSON) starting with the provided key A 
and stopping on the last instance of a key B.  

A given view query will be broadcast to all servers in the cluster 
and the results will be merged and sent back to the client SDK. To 
clarify all of these concepts, let us consider a simple example. 

Sample document with key ‘borkar123’ 

{ 
‘‘name’’: ‘‘Dipti Borkar’’,  
‘‘email’’: ‘‘Dipti@couchbase.com’’ 

} 

Example: Definition of View Profile 

Function(doc){ 
if (doc.name){ 

 emit(doc.name, doc.email) } 
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This map( ) function when executed will materialize a view and 
store the names and emails for all of the documents in the bucket 
that it is defined on. This Profile View can then be directly queried 
via the REST API or using a client SDK.  

Example: REST query for View Profile 

?key="Dipti"&stale=false 
 
This REST call will return the value of the doc.email attribute 
from all documents where doc.name is “Dipti”. 

Views are eventually consistent [9] with respect to the underlying 
stored documents; they are kept up-to-date asynchronously, on 
demand, based on document writes/updates. As explained earlier, 
Couchbase provides users a choice to run a view query with 
configurable consistency. A stale parameter can be used as a part 
of the view query to specify the required level of consistency (i.e., 
the tolerable degree of staleness) for the query.  

Supported values for the stale parameter are: 

 false: Wait for the view indexer to finish processing changes 
that correspond to the current key-value document set and 
then return the latest entries from the view index. 

 ok: Just return the current entries from the index file 
(including possibly stale entries). 

 update_after: Return the current entries from the index, but 
then initiate a view index update. (This is the default.) 

3.1.3 Read / query JSON using N1QL 
Couchbase Server now prominently supports query-based access 
to data using its new SQL-inspired query language, N1QL, as 
described next. N1QL queries can enter the system via a REST 
call, an SDK call, or one of several interactive client tools. 

3.2 The N1QL query language 
3.2.1 Overview and key capabilities 
Non-first Normal Form Query Language, or N1QL (pronounced 
"nickel"), is the first NoSQL query language to leverage the 
flexibility of JSON with nearly the full expressive power of SQL 
and an SQL-friendly syntax. Developed by Couchbase for use in 
Couchbase Server, N1QL provides a common query language and 
a JSON-based data model for distributed, document-oriented 
database management. (A nice comparison of various NoSQL 
query languages and associated systems can be found in [6,13].) 

N1QL enables clients to access data from Couchbase Server using 
SQL-like language constructs, as N1QL’s design was based on 
SQL. It includes a familiar data definition language (DDL), data 
manipulation language (DML), and query language statements, 
but can operate in the face of NoSQL database features such as 
key-value storage, multi-valued attributes, and nested objects.  

3.2.2 Features of N1QL 
N1QL provides a rich set of features that let users retrieve, 
manipulate, transform, and create JSON document data. Its key 
features include: 

SELECT Statement: The SELECT statement in N1QL extends the 
functionality of the SQL SELECT statement to work with JSON 
documents. Of particular importance are the USE KEYS, NEST, 
and UNNEST sub-clauses of the FROM clause in N1QL. 

At a high level, a SELECT statement supports the retrieval of data 
from specified keyspaces or Couchbase buckets. A simple query 
in N1QL has three parts to it: 

SELECT - Portions of the document to return. 

FROM - The keyspace or datastore with which to work. 

WHERE – Conditions the retrieved data should satisfy. 

Because data in Couchbase Server is stored in documents rather 
than in rigidly structured tables, N1QL queries can actually return 
a collection of different document structures or fragments.  

Data Manipulation Language (DML): N1QL provides support for 
INSERT, DELETE, UPDATE, and UPSERT statements to create, 
delete, and modify data stored as JSON documents. These 
statements also support sub-document level lookups and updates.  

3.2.3 Salient clauses and parameters 
While N1QL supports an extensive set of clauses similar to SQL, 
there are certain clauses and parameters that differentiate it from 
other databases. Let us examine some of the key SQL clause 
additions that N1QL includes: 

USE KEYS 

This clause is the key (to so speak) to bridging the fundamental 
functionality gap between a key-value store and a document 
database. Its use provides the user with the flexibility to grab 
specific attributes or compose new values from existing objects 
while still getting key-value retrieval performance.   

Specific primary keys within a key space (Couchbase bucket) can 
be specified in this clause. Only values having those primary keys 
will be included as inputs to the rest of the given N1QL query. 

Example: To specify a single key: 

SELECT * FROM profiles USE KEYS "acme-uuid-
1234-5678" 

Example: To specify multiple keys: 

SELECT * FROM profiles 
USE KEYS ["acme-uuid-1234-5678", "roadster-
uuid-4321-8765"] 
 

NEST and UNNEST Clauses 

Supporting the JSON data format requires Couchbase to provide 
extensions to standard SQL to allow users to do more with JSON. 
Specifically, as JSON objects can be stored in the database as-is, 
without splitting or shredding them into multiple tables, users may 
need to flatten documents when reading them out, or if related 
documents are stored separately, to compose and combine them 
together into a single JSON document. Both of these goals can be 
achieved using the N1QL UNNEST and NEST clauses.  

When the NEST clause is used, instead of producing a cross-
product of the left and right hand inputs, it produces a single result 
for each left-hand input while its right-hand input is collected into 
an array and nested into a single array-valued field in the result. 

Example: Consider a bucket that contains two types of documents, 
with doc_type ‘user_profile’ and ‘order’. If we wish to assemble a 
list of products purchased by a user, we need to perform a JOIN 
across those two document types. However, a traditional relational 
join would yield a cross product instead of composing a result 
within which, for each user profile that matches the query criteria, 
its associated orders are embedded or nested within an array.  
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SELECT PO.personal_details, orders 
FROM profiles_orders PO  
USE KEYS ‘borkar123’ 
NEST profiles_orders as orders  
    ON KEYS ARRAY s.order_id FOR s  
    IN PO.shipped_order_history END 
 

The query above will return a JSON document with all the orders 
placed by the user whose key is ‘borkar123’ being nested into an 
array within the resulting user object. 

In contrast, the UNNEST clause takes the contents of a nested 
array and joins them each with their parent object.  

Example: Return a list of the existing (in-use) product categories 
in a world where products can fall into multiple categories 

SELECT DISTINCT (categories) 
FROM product 
UNNEST product.categories AS categories 
 

Query Scan Consistency  

The consistency level for a given N1QL query can be configured 
using the staleness parameter for the query. The following 
consistency levels can be specified for the staleness parameter: 

 scan_consistency=not_bounded 

This level returns the query with the lowest latency, as it is the 
most relaxed consistency level. Selecting this option essentially 
means the query can return data that is currently indexed and 
accessible by the index or the view. The query output can be 
arbitrarily out-of-date if there are many pending mutations that 
have not been indexed by the index or the view. This consistency 
level is useful for queries that favor low latency and do not need 
the most up-to-date information. 

 scan_consistency=request_plus 

This level provides the strictest consistency level and thus 
executes with higher latencies than the other levels. This 
consistency level requires all mutations, up to the moment of the 
query request, to be processed before query execution can begin. 
This ensures that any writes that are done prior to issuing the 
query request, and possibly more recent mutations, have been 
indexed by the GSI or the view indexer and will be returned by 
the N1QL query if it qualifies for the result set. This guarantee is 
important to applications that require consistent reads or read-
your-own-write semantics. 

3.2.4 Restrictions in N1QL 
While N1QL is very powerful (i.e., general), including its SQL 
extensions for dealing with nested objects in JSON, there are 
certain SQL language features supported by relational database 
management systems that – if permitted in Couchbase Server – 
could be very detrimental to runtime performance, given the 
larger data sets and the unnormalized approach to managing data 
in the NoSQL world. One example of this would be expensive 
(general, non-key) joins, as opposed to those joins needed to 
quickly traverse key-based relationships. A restricted Cartesian 
product across two secondary attributes of documents is not 
supported linguistically in N1QL. Instead, joins are only allowed 
when one of the two sides involves the primary key (document 
ID) within a bucket. 

3.3 Indexing support 
As would be expected of any database system, Couchbase Server 
provides indexing capabilities to speed up query performance. It 
provides two types of indexes.  

3.3.1 Local View Index 
As explained earlier, one type of index provided is the view index. 
Views are built asynchronously and are maintained for each 
mutation. Couchbase Server pre-computes and stores these view 
results before returning results to a client. Views are local indexes, 
i.e., they are co-located on each node where their associated 
indexed data lives, so they use the same hash-partitioning scheme 
discussed later for the data (see Figure 5). 

Views can either be defined using Javascript (as in the earlier 
example) or via a SQL-like CREATE INDEX statement.  

Example: Create an index using a local view on the email attribute 
of the profiles stored in the ‘Profile’ Couchbase Bucket 
 
CREATE INDEX email on `Profile` (email) 
USING VIEW; 
 

3.3.2 Global Secondary Index 
As their name suggests, a global secondary index (GSI) is a global 
index on all of the documents stored within a specified Couchbase 
bucket, and it is stored separately (hence “global”) from the data 
itself. It can optionally use a range-partitioned scheme separate 
from the data’s hash-partitioning scheme. GSI indexes reside on 
the nodes of the cluster where the index service is running. 
(Figure 9 in Section 4.3 shows a sample cluster topology.) 

Example: Create an index using a GSI index on the email attribute 
of the profiles stored in the ‘Profile’ Couchbase Bucket 
 
CREATE INDEX email on `Profile` (email) 
USING GSI; 

3.3.3 Primary Index  
Typically, when describing the indexing capabilities of a database, 
one would expect to have the Primary Index described first. 
However, in the case of Couchbase Server, the “real” primary 
index in Couchbase is the hash table of keys that allows users to 
perform direct key value access. However, since this table doesn’t 
provide a mechanism to perform range queries and other types of 
lookups on the attributes of JSON, Couchbase additionally allows 
users to define a PRIMARY INDEX similar to that of a RDBMS 
but based on the server’s secondary indexing capabilities (either 
using a local view or a global secondary index) described above.  

Example: Create a Primary Index on the Profile bucket 

CREATE PRIMARY INDEX profile_pk_view ON 
Profile USING VIEW; 

   or 

CREATE PRIMARY INDEX profile_pk_gsi ON 
Profile USING GSI WITH 
{‘‘defer_build’’:true’’};  

3.3.4 Selective or Partial Indexes 
Given that the data is stored in Couchbase is in a schema-free and 
unnormalized format, and that in many cases, documents (objects) 
of different types may be stored together in a given Couchbase 
bucket, N1QL allows users to create “selective indexes” (also 
sometimes called partial indexes [8]). Filtering the data to be 
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indexed based on the anticipated query workload can significantly 
improve both indexing and query performance. 

Example: Create an index using a global index on the age attribute 
of the profiles stored in the ‘Profile’ Couchbase bucket, but just 
for data where the age is > 21  
 
CREATE INDEX over21 ON `Profile`(age) 
WHERE age > 21 
USING GSI; 
 

4. A LOOK UNDER THE HOOD 
4.1 Overview of clustered architecture 
Couchbase Server has a shared-nothing architecture. It is typically 
set up as a cluster of multiple servers behind an application server. 
A cluster of Couchbase Servers consists of one or more nodes, 
with each containing a configurable set of services. This 
architecture allows the cluster to be scaled out horizontally, by 
adding more nodes, or scaled up vertically, by adding “beefier” 
hardware. 

 

Figure 4. Couchbase Cluster Architecture 
 

Figure 4 depicts a 4-node cluster. The figure’s two application 
servers run the Couchbase client driver, and these clients can talk 
with any node in the cluster to read and/or write data. In this 
diagram, only the data service is running. There are additional 
services (described later) that can be added as the functionality 
required for an application becomes more complex. 

A Couchbase bucket is the rough equivalent of a database and is 
better described as being a key space. Documents with different 
schemas can be stored in the same bucket. Each bucket is split 
into 1024 logical partitions called vBuckets (vB). This is not a 
configurable number; any Couchbase server deployment has 1024 
logical partitions. This number was selected to provide a good 
balance of cluster manageability from a size perspective and the 
amount of data that is managed per partition. The former is 
important for operational maintenance, and the latter is important 
for the performance of maintenance tasks that are carried out 
across the cluster. In general, cluster sizes as well as the amount 
of data managed by them have grown in production deployments; 
however, given the operational focus, in practice the number of 
nodes in our production clusters has yet to grow beyond about 150 
nodes. A 150-node cluster can support many terabytes of data and 
has the capacity to handle millions of operations per second. 

Section 10.1.1 presents an overview of the Key Value 
performance. 

vBuckets are mapped to physical servers across the cluster, and 
the mapping is stored in a lookup structure called the cluster 
map. Section 4.3.1 goes into more details about how this map is 
managed. Applications can use Couchbase’s smart clients, which 
contain a copy of the cluster map, to interact with the server. 
Smart clients can hash the document ID (key), which is specified 
by the application, for each document added to Couchbase. As 
shown in Figure 5, a client applies a hash function (CRC32) to 
every document that needs to be stored in Couchbase, and the 
document can then be sent directly from the client to the server 
where it should reside.  

 

Figure 5. Mapping Keys to Partitions and Servers 
 

4.1.1 Intra-cluster Replication 
A bucket can be replicated up to 3 times, giving the user up to 4 
copies of their data. An individual server manages only a subset of 
the active and replica partitions. At any point in time, for a given 
partition, only one copy of the partition will be active, with zero 
or more replica partitions on other servers. If the server hosting an 
active partition fails, the cluster will promote one of the replica 
partitions to active status, thereby ensuring that applications can 
continue to access the data without incurring downtime. 

4.2 Asynchronous architecture 
As explained earlier, in Couchbase Server all of the operations 
after a document is first written to memory will be performed 
asynchronously. This is a fundamental concept that extends to 
every facet of the server. 

 

  

Figure 6. Couchbase Server Asynchronous Architecture  
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When data is written to Couchbase, it is first stored in the hash 
tables in the integrated (managed) cache. At this point, an initial 
acknowledgement of receipt of the mutation is sent back to the 
client SDK. This mutation is then asynchronously written to disk 
via the disk write queue, and at the same time it is also pushed 
into the in-memory replication queue to be replicated to other 
nodes within the cluster. This is summarized in Figure 6. 

As explained in the earlier discussion of durability constraints, 
client applications are given a choice of whether or not to wait for 
replication and/or for persistence on a per mutation basis. This 
allows each application to make its own choice, based on its 
requirements and the nature of its data, regarding taking (or not) 
the performance penalty associated with these operations. When a 
document it written, a sequence number is generated and 
associated with the mutation. The maximum sequence number per 
vBucket is also tracked. This mechanism allows other parts of the 
system to provide an option for strong consistency.  

Each mutation is also asynchronously fed to other parts of the 
system, such as cross-cluster replication, the view index engine, 
and the global secondary index (GSI) service. If a N1QL query 
chooses request_plus scan consistency, the query engine 
will wait until the index is updated up to the maximum sequence 
number for each vBucket. 

4.3 Node-level architecture  
The nodes in a Couchbase Server cluster can all look the same, or 
various subsets of the cluster nodes can be configured to run a 
particular (sub)set of services. This uniformity of architecture 
allows users to seamlessly scale a database linearly without a 
single point of failure. However, independent of what other 
services are running, there is some core functionality that runs on 
every node, e.g., the cluster manager.  

4.3.1 Cluster Manager 
The Couchbase cluster manager supervises server configuration 
and interaction across all servers within a cluster. It is a critical 
component, as it manages the replication and data rebalancing 
operations in Couchbase. Although the cluster manager executes 
locally on each cluster node, the nodes also elect a cluster-wide 
orchestrator node to watch over the cluster conditions and carry 
out appropriate cluster management functions.  

If a node in the cluster crashes or otherwise becomes unavailable, 
the orchestrator notifies all other machines in the cluster. It 
promotes to active status replica partitions associated with the 
server that went down. The cluster map will also be updated on all 
of the cluster nodes and the clients. The process of activating 
replica partitions is known as failover.  

If the orchestrator node itself crashes, the existing nodes will 
detect the fact that it is no longer available and they will elect a 
new orchestrator immediately so that the cluster can continue to 
operate without disruption. 

When the number of servers in a cluster changes due to scaling 
out or due to failures, data partitions must be redistributed. Doing 
this ensures that data will remain evenly distributed throughout 
the cluster and thus that application access to the data will be 
load-balanced evenly across all the servers. This process is called 
rebalancing. 

When a rebalance begins, a new cluster map is calculated based 
on the current pending set of servers to be added and removed 

from the cluster. It is then streamed to all the servers in the 
cluster. During rebalance, the cluster moves the data directly 
between two server nodes (the source and destination) in the 
cluster. Once the cluster moves each partition from one location to 
another, an atomic and consistent switchover takes place between 
the two affected nodes, and the cluster updates each connected 
client library with the new cluster map. Throughout the migration 
and redistribution of partitions among servers, any given partition 
on a server will be in one of the following states: 

Active: The server hosting the partition is servicing all types of 
requests for this partition. 

Replica: The server hosting the partition cannot handle client 
requests, but it will receive replication commands. Rebalance 
marks the destination partitions as being replicas until they are 
ready to be switched to active.  

Dead: This server is not in any way responsible for this partition. 

4.3.2 Database Change Protocol 
Any mutation that happens on an object in the data service must 
be propagated to all other parts on the system that need to know, 
including data replication, indexes, and so on. Couchbase has an 
internal Database Change Protocol (DCP) that is utilized to keep 
all of the different components in sync and to move data between 
the components at high speed. DCP lies at the heart of Couchbase 
Server and supports its memory-first architecture by decoupling 
potential I/O bottlenecks from many critical functions. 

4.3.3 Data Service 
As described above, Couchbase Server supports high speed, direct 
read/write operations based on a core Key-Value API (KV API). 
The Data Service provides the KV API that allows developers to 
create, retrieve, update and delete records by primary key. The 
Data Service forms the base data management layer of Couchbase 
and is leveraged by the Indexing and Query services. The data 
manager has a number of parts, including the object-managed 
cache, storage engine, view engine, and projector and router.  

Object Managed Cache 

Key-value pairs are stored in the object-managed cache. Hash 
tables for each virtual bucket reside in this cache and offer a quick 
way of detecting whether a given document currently exists in 
memory or not. Each document in a partition will have a 
corresponding entry in the hash table; each entry for a document 
stores the document’s ID (i.e., its key), some document metadata, 
and the document’s value.  

By default the key and the metadata for every key in the bucket 
will be kept in memory, while the associated values can be evicted 
based on usage. Users also have the option to enable the eviction 
of the key and metadata based on usage. 

Storage Engine 

With Couchbase’s append-only storage engine design, document 
mutations always go to the end of a file. When a new document is 
added in Couchbase, it is added at the end of a file. If an update is 
made to a document in Couchbase, it also is recorded at the end of 
the file. This improves disk write performance, as all updates are 
written sequentially. Compaction is periodically run, based on a 
fragmentation threshold, and while the system is online, to clean 
up stale data from the append-only storage.  
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View Engine 

The view engine is responsible for building and querying view 
indexes. As explained earlier, views in Couchbase are defined 
using a map function, which extracts the data of interest from 
documents, and an optional reduce function, which aggregates the 
data that is emitted by the map function. Since the view index is a 
local index, the view engine runs within the data service. This 
component is a consumer of the DCP feed of the mutations 
needed to update the view indexes.   

During initial view building or materialization of the view, 
Couchbase reads the partition’s data files and applies the map 
function across every document. A key characteristic of a view 
index is that it stores the pre-computed aggregates defined in the 
Reduce function as a part of the index tree. This allows for very 
fast aggregation at query time.  

As shown in Figure 8, applications can query views using one of 
the Couchbase SDKs. View query execution takes a scatter/gather 
approach: Queries are sent to a randomly selected server within 
the cluster. The server that receives a query sends the request to 
the other relevant servers in the cluster and then aggregates their 
results. The query’s final result is then returned to the client.  

 

Figure 8. Distributed View indexing and querying  

During a rebalance operation, partitions change state – the original 
partition transitions from active to dead, and the target partition 
transitions from replica to active. Since the view index on each 
node is synchronized with the partitions on the same server, when 
a partition has migrated to a different server, the documents that 
belong to the migrated partition should not be used in the view 
result anymore. To keep track of the relevant partitions that can be 
used in the view index, information about vBuckets is stored in 
the view B-tree itself. Using this information, parts of a B-tree can 
be deactivated as needed. This helps maintain consistency when 
querying a view index during rebalancing or failover operations.  

Index Projector 

The Projector is responsible for mapping incoming mutations to a 
set of Global Secondary Key Versions needed for secondary index 
maintenance. The Projector resides within the data service where 
the mutation originated, and it is a consumer of the DCP feed of 
mutations that sends its evaluated results to the Router.  

Index Router 

The Router is responsible for sending Key Versions to the index 
service. The router relies on the index distribution and partitioning 
topology to determine which indexer(s) should receive the key 
version. The router resides on the same node as the projector.  

4.3.4 Index Service 
The indexing service is responsible for managing all of the global 
secondary indexes. Various components work together to manage 
and maintain global secondary indexes. The projector and router 
live on the data service, while the index managers and indexers 
live on the index service. These together cooperate to manage the 
mutations coming from the Data Service via DCP. The projector 
extracts the secondary keys relevant to the indexes that have been 
defined and sends them to the router. The router then decides 
which indexer to send the message to. In case the index is 
partitioned, the partition key tells the router which indexer and 
which node to send the message to. An insert message may be 
sent to one indexer with a delete message being sent to another in 
the event that the value of the partition key itself has changed.  

Index Manager 

The Index Manager resides within the indexing service (see 
Figure 9) and is responsible for receiving requests for indexing 
operations (e.g., creation, deletion, maintenance, scan, lookup).  

 

Figure 9. Index Service with Global Index 

Indexer (Local Indexer) 

The indexer component processes the changes received from the 
router and manages the on-disk index tree data structure. It also 
provides the interface for the query client to run index scans and it 
does scatter/gather for queries in case of a partitioned GSI index.  

4.3.5 Query Service 
At a high level, the Query Service takes an application query and 
performs the necessary functions to retrieve, filter, and/or project 
the data in order to resolve the application’s request. Query 
execution is the job of the Query Service. To process a given user 
query, the query engine will issue requests to the index service, 
the data service, or both, depending on the chosen query plan.  

Query Catalog 

This Query Service component provides catalog support for the 
Query Service. This includes allowing it to perform Index DDL 
(e.g., Create, Drop) and Index Scan/Stats operations. (Section 4.5 
will discuss more of the details of query planning and execution.) 

4.4 Multi-dimensional Scaling  
As the earlier Sections described, an administrator can choose to 
run the Data, Index and Query Services on all or different nodes. 
This ability to have multiple “dimensions” in which to scale the 
cluster is called multi-dimensional scaling (MDS). This allows 
Couchbase users to scale workloads independently based on their 
needs – so a cluster can reflect and support the technical business 
requirements of an application.By separating its core data 
management functions into these three services, Couchbase Server 

247



enables users to control the scalability characteristics of their 
system based on workload characteristics. As those requirements 
change, Couchbase users can expand or shrink their cluster, 
adding data management resources to the function(s) where they 
are needed most in order to address the changing Data, Index, and 
Query Service requirements. A typical setup might have the Data 
Service running on nodes with more memory, the Query Service 
on nodes with more cores, and the Index Service on nodes with 
faster disks. 

4.5 Deeper dive into indexing and querying 

4.5.1 High-Level Query Service Interactions 
Couchbase SDKs can route N1QL queries to any one of the nodes 
running the query service.  The receiving node will analyze the 
query, use metadata on its referenced objects to choose the best 
execution plan, and execute the chosen plan. During execution, 
depending on the query and the available indexes, the query node 
works with the index and data nodes to retrieve keys and data, 
performing the required set of select-join-project operations.   

The index service does not directly communicate with the data 
service. Instead, the query service issues all key-value access 
requests (unless a covering index can fully answer the query). An 
index simply returns the document ID for each attribute match 
found during index scans. This ID is then used by the query 
service to fetch the document itself in order to access and project 
out the additional fields that are needed.  

4.5.2 Step-by-Step Query Execution Flow 
Figure 10 enumerates the query processing steps for an example 
N1QL query. Once a query plan has been constructed, based on 
the operators and scans needed, the query service coordinates first 
with the index service and then with the data service. The query 
results are streamed to the client as they become available.  

 

Figure 10. Data flow from query to index and data service 

4.5.3 Query Execution Operators 
Figure 11 shows the operators of query execution in more detail. 
Note that not all queries will have every operator in their plan, and 
some operators may appear and be executed multiple times. For 
example, the sort operator can be omitted if there is no ORDER 
BY clause in the query, while the scan, fetch, and join operators 
may be needed multiple times to perform multiple joins.  

To see how a given N1QL query will be executed, an EXPLAIN 
statement can be used before any N1QL statement to request 
information about the execution plan for the statement. 

Example: 

EXPLAIN SELECT title, genre, runtime 
FROM catalog.details 
ORDER BY title 

To optimize a query, the N1QL query planner analyzes the query 
and available access path options for each keyspace (bucket) in 
the query to pick an appropriate plan and execution infrastructure. 
The planner needs to first select the access path for each bucket, 
determine the join order, and then determine the type of the join 
operation. Once these big decisions have been made, the planner 
then creates the infrastructure needed to execute the plan. Some 
operations, like query parsing and planning, are done serially, 
while other operations, like fetch, join, and sort, are done in a 
local parallel (based on multicore) manner. 

  

Figure 11. Operators in a N1QL query plan 

In terms of the infrastructure available for query execution, some 
of the most important query plan operators are explained below: 

Keyspace (bucket) scan – There are three types of scans: 

- Keyscan access: When specific document IDs (primary keys) 
are available, the Keyscan access method retrieves the documents 
for those IDs. Any filters associated with that keyspace will be 
applied after retrieval.  The Keyscan access method can be used 
either when a keyspace is being queried by itself or during join 
processing.  A keyscan is commonly used to retrieve qualifying 
documents from the inner keyspace during join processing. 

- PrimaryScan access: This is the equivalent of a full table scan in 
a relational database system.  This is chosen when Documents IDs 
are not available and no qualifying secondary access methods are 
available for this keyspace.  N1QL will again apply applicable 
filters on each document after retrieval.  This access method is 
quite expensive, and the average time to return results increases 
linearly with number of documents in the bucket. 

- IndexScan access: A qualifying secondary index scan is used to 
first filter the keyspace and determine the qualifying document 
IDs.  The query executor then retrieves the qualifying documents 
from the data store by ID.  In Couchbase, the chosen secondary 
index can be a (local) view index or a global secondary index. 
 
Fetch – This operator reaches into the data service for the objects 
with a specific key. An index only contains document IDs, so the 
fetch operator is needed whenever a query includes additional 
projections that cannot be answered from the index alone. The 
execution of the fetch operator is parallelized.  
 
Projection – There are two kinds of projection operators: 
- InitialProject: This operator reduces the stream size to just the 
fields actually involved in query.  
- FinalProject: This operator performs the final shaping of the 
result into the requested JSON schema. 
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Unnest – This is a join operation between a parent and a child 
object containing a nested array. In its result, the parent object is 
repeated for each child array item. 
 
Nest: This inverse of Unnest is a grouping operation between a 
parent and a (desired) child with a nested array.  In the result, the 
child array will be embedded in the parent object. 

Join methods 

N1QL supports a nested loop-based access method for all of the 
join types that it supports: INNER JOIN and LEFT OUTER 
JOIN.  Consider the following FROM clause in a N1QL query: 

FROM (ORDERS o INNER JOIN CUSTOMER c 
ON KEYS o.O_C_ID) 
 
For this join, ORDERS will serve as the outer keyspace and 
CUSTOMER will be the inner keyspace. The ORDERS 
keyspace will be scanned first (using one of the scan options 
described above). Then, for each of the qualifying documents 
from ORDERS, a KEYSCAN will occur on CUSTOMER based 
on the key O_C_ID in the ORDERS document. 

4.6 Cross Cluster Replication 
Cross datacenter replication (XDCR) provides a way to replicate 
active data to multiple, geographically diverse datacenters. This is 
done either for disaster recovery or to bring data closer to users.   

 
Figure 12. Cross datacenter replication architecture  

Both intra-cluster replication and XDCR occur simultaneously, as 
Figure 12 illustrates. Intra-cluster replication takes place on both 
datacenters, and it happens within each cluster. At the same time, 
XDCR serves to replicate documents across datacenters. XDCR is 
also a consumer of the internal DCP stream, as it uses the DCP 
stream to push in-memory document mutations to the destination 
cluster. Some of the most notable attributes of XCDR are as 
follows: 

XDCR can be setup on a per bucket basis. Depending upon 
application’s requirements, only a subset of data may need to be 
replicated. This can be done either on a per bucket basis or even 
within a bucket by using filtered replication (based on a regular 
expression on the document ID, i.e., primary key, string).  

XDCR is cluster topology aware. The source and destination 
clusters can have different numbers of servers and thus different 
data partitioning. If a server in the destination cluster goes down, 
XDCR is able to utilize the updated cluster topology information 
and can continue replicating data to the appropriate available 
servers in the destination cluster. 

4.6.1 Consistency Across Clusters 
Within a cluster, Couchbase Server provides strong consistency at 
the document level for the key-value API and controllable  

consistency when querying. Across clusters, XDCR provides 
eventual consistency [9]. This makes Couchbase a CP system 
within a cluster but an AP system across clusters with respect to 
the CAP theorem [12]. This choice was made to avoid taking a 
performance hit on writes, maintaining high performance while 
still providing 100% availability for reads / writes across clusters.   

A built-in conflict resolution mechanism picks the same “winner” 
on both clusters if a document is mutated on both before being 
replicated. If such a conflict occurs, the document with the most 
updates is considered the “winner.” If both clusters have the same 
number of updates for a document, additional metadata fields are 
used to pick the “winner.” XDCR applies the same rule on both 
clusters to make sure that document consistency is maintained.  

5. TUNING FOR OLTP PERFORMANCE 
There are certain things commonly done in relational systems that 
would not work well with today’s NoSQL data volumes and the 
scale of the systems needed to support them.  

5.1.1 Avoid using a PRIMARY index 
Couchbase allows users to create a PRIMARY index as a way to 
access all objects in a keyspace, but a best practice is to avoid 
queries requiring a PRIMARY index scan. The fastest data access 
will be via key-value look-ups or N1QL’s USE KEYS clause.  

5.1.2 Use of covering indexes 
For the best performance, appropriate GSI indexes can be created 
to support a query without any document fetches. Such a covering 
index includes all of the information needed to satisfy the query 
and can thus avoid the need for an additional step to access the 
indexed data. Covered queries, that is, queries that get all their 
information from the index, deliver better performance. (This is 
actually a trick used in the relational world as well; it essentially 
uses an index as a “poor man’s materialized view”.) 

6. A GLIMPSE INTO THE FUTURE 
As described in the Introduction, Couchbase Server has evolved 
significantly since the early days, and its evolution is ongoing.  

 
Figure 13. Services in a future Couchbase Server 

With a vision to provide a single platform that can be used for all 
types of operational workloads, there are several key components 
that will be added to Couchbase in the near future. The resulting 
set of component services is sketched in Figure 13. 

6.1 Near-term plans 
6.1.1 Memory-optimized indexes 
With a focus on its low-latency-driven memory-first architecture, 
a new feature in Couchbase version 4.5 is support for memory-
optimized indexes.  

These new indexes will reside completely in memory, 
dramatically reducing dependence on disk. Recoverability is 
provided via disk-backups. This functionality will allow users 
with very high write-heavy workloads to continue to utilize N1QL 
and indexing in addition to key-value access, as indexes can keep 
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up with higher mutation rates. It will also allow very fast index 
scans to reduce query latencies. Section 10.1.2 presents an 
overview of query performance with memory-optimized indexes.  

6.1.2 Array indexes 
One of the key strengths of JSON is its ability to nest objects or 
items within arrays. Arrays are one very natural approach used to 
embed related data objects within a parent (e.g., think line items 
within orders). Nesting provides great flexibility from a data 
modeling perspective, but it is also important for those individual 
objects from within an array to be indexed and queried. N1QL 
today allows users to query items within an array, but without an 
index to support array predicates, the performance of such queries 
can be an issue. Version 4.5 will enable users to create indexes on 
array-valued fields, making those queries significantly faster. 

6.1.3 Full-text search service 
Another workload dimension that is required for some operational 
applications is full-text search. This is typically based on a reverse 
index, where all the words within the data are indexed to be able 
to do term-based, phrase-based, and/or prefix-based searches. 
Full-text search is another type of service currently being added 
that will receive data mutations via in-memory DCP and will be 
able to be scaled up or out independently as well.  

6.2 Medium-term plans 
One big area that Couchbase plans to add to the mix of services 
available to operational applications is operational analytics. By 
consolidating this into the core platform, rich applications can be 
built with a single platform that enables end-to-end management 
of operational data. Query-based insights from the latest updates 
can then be fed back into applications almost instantly without 
having to move data physically out of the cluster or being forced 
to restructure (e.g., flatten) it via pre-analysis ETL. 

The planned analytics service will be based on the open-source 
Apache AsterixDB Big Data Management System [1, 2]. The 
NSF-sponsored Asterix project set out to develop a next-
generation system to ingest, manage, index, query, and analyze 
mass quantities of semi-structured data. The resulting platform, 
AsterixDB, has an extremely complementary data model to that of 
Couchbase. That commonality is one of the main reasons that the 
two teams decided to collaborate. The planned analytical service 
will be another new service that is fed via in-memory DCP and 
that can be scaled either out or up independently with respect to 
other services, especially the data service (to provide performance 
isolation for the all-important front-end OLTP workloads). The 
new analytics service will support a much wider range of queries 
and will include a parallel database inspired scalable runtime 
engine. Under the hood, AsterixDB includes partitioned, LSM-
based data storage and indexing, support for both natively stored 
and external data, and a rich set of built-in types. A typical 
workload on the analytics engine, unlike the OLTP-like N1QL 
query engine, will include richer (and more expensive) queries 
such as large joins, aggregations, grouping, and so on.  

7. CONCLUSION 
We have described the history and evolution of Couchbase Server 
from its early roots as a key-value store to its current form, which 
is a full-featured and fully queryable document data manager. We 
pointed out a number of the unique features and requirements that 
arose from the need to support low-latency, OLTP-like workloads. 
We described the view from outside the system and the APIs 
available to users. These external interfaces were designed to be 

simple, but the internal architecture that supports them was built 
to support the OLTP requirements of next-generation applications, 
including flexible schemas, incremental scalability, and high 
performance. We explained how the components of Couchbase 
Server work together under the hood, including its data storage, 
indexing, and query services, and we closed with a glimpse into 
where things are expected to be going in the future.  
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10. APPENDIX 
10.1 Couchbase Server performance 
In this section, we present some sample performance results, 
obtained using the Couchbase Server 4.5 Developer Preview, to 
provide a brief overview of the performance characteristics of 
Couchbase for both key-value and query workloads. The testing 
tool used was the Yahoo Cloud Serving Benchmark (YCSB) [14]. 
The Couchbase adapter for YCSB was built to operate against a 
Couchbase Server cluster using the official Couchbase Java SDK 
and provides a rich set of configuration options, including support 
for the N1QL query language. 

 

 
Figure 14. Performance test setup 

 

The deployment topology used was simple, with the data, index 
and query services running on all nodes of a 4-node cluster. There 
are 4 YCSB clients that generate load. The number for threads for 
each client was scaled up from 12 threads to 32 threads and the  
maximum throughput was measured. There are two workloads 
presented here; each was run on the 4-node Couchbase cluster 
using an early version (Developer Preview) of the 4.5 release. 

10.1.1 Key-value performance (YCSB workload A) 
Workload A of YCSB is a mixed workload with 50% reads and 
50% writes of keys. In this test, the thread counts for each of the 

four YCSB clients were varied from 12 to 32 threads. A data set 
of 10 million documents was used. The throughput in operations 
per second was measured and is plotted in Figure 15. As shown, a 
4-node cluster with a total of 128 client threads driving load is 
capable of running approximately 178K operations per second. 

 
Figure 15. Simple operation throughput (ops/sec) vs. threads 

10.1.2 Query performance (YCSB workload E) 
Workload E of YCSB is a query workload consisting of small 
range queries. Short ranges of documents are queried via N1QL 
instead of performing individual document operations. 

Sample query:  SELECT meta().id AS id FROM  
‘bucket’ WHERE meta().id >= '$1' LIMIT $2; 

Similar to workload A, the thread counts for each of the four 
YCSB clients was varied from 12 to 32 threads. The throughput in 
queries per second was measured and is plotted in Figure 16 
below. As shown, a 4-node cluster with a total of 128 client 
threads driving load is capable of running approximately 5400 
small range queries per second. 

 
Figure 16. Range query throughput (queries/sec) vs. threads
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