
Have Your Data and Query It Too:
From Key-Value Caching to Big Data Management

Dipti Borkar
Couchbase Inc.

dipti@couchbase.com

Ravi Mayuram
Couchbase Inc.

ravi@couchbase.com

Gerald Sangudi
Couchbase Inc.

gerald@couchbase.com

Michael Carey
Couchbase Inc.

mike.carey@couchbase.com

ABSTRACT
 Couchbase Server is a rethinking of the database given the
current set of realities. Memory today is much cheaper than disks
were when traditional databases were designed back in the 1970’s,
and networks are much faster and much more reliable than ever
before. Application agility is also an extremely important
requirement. Today’s Couchbase Server is a memory- and
network-centric, shared-nothing, auto-partitioned, and distributed
NoSQL database system that offers both key-based and secondary
index-based data access paths as well as API- and query-based
data access capabilities. This is a major change from Couchbase’s
roots; in its early days, its focus was entirely on high performance
and highly available key-value (memcache) based caching.
Customer needs and competitive pressures in the evolving non-
relational database market also accelerated this change.
 This paper describes the architectural changes needed to address
the requirements posed by next-generation database applications.
In addition, it details the implementation of such an architecture
using Couchbase Server and explains the evolution of Couchbase
Server from its early roots to its present form. Particular attention
is paid to how today’s Couchbase Server cluster architecture is
influenced by the memory-first, high-performance, and scalability
demands of typical customer deployments. Key features include a
layer-consolidated cache, a consistency-controllable interplay
between updates, indexes, and queries, and a unique “multi-
dimensional” approach to cluster scaling. The paper closes with a
look at future plans for supporting semi-structured operational
data analytics in addition to today’s more OLTP-like, front-facing
use cases

1. INTRODUCTION
Today’s operational or OLTP applications have very different
requirements than those of the past. Flexibility, scale, availability,
and performance requirements have all seen dramatic changes.
With population-scale user bases, the workload and throughput
requirements have grown in many cases to hundreds of thousands
of reads and/or writes per second. In addition, with the need to
offer rich, on-line user experiences at high throughput, latency
requirements are being pushed ever lower, with 1-3 milliseconds
being a common latency expectation for applications like user
profile stores. Applications such as catalog and SKU management

systems need the ability to change and update information on the
fly. All of these requirements come with the additional need to
scale elastically with demand while being always available. These
requirements call for a next-generation of database systems.
 This paper begins by providing some general background on
NoSQL systems followed by a brief history of Couchbase. We
then describe the design choices that a database system needs to
make to support OLTP workloads (vs. OLAP workloads) with a
focus on the core principles underlying Couchbase Server. This is
followed by an in-depth look at both its external interfaces and its
under the hood architecture. We close with a look into the future.
 NoSQL is a term applied to a class of DBMSs that are generally
designed for use in high data volume, high throughput, and web-
scale applications [3, 7]. NoSQL databases are sometimes also
called non-relational databases because many of the systems in
this category allow nesting and have no fixed schema, thus
enabling the storage of complex entities as well as semi-structured
data and allowing more flexible use by developers. Most have
provided non-SQL-based APIs for accessing data since they were
popularized primarily through grass roots developer adoption.
However, over time, some have added query-based interfaces in
addition to their APIs or MapReduce-style paradigms.
 Common characteristics for NoSQL databases include horizontal
scalability via a clustered approach and greater schema flexibility
than relational databases. Beyond these characteristics, NoSQL
databases are often classified into four categories, as indicated in
Figure 1. Over time, these categories are starting to converge [10],
and we believe that as NoSQL systems mature further, a single
platform should be capable of supporting most of the features
found in these categories today.
i. Key-Value Stores
Key-value stores provide fast access to a value when its key is
known. They are the foundation of NoSQL databases and are
typically implemented via a distributed hash table where each
entry has a unique key plus an associated data value.

Figure 1. NoSQL database categories

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.�
SIGMOD'16, June 26-July 01, 2016, San Francisco, CA, USA �
© 2016 ACM. ISBN 978-1-4503-3531-7/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2882903.2904443

239

The key-value model is the simplest and the easiest to implement.
It also provides the highest raw performance; applications that
need massive scale along with very low latency and/or high
throughput are often implemented using this approach today. If
the key for a given item (value) or set of items (values) is not
knowable a priori, however, key-value systems are not a
particularly good fit; most of the querying and management of
relationships would then have to be handled in the application tier.
Examples of key-value systems include Aerospike, Redis, and
DynamoDB.

ii. Column Family Databases

Column family databases provide a bit more flexibility than key-
value databases. A key is still needed to access the data, but the
data value itself can consist of multiple columns. Schemas are
flexible, and each keyed item can have its own set of columns
(distinct from those of other items). Columns are organized as
column families, and some such systems provide the ability to
query by more than just the key. Examples of column family
databases include BigTable, HBase, and Cassandra.

iii. Document Databases

Document databases provide still greater flexibility. The primary
access path in a document database is still the key, but the value is
typically based on a semi-structured data format like JSON (or
XML). This allows complex objects and entities to be represented.
These systems also typically provide more than just key-based
access. Limited querying is usually supported as well, either
through an API-based approach, MapReduce-based querying, or a
(SQL-like) query language. Document database examples include
Couchbase, MongoDB, and MarkLogic.

iv. Graph Databases

Graph databases build on document databases by adding a flexible
graph model. Data is modeled as nodes, edges and properties.
Typically these databases also use a semi-structured format like
JSON to represent data. APIs are common to provide access to
data, both for values and for following relationships, but support
for full SQL-like query capabilities is rare since their focus is
largely on querying graph structures. Examples of graph database
systems include Neo4j and OrientDB.

1.1 Brief Couchbase History
Couchbase, Inc. was created through the merger of Membase, Inc.
and CouchOne, Inc. in 2011. This combined two technologies,
Membase Server and CouchDB. Membase Server was a key-value
distributed database based on memcached, while CouchDB was a
single-node document database supporting JSON. The goal of the
merged company was to combine the strengths of Membase as
well as CouchDB to create a highly scalable, high-performance,
document-oriented database capable of addressing the needs of
next-generation web, mobile and IoT applications.

1.2 Membase Server
When Couchbase began, Membase Server was a distributed key-
value store built on top of memcached. Memcached itself is a
widely used single-node caching technology in the Internet
application space. It provides consistent, low-latency access to
objects. Objects are binary in nature and similar to BLOBs in
databases. Membase used memcached for its integrated caching
layer and offered an API similar to the memcached API for user
access to data.

Figure 2. Membase deployment architecture

Membase added several major capabilities to the pure memcached
system, including a distributed hash-partitioning scheme for
scaling out, asynchronous persistence to disk to handle workload
spikes at memory-first speeds, and asynchronous data replication
within a cluster to achieve high availability.

Figure 2 illustrates a typical deployment of Membase for a web
application. Since the caching layer is now consolidated with a
persistent key-value data store, an additional external cache is no
longer required for efficiently serving requests. Requests from the
application servers are distributed across the collection of
Membase nodes based on document hashing.

1.3 CouchDB
CouchDB was initially built as a single node database system with
no partitioning capabilities and with several major differences
from relational database systems. The first difference was schema
flexibility. CouchDB chose JSON to serve as its data format,
allowing agile application development without the need to
conform to a strict schema. This difference also eliminated the
need to perform complex multi-way joins just to reassemble
normalized data.

The second difference from traditional relational database systems
was tunable consistency between data and the associated indexes.
Direct document access using a key was always consistent, but
query access based on indexes was eventually consistent by
default. A user could, however, specify a desired level of
consistency at query submission time based on their type of data
and their application’s needs. CouchDB does support database-to-
database replication (not partition level) to bring data closer to
users. Figure 3 illustrates a CouchDB deployment with replication
enabled.

Figure 3. CouchDB deployment architecture

240

2. COUCHBASE SERVER OVERVIEW
2.1 Towards a Next-Generation DBMS
Couchbase set out to achieve specific technology goals, targeting
new applications and their new requirements as explained earlier,
through its merging of the Membase and CouchDB technologies.
In general, many new applications (as well as some existing
applications), including user profile services, custom content and
metadata applications, and custom catalog or asset management
applications, do not require a full relational database management
system (RDBMS). Over time, their performance, scale, and
flexibility needs outweigh their transactional requirements.

With Couchbase Server, it is not necessary to normalize natural
application objects into multiple tables. As in CouchDB, objects
can be stored in their unnormalized form as JSON documents. In
addition, Couchbase Server allows users to access their data using
either the key-value approach or a query-based approach. This
means that applications that require high performance as well as
the flexibility to access a sub-set of their data or parts of an object
don’t have to use two different systems; one database can support
both of those access approaches.

RDBMs have dominated the IT industry for almost 40 years.
However, NoSQL systems are now reaching a point where
substantial functionality from the RDBMS world is available
without the associated disadvantages of rigid schemas or lack of
scaling. There are still areas, like transactionality, where further
rethinking is needed regarding what is practical and needed by the
next generation of applications, but the time seems right for next
generation databases (such as Couchbase, of course) to transcend
the relational model for many applications.

2.2 The OLTP vs. OLAP Design Tradeoff
Today, Couchbase Server is focused on handling OLTP-like
workloads (i.e., OLTP workloads that do not need strong, multi-
operation ACID transactionality). It offers a range of capabilities
to manage and access data in real-time and allows users to isolate
their workloads via a multi-dimensional scaling (MDS) approach.
This will be explained in more detail in Sections 2.3.1 and 4.4.
Couchbase Server can also handle limited OLAP-style workloads
using pre-computed aggregates provided by a view index. N1QL,
its query language, has many of the capabilities of SQL, but in
general, its internal query processing architecture has very much
been aimed at handling small, low-latency queries. This can be
seen by comparing and contrasting the query execution pipeline
described later in Section 4.5.3 with the data-parallel strategies
found in parallel relational database systems that target large,
warehouse-style use cases [5].

The longer-term goal and vision of Couchbase Server is to
provide a single, unified platform that can be used for nearly all
types of operational workloads – including operational analytics.
Going forward, the support of such new analytic functionality
cannot be added at the expense of the (sacred!) front-end OLTP
workloads. To protect the front-end, there are some core
principles that have been incorporated in the architecture and will
be applied to future architectural changes as well.

2.3 Core Design Principles
2.3.1 Scaling workloads independently
This first core principle is applied to any service that manages
data or data derived from the core key-value data set. Termed
multi-dimensional scaling, this concept allows for services to be

scaled up or out independent to one another from a hardware
perspective. Each database workload has different needs, with
some needing more I/O bandwidth and some needing more
memory. Using this concept, hardware can be optimized based on
the workload also making for more efficient use of hardware
resources. This principle has been applied to Couchbase Server’s
data service, index service, and query service as well as to the
services that will be introduced in the future like those for text
search and analytics. Details of the implementation can be found
in Section 4.4.

2.3.2 Asynchronous approach to everything
Relational databases mostly take a synchronous approach to data
handling, which implies incurring a latency “hit” (penalty) at the
time of a write (e.g., update, insert, or delete). However, given
that the need for higher throughputs and lower latencies has only
increased over time, Couchbase Server made a design choice to
update all other components of the database asynchronously when
a data update occurs. As a result, no immediate latency penalty is
incurred at write time. This approach is used even for persisting
updated data to disk.It is important to recognize that the rates at
which new data can arrive and existing data can change may
ultimately still be I/O limited, as, in the limit, the system must still
be able to absorb the load offered by an application. However,
asynchrony “buys time” for the system to handle spikes in the
load; it also provides an opportunity for repeated updates to an
object to be aggregated at the level of persistence.

Couchbase Server’s asynchronous approach results in a world in
which the data and its on-disk copy, the data and its replicas,
and/or the data and its indices may become slightly out of sync.
To make it easier for users to manage in such a world, Couchbase
Server provides options for durability as well as consistency.

Durability guarantees

At write time, Couchbase provides client applications with the
option to wait for replication and/or for persistence on a per
mutation basis. This allows each application to make its own
choice, based on its requirements, regarding taking (or not) the
performance penalty associated with these options. Given that the
latency expectations for modern large-scale OLTP applications
are in sub-milliseconds, most users choose to receive a response
immediately once the data hits memory or in some cases may
choose to first replicate the data to one other node for safety.
Since replication is memory-to-memory, the latency hit with the
replication option is significantly less than waiting for persistence,
especially when using spinning disks.

Configurable consistency for queries

Given that indexes in Couchbase are asynchronously updated,
they can be out of sync with the data when a query makes a scan
request. Couchbase supports two flavors of querying: N1QL and
view queries. Both flavors allow users to specify the tolerable
level of staleness on a per query basis. This means that users can
choose between accessing an index as it is or waiting for the index
to be updated up to the point in time when the query was initiated.
The implementation of this concept for view queries is discussed
in Section 3.1.2, and Section 3.2.3 discusses its implementation in
the case of N1QL query processing.

2.3.3 Memory-first architecture
Couchbase follows a memory-first architecture when reading data
as well as when distributing updates to the various components of
the system. Almost all components are updated via DCP, which is

241

the server’s internal, in-memory database change protocol. This
memory-first architecture makes it easier for all components to
keep up with the system’s high-throughput front-end loads.

3. COUCHBASE SERVER DATA BASICS
Couchbase Server is a distributed document database that supports
various types of access paths and is built to scale in multiple ways
[4]. It has a memory-first architecture that includes both an
integrated caching layer and in-memory replication capabilities.

Couchbase Server stores data in JSON documents, where each
document is a JSON object consisting of a number of fields. An
application object can be stored using one or more documents,
and the object’s attributes become fields in the document(s).
Documents are stored within a key space called a Couchbase
bucket, and they can be directly accessed using a (user-provided)
document ID much as one would use a primary key for lookups in
an RDBMS.

The generally available version of Couchbase Server is currently
version 4.1, with a preview of version 4.5 being available as of
this writing. This paper’s architectural description is thus based
primarily based on version 4.1. The futures section will provide
more insights into the system’s upcoming capabilities and plans,
including some of the highlights of version 4.5.

3.1 Client Access
Couchbase provides numerous client SDKs, including support for
Java, .NET, php, Ruby, C, Python, node.JS and GoLang. Each of
the client SDKs provides language-specific APIs or methods to
access data via the various access paths available.

There are three main access paths by which a client application
can talk to Couchbase Server:

1. Read / write JSON documents using key-value access via the
primary key

2. Read / query JSON documents using the View API

3. Read / query JSON documents using N1QL queries

3.1.1 Key-value access using the primary key

Read access to DB

Couchbase provides a key-based lookup mechanism where the
client is expected to provide the key, and only the cluster node
hosting the data with that key will be contacted.

Write access to DB

Couchbase updates happen at the document level if the key-value
API is used. A client SDK will retrieve a document that needs to
be updated from the server, the user will modify certain fields,
and the client SDK will then send the document back to the server
for update.

To provide the required degree of isolation for concurrent access,
Couchbase provides a CAS (compare and swap) mechanism for
optimistic locking:

 When the client retrieves a document, a CAS ID (much like a
revision number) is attached to it.

 While the client is manipulating the retrieved document
locally, another client may modify this document. If this

happens, the CAS ID of the document at the server will be
incremented.

 Now, when the original client submits its modification to the
server, it can choose to include the original CAS ID in its
request. The server will then check this ID against the
current ID in the server. If they differ, the document has been
updated in between and the server will not apply the update.

 The original client can re-read the document (which now has
a newer ID) and re-submit its modification.

Couchbase also offers its users a stricter locking mechanism; an
application can opt to request a hard lock at the document level
when performing its updates. (This lock will be released after a
certain timeout to avoid deadlocks.)

Optimistic locking is what most large-scale online applications
and production deployments use, as isolation is important to them,
but not at the cost of a major performance penalty.

3.1.2 Read / query JSON using View API
Similar to the materialized view concept in the RDBMS world
[11], Couchbase Server provides a MapReduce-style index called
a view. A Couchbase view is essentially just a local (distributed)
index that can be queried. A view is defined using a Map function
that extracts data from the documents in a key space (bucket) and
optionally a Reduce function that aggregates the data objects
emitted by the map function. These are defined using JavaScript.
A Couchbase view thereby provides a functional way to specify a
materialized (and distributed) query result that client applications
can directly utilize to improve their performance.

Queries that use views are static, meaning that a view needs to be
defined and materialized before it can be used for querying data.
An emit() function that must be included in the Map() function
of a view is similar in its role to the query that would be specified
in an RDBMS’s CREATE MATERIALIZED VIEW statement.
Every document that is a part of the key space upon which a view
is defined will be processed by the view’s Map() and Reduce()
functions.

Once a view is materialized, it can then be queried for specific
key(s) or a range of keys as follows:

 Return all values (as JSON) matching the supplied key, or

 Return all values (as JSON) matching any of the supplied
keys, or

 Return all values (as JSON) starting with the provided key A
and stopping on the last instance of a key B.

A given view query will be broadcast to all servers in the cluster
and the results will be merged and sent back to the client SDK. To
clarify all of these concepts, let us consider a simple example.

Sample document with key ‘borkar123’

{
‘‘name’’: ‘‘Dipti Borkar’’,
‘‘email’’: ‘‘Dipti@couchbase.com’’

}

Example: Definition of View Profile

Function(doc){
if (doc.name){

 emit(doc.name, doc.email) }

242

This map() function when executed will materialize a view and
store the names and emails for all of the documents in the bucket
that it is defined on. This Profile View can then be directly queried
via the REST API or using a client SDK.

Example: REST query for View Profile

?key="Dipti"&stale=false

This REST call will return the value of the doc.email attribute
from all documents where doc.name is “Dipti”.

Views are eventually consistent [9] with respect to the underlying
stored documents; they are kept up-to-date asynchronously, on
demand, based on document writes/updates. As explained earlier,
Couchbase provides users a choice to run a view query with
configurable consistency. A stale parameter can be used as a part
of the view query to specify the required level of consistency (i.e.,
the tolerable degree of staleness) for the query.

Supported values for the stale parameter are:

 false: Wait for the view indexer to finish processing changes
that correspond to the current key-value document set and
then return the latest entries from the view index.

 ok: Just return the current entries from the index file
(including possibly stale entries).

 update_after: Return the current entries from the index, but
then initiate a view index update. (This is the default.)

3.1.3 Read / query JSON using N1QL
Couchbase Server now prominently supports query-based access
to data using its new SQL-inspired query language, N1QL, as
described next. N1QL queries can enter the system via a REST
call, an SDK call, or one of several interactive client tools.

3.2 The N1QL query language
3.2.1 Overview and key capabilities
Non-first Normal Form Query Language, or N1QL (pronounced
"nickel"), is the first NoSQL query language to leverage the
flexibility of JSON with nearly the full expressive power of SQL
and an SQL-friendly syntax. Developed by Couchbase for use in
Couchbase Server, N1QL provides a common query language and
a JSON-based data model for distributed, document-oriented
database management. (A nice comparison of various NoSQL
query languages and associated systems can be found in [6,13].)

N1QL enables clients to access data from Couchbase Server using
SQL-like language constructs, as N1QL’s design was based on
SQL. It includes a familiar data definition language (DDL), data
manipulation language (DML), and query language statements,
but can operate in the face of NoSQL database features such as
key-value storage, multi-valued attributes, and nested objects.

3.2.2 Features of N1QL
N1QL provides a rich set of features that let users retrieve,
manipulate, transform, and create JSON document data. Its key
features include:

SELECT Statement: The SELECT statement in N1QL extends the
functionality of the SQL SELECT statement to work with JSON
documents. Of particular importance are the USE KEYS, NEST,
and UNNEST sub-clauses of the FROM clause in N1QL.

At a high level, a SELECT statement supports the retrieval of data
from specified keyspaces or Couchbase buckets. A simple query
in N1QL has three parts to it:

SELECT - Portions of the document to return.

FROM - The keyspace or datastore with which to work.

WHERE – Conditions the retrieved data should satisfy.

Because data in Couchbase Server is stored in documents rather
than in rigidly structured tables, N1QL queries can actually return
a collection of different document structures or fragments.

Data Manipulation Language (DML): N1QL provides support for
INSERT, DELETE, UPDATE, and UPSERT statements to create,
delete, and modify data stored as JSON documents. These
statements also support sub-document level lookups and updates.

3.2.3 Salient clauses and parameters
While N1QL supports an extensive set of clauses similar to SQL,
there are certain clauses and parameters that differentiate it from
other databases. Let us examine some of the key SQL clause
additions that N1QL includes:

USE KEYS

This clause is the key (to so speak) to bridging the fundamental
functionality gap between a key-value store and a document
database. Its use provides the user with the flexibility to grab
specific attributes or compose new values from existing objects
while still getting key-value retrieval performance.

Specific primary keys within a key space (Couchbase bucket) can
be specified in this clause. Only values having those primary keys
will be included as inputs to the rest of the given N1QL query.

Example: To specify a single key:

SELECT * FROM profiles USE KEYS "acme-uuid-
1234-5678"

Example: To specify multiple keys:

SELECT * FROM profiles
USE KEYS ["acme-uuid-1234-5678", "roadster-
uuid-4321-8765"]

NEST and UNNEST Clauses

Supporting the JSON data format requires Couchbase to provide
extensions to standard SQL to allow users to do more with JSON.
Specifically, as JSON objects can be stored in the database as-is,
without splitting or shredding them into multiple tables, users may
need to flatten documents when reading them out, or if related
documents are stored separately, to compose and combine them
together into a single JSON document. Both of these goals can be
achieved using the N1QL UNNEST and NEST clauses.

When the NEST clause is used, instead of producing a cross-
product of the left and right hand inputs, it produces a single result
for each left-hand input while its right-hand input is collected into
an array and nested into a single array-valued field in the result.

Example: Consider a bucket that contains two types of documents,
with doc_type ‘user_profile’ and ‘order’. If we wish to assemble a
list of products purchased by a user, we need to perform a JOIN
across those two document types. However, a traditional relational
join would yield a cross product instead of composing a result
within which, for each user profile that matches the query criteria,
its associated orders are embedded or nested within an array.

243

SELECT PO.personal_details, orders
FROM profiles_orders PO
USE KEYS ‘borkar123’
NEST profiles_orders as orders
 ON KEYS ARRAY s.order_id FOR s
 IN PO.shipped_order_history END

The query above will return a JSON document with all the orders
placed by the user whose key is ‘borkar123’ being nested into an
array within the resulting user object.

In contrast, the UNNEST clause takes the contents of a nested
array and joins them each with their parent object.

Example: Return a list of the existing (in-use) product categories
in a world where products can fall into multiple categories

SELECT DISTINCT (categories)
FROM product
UNNEST product.categories AS categories

Query Scan Consistency

The consistency level for a given N1QL query can be configured
using the staleness parameter for the query. The following
consistency levels can be specified for the staleness parameter:

 scan_consistency=not_bounded

This level returns the query with the lowest latency, as it is the
most relaxed consistency level. Selecting this option essentially
means the query can return data that is currently indexed and
accessible by the index or the view. The query output can be
arbitrarily out-of-date if there are many pending mutations that
have not been indexed by the index or the view. This consistency
level is useful for queries that favor low latency and do not need
the most up-to-date information.

 scan_consistency=request_plus

This level provides the strictest consistency level and thus
executes with higher latencies than the other levels. This
consistency level requires all mutations, up to the moment of the
query request, to be processed before query execution can begin.
This ensures that any writes that are done prior to issuing the
query request, and possibly more recent mutations, have been
indexed by the GSI or the view indexer and will be returned by
the N1QL query if it qualifies for the result set. This guarantee is
important to applications that require consistent reads or read-
your-own-write semantics.

3.2.4 Restrictions in N1QL
While N1QL is very powerful (i.e., general), including its SQL
extensions for dealing with nested objects in JSON, there are
certain SQL language features supported by relational database
management systems that – if permitted in Couchbase Server –
could be very detrimental to runtime performance, given the
larger data sets and the unnormalized approach to managing data
in the NoSQL world. One example of this would be expensive
(general, non-key) joins, as opposed to those joins needed to
quickly traverse key-based relationships. A restricted Cartesian
product across two secondary attributes of documents is not
supported linguistically in N1QL. Instead, joins are only allowed
when one of the two sides involves the primary key (document
ID) within a bucket.

3.3 Indexing support
As would be expected of any database system, Couchbase Server
provides indexing capabilities to speed up query performance. It
provides two types of indexes.

3.3.1 Local View Index
As explained earlier, one type of index provided is the view index.
Views are built asynchronously and are maintained for each
mutation. Couchbase Server pre-computes and stores these view
results before returning results to a client. Views are local indexes,
i.e., they are co-located on each node where their associated
indexed data lives, so they use the same hash-partitioning scheme
discussed later for the data (see Figure 5).

Views can either be defined using Javascript (as in the earlier
example) or via a SQL-like CREATE INDEX statement.

Example: Create an index using a local view on the email attribute
of the profiles stored in the ‘Profile’ Couchbase Bucket

CREATE INDEX email on `Profile` (email)
USING VIEW;

3.3.2 Global Secondary Index
As their name suggests, a global secondary index (GSI) is a global
index on all of the documents stored within a specified Couchbase
bucket, and it is stored separately (hence “global”) from the data
itself. It can optionally use a range-partitioned scheme separate
from the data’s hash-partitioning scheme. GSI indexes reside on
the nodes of the cluster where the index service is running.
(Figure 9 in Section 4.3 shows a sample cluster topology.)

Example: Create an index using a GSI index on the email attribute
of the profiles stored in the ‘Profile’ Couchbase Bucket

CREATE INDEX email on `Profile` (email)
USING GSI;

3.3.3 Primary Index
Typically, when describing the indexing capabilities of a database,
one would expect to have the Primary Index described first.
However, in the case of Couchbase Server, the “real” primary
index in Couchbase is the hash table of keys that allows users to
perform direct key value access. However, since this table doesn’t
provide a mechanism to perform range queries and other types of
lookups on the attributes of JSON, Couchbase additionally allows
users to define a PRIMARY INDEX similar to that of a RDBMS
but based on the server’s secondary indexing capabilities (either
using a local view or a global secondary index) described above.

Example: Create a Primary Index on the Profile bucket

CREATE PRIMARY INDEX profile_pk_view ON
Profile USING VIEW;

 or

CREATE PRIMARY INDEX profile_pk_gsi ON
Profile USING GSI WITH
{‘‘defer_build’’:true’’};

3.3.4 Selective or Partial Indexes
Given that the data is stored in Couchbase is in a schema-free and
unnormalized format, and that in many cases, documents (objects)
of different types may be stored together in a given Couchbase
bucket, N1QL allows users to create “selective indexes” (also
sometimes called partial indexes [8]). Filtering the data to be

244

indexed based on the anticipated query workload can significantly
improve both indexing and query performance.

Example: Create an index using a global index on the age attribute
of the profiles stored in the ‘Profile’ Couchbase bucket, but just
for data where the age is > 21

CREATE INDEX over21 ON `Profile`(age)
WHERE age > 21
USING GSI;

4. A LOOK UNDER THE HOOD
4.1 Overview of clustered architecture
Couchbase Server has a shared-nothing architecture. It is typically
set up as a cluster of multiple servers behind an application server.
A cluster of Couchbase Servers consists of one or more nodes,
with each containing a configurable set of services. This
architecture allows the cluster to be scaled out horizontally, by
adding more nodes, or scaled up vertically, by adding “beefier”
hardware.

Figure 4. Couchbase Cluster Architecture

Figure 4 depicts a 4-node cluster. The figure’s two application
servers run the Couchbase client driver, and these clients can talk
with any node in the cluster to read and/or write data. In this
diagram, only the data service is running. There are additional
services (described later) that can be added as the functionality
required for an application becomes more complex.

A Couchbase bucket is the rough equivalent of a database and is
better described as being a key space. Documents with different
schemas can be stored in the same bucket. Each bucket is split
into 1024 logical partitions called vBuckets (vB). This is not a
configurable number; any Couchbase server deployment has 1024
logical partitions. This number was selected to provide a good
balance of cluster manageability from a size perspective and the
amount of data that is managed per partition. The former is
important for operational maintenance, and the latter is important
for the performance of maintenance tasks that are carried out
across the cluster. In general, cluster sizes as well as the amount
of data managed by them have grown in production deployments;
however, given the operational focus, in practice the number of
nodes in our production clusters has yet to grow beyond about 150
nodes. A 150-node cluster can support many terabytes of data and
has the capacity to handle millions of operations per second.

Section 10.1.1 presents an overview of the Key Value
performance.

vBuckets are mapped to physical servers across the cluster, and
the mapping is stored in a lookup structure called the cluster
map. Section 4.3.1 goes into more details about how this map is
managed. Applications can use Couchbase’s smart clients, which
contain a copy of the cluster map, to interact with the server.
Smart clients can hash the document ID (key), which is specified
by the application, for each document added to Couchbase. As
shown in Figure 5, a client applies a hash function (CRC32) to
every document that needs to be stored in Couchbase, and the
document can then be sent directly from the client to the server
where it should reside.

Figure 5. Mapping Keys to Partitions and Servers

4.1.1 Intra-cluster Replication
A bucket can be replicated up to 3 times, giving the user up to 4
copies of their data. An individual server manages only a subset of
the active and replica partitions. At any point in time, for a given
partition, only one copy of the partition will be active, with zero
or more replica partitions on other servers. If the server hosting an
active partition fails, the cluster will promote one of the replica
partitions to active status, thereby ensuring that applications can
continue to access the data without incurring downtime.

4.2 Asynchronous architecture
As explained earlier, in Couchbase Server all of the operations
after a document is first written to memory will be performed
asynchronously. This is a fundamental concept that extends to
every facet of the server.

Figure 6. Couchbase Server Asynchronous Architecture

245

When data is written to Couchbase, it is first stored in the hash
tables in the integrated (managed) cache. At this point, an initial
acknowledgement of receipt of the mutation is sent back to the
client SDK. This mutation is then asynchronously written to disk
via the disk write queue, and at the same time it is also pushed
into the in-memory replication queue to be replicated to other
nodes within the cluster. This is summarized in Figure 6.

As explained in the earlier discussion of durability constraints,
client applications are given a choice of whether or not to wait for
replication and/or for persistence on a per mutation basis. This
allows each application to make its own choice, based on its
requirements and the nature of its data, regarding taking (or not)
the performance penalty associated with these operations. When a
document it written, a sequence number is generated and
associated with the mutation. The maximum sequence number per
vBucket is also tracked. This mechanism allows other parts of the
system to provide an option for strong consistency.

Each mutation is also asynchronously fed to other parts of the
system, such as cross-cluster replication, the view index engine,
and the global secondary index (GSI) service. If a N1QL query
chooses request_plus scan consistency, the query engine
will wait until the index is updated up to the maximum sequence
number for each vBucket.

4.3 Node-level architecture
The nodes in a Couchbase Server cluster can all look the same, or
various subsets of the cluster nodes can be configured to run a
particular (sub)set of services. This uniformity of architecture
allows users to seamlessly scale a database linearly without a
single point of failure. However, independent of what other
services are running, there is some core functionality that runs on
every node, e.g., the cluster manager.

4.3.1 Cluster Manager
The Couchbase cluster manager supervises server configuration
and interaction across all servers within a cluster. It is a critical
component, as it manages the replication and data rebalancing
operations in Couchbase. Although the cluster manager executes
locally on each cluster node, the nodes also elect a cluster-wide
orchestrator node to watch over the cluster conditions and carry
out appropriate cluster management functions.

If a node in the cluster crashes or otherwise becomes unavailable,
the orchestrator notifies all other machines in the cluster. It
promotes to active status replica partitions associated with the
server that went down. The cluster map will also be updated on all
of the cluster nodes and the clients. The process of activating
replica partitions is known as failover.

If the orchestrator node itself crashes, the existing nodes will
detect the fact that it is no longer available and they will elect a
new orchestrator immediately so that the cluster can continue to
operate without disruption.

When the number of servers in a cluster changes due to scaling
out or due to failures, data partitions must be redistributed. Doing
this ensures that data will remain evenly distributed throughout
the cluster and thus that application access to the data will be
load-balanced evenly across all the servers. This process is called
rebalancing.

When a rebalance begins, a new cluster map is calculated based
on the current pending set of servers to be added and removed

from the cluster. It is then streamed to all the servers in the
cluster. During rebalance, the cluster moves the data directly
between two server nodes (the source and destination) in the
cluster. Once the cluster moves each partition from one location to
another, an atomic and consistent switchover takes place between
the two affected nodes, and the cluster updates each connected
client library with the new cluster map. Throughout the migration
and redistribution of partitions among servers, any given partition
on a server will be in one of the following states:

Active: The server hosting the partition is servicing all types of
requests for this partition.

Replica: The server hosting the partition cannot handle client
requests, but it will receive replication commands. Rebalance
marks the destination partitions as being replicas until they are
ready to be switched to active.

Dead: This server is not in any way responsible for this partition.

4.3.2 Database Change Protocol
Any mutation that happens on an object in the data service must
be propagated to all other parts on the system that need to know,
including data replication, indexes, and so on. Couchbase has an
internal Database Change Protocol (DCP) that is utilized to keep
all of the different components in sync and to move data between
the components at high speed. DCP lies at the heart of Couchbase
Server and supports its memory-first architecture by decoupling
potential I/O bottlenecks from many critical functions.

4.3.3 Data Service
As described above, Couchbase Server supports high speed, direct
read/write operations based on a core Key-Value API (KV API).
The Data Service provides the KV API that allows developers to
create, retrieve, update and delete records by primary key. The
Data Service forms the base data management layer of Couchbase
and is leveraged by the Indexing and Query services. The data
manager has a number of parts, including the object-managed
cache, storage engine, view engine, and projector and router.

Object Managed Cache

Key-value pairs are stored in the object-managed cache. Hash
tables for each virtual bucket reside in this cache and offer a quick
way of detecting whether a given document currently exists in
memory or not. Each document in a partition will have a
corresponding entry in the hash table; each entry for a document
stores the document’s ID (i.e., its key), some document metadata,
and the document’s value.

By default the key and the metadata for every key in the bucket
will be kept in memory, while the associated values can be evicted
based on usage. Users also have the option to enable the eviction
of the key and metadata based on usage.

Storage Engine

With Couchbase’s append-only storage engine design, document
mutations always go to the end of a file. When a new document is
added in Couchbase, it is added at the end of a file. If an update is
made to a document in Couchbase, it also is recorded at the end of
the file. This improves disk write performance, as all updates are
written sequentially. Compaction is periodically run, based on a
fragmentation threshold, and while the system is online, to clean
up stale data from the append-only storage.

246

View Engine

The view engine is responsible for building and querying view
indexes. As explained earlier, views in Couchbase are defined
using a map function, which extracts the data of interest from
documents, and an optional reduce function, which aggregates the
data that is emitted by the map function. Since the view index is a
local index, the view engine runs within the data service. This
component is a consumer of the DCP feed of the mutations
needed to update the view indexes.

During initial view building or materialization of the view,
Couchbase reads the partition’s data files and applies the map
function across every document. A key characteristic of a view
index is that it stores the pre-computed aggregates defined in the
Reduce function as a part of the index tree. This allows for very
fast aggregation at query time.

As shown in Figure 8, applications can query views using one of
the Couchbase SDKs. View query execution takes a scatter/gather
approach: Queries are sent to a randomly selected server within
the cluster. The server that receives a query sends the request to
the other relevant servers in the cluster and then aggregates their
results. The query’s final result is then returned to the client.

Figure 8. Distributed View indexing and querying

During a rebalance operation, partitions change state – the original
partition transitions from active to dead, and the target partition
transitions from replica to active. Since the view index on each
node is synchronized with the partitions on the same server, when
a partition has migrated to a different server, the documents that
belong to the migrated partition should not be used in the view
result anymore. To keep track of the relevant partitions that can be
used in the view index, information about vBuckets is stored in
the view B-tree itself. Using this information, parts of a B-tree can
be deactivated as needed. This helps maintain consistency when
querying a view index during rebalancing or failover operations.

Index Projector

The Projector is responsible for mapping incoming mutations to a
set of Global Secondary Key Versions needed for secondary index
maintenance. The Projector resides within the data service where
the mutation originated, and it is a consumer of the DCP feed of
mutations that sends its evaluated results to the Router.

Index Router

The Router is responsible for sending Key Versions to the index
service. The router relies on the index distribution and partitioning
topology to determine which indexer(s) should receive the key
version. The router resides on the same node as the projector.

4.3.4 Index Service
The indexing service is responsible for managing all of the global
secondary indexes. Various components work together to manage
and maintain global secondary indexes. The projector and router
live on the data service, while the index managers and indexers
live on the index service. These together cooperate to manage the
mutations coming from the Data Service via DCP. The projector
extracts the secondary keys relevant to the indexes that have been
defined and sends them to the router. The router then decides
which indexer to send the message to. In case the index is
partitioned, the partition key tells the router which indexer and
which node to send the message to. An insert message may be
sent to one indexer with a delete message being sent to another in
the event that the value of the partition key itself has changed.

Index Manager

The Index Manager resides within the indexing service (see
Figure 9) and is responsible for receiving requests for indexing
operations (e.g., creation, deletion, maintenance, scan, lookup).

Figure 9. Index Service with Global Index

Indexer (Local Indexer)

The indexer component processes the changes received from the
router and manages the on-disk index tree data structure. It also
provides the interface for the query client to run index scans and it
does scatter/gather for queries in case of a partitioned GSI index.

4.3.5 Query Service
At a high level, the Query Service takes an application query and
performs the necessary functions to retrieve, filter, and/or project
the data in order to resolve the application’s request. Query
execution is the job of the Query Service. To process a given user
query, the query engine will issue requests to the index service,
the data service, or both, depending on the chosen query plan.

Query Catalog

This Query Service component provides catalog support for the
Query Service. This includes allowing it to perform Index DDL
(e.g., Create, Drop) and Index Scan/Stats operations. (Section 4.5
will discuss more of the details of query planning and execution.)

4.4 Multi-dimensional Scaling
As the earlier Sections described, an administrator can choose to
run the Data, Index and Query Services on all or different nodes.
This ability to have multiple “dimensions” in which to scale the
cluster is called multi-dimensional scaling (MDS). This allows
Couchbase users to scale workloads independently based on their
needs – so a cluster can reflect and support the technical business
requirements of an application.By separating its core data
management functions into these three services, Couchbase Server

247

enables users to control the scalability characteristics of their
system based on workload characteristics. As those requirements
change, Couchbase users can expand or shrink their cluster,
adding data management resources to the function(s) where they
are needed most in order to address the changing Data, Index, and
Query Service requirements. A typical setup might have the Data
Service running on nodes with more memory, the Query Service
on nodes with more cores, and the Index Service on nodes with
faster disks.

4.5 Deeper dive into indexing and querying

4.5.1 High-Level Query Service Interactions
Couchbase SDKs can route N1QL queries to any one of the nodes
running the query service. The receiving node will analyze the
query, use metadata on its referenced objects to choose the best
execution plan, and execute the chosen plan. During execution,
depending on the query and the available indexes, the query node
works with the index and data nodes to retrieve keys and data,
performing the required set of select-join-project operations.

The index service does not directly communicate with the data
service. Instead, the query service issues all key-value access
requests (unless a covering index can fully answer the query). An
index simply returns the document ID for each attribute match
found during index scans. This ID is then used by the query
service to fetch the document itself in order to access and project
out the additional fields that are needed.

4.5.2 Step-by-Step Query Execution Flow
Figure 10 enumerates the query processing steps for an example
N1QL query. Once a query plan has been constructed, based on
the operators and scans needed, the query service coordinates first
with the index service and then with the data service. The query
results are streamed to the client as they become available.

Figure 10. Data flow from query to index and data service

4.5.3 Query Execution Operators
Figure 11 shows the operators of query execution in more detail.
Note that not all queries will have every operator in their plan, and
some operators may appear and be executed multiple times. For
example, the sort operator can be omitted if there is no ORDER
BY clause in the query, while the scan, fetch, and join operators
may be needed multiple times to perform multiple joins.

To see how a given N1QL query will be executed, an EXPLAIN
statement can be used before any N1QL statement to request
information about the execution plan for the statement.

Example:

EXPLAIN SELECT title, genre, runtime
FROM catalog.details
ORDER BY title

To optimize a query, the N1QL query planner analyzes the query
and available access path options for each keyspace (bucket) in
the query to pick an appropriate plan and execution infrastructure.
The planner needs to first select the access path for each bucket,
determine the join order, and then determine the type of the join
operation. Once these big decisions have been made, the planner
then creates the infrastructure needed to execute the plan. Some
operations, like query parsing and planning, are done serially,
while other operations, like fetch, join, and sort, are done in a
local parallel (based on multicore) manner.

Figure 11. Operators in a N1QL query plan

In terms of the infrastructure available for query execution, some
of the most important query plan operators are explained below:

Keyspace (bucket) scan – There are three types of scans:

- Keyscan access: When specific document IDs (primary keys)
are available, the Keyscan access method retrieves the documents
for those IDs. Any filters associated with that keyspace will be
applied after retrieval. The Keyscan access method can be used
either when a keyspace is being queried by itself or during join
processing. A keyscan is commonly used to retrieve qualifying
documents from the inner keyspace during join processing.

- PrimaryScan access: This is the equivalent of a full table scan in
a relational database system. This is chosen when Documents IDs
are not available and no qualifying secondary access methods are
available for this keyspace. N1QL will again apply applicable
filters on each document after retrieval. This access method is
quite expensive, and the average time to return results increases
linearly with number of documents in the bucket.

- IndexScan access: A qualifying secondary index scan is used to
first filter the keyspace and determine the qualifying document
IDs. The query executor then retrieves the qualifying documents
from the data store by ID. In Couchbase, the chosen secondary
index can be a (local) view index or a global secondary index.

Fetch – This operator reaches into the data service for the objects
with a specific key. An index only contains document IDs, so the
fetch operator is needed whenever a query includes additional
projections that cannot be answered from the index alone. The
execution of the fetch operator is parallelized.

Projection – There are two kinds of projection operators:
- InitialProject: This operator reduces the stream size to just the
fields actually involved in query.
- FinalProject: This operator performs the final shaping of the
result into the requested JSON schema.

248

Unnest – This is a join operation between a parent and a child
object containing a nested array. In its result, the parent object is
repeated for each child array item.

Nest: This inverse of Unnest is a grouping operation between a
parent and a (desired) child with a nested array. In the result, the
child array will be embedded in the parent object.

Join methods

N1QL supports a nested loop-based access method for all of the
join types that it supports: INNER JOIN and LEFT OUTER
JOIN. Consider the following FROM clause in a N1QL query:

FROM (ORDERS o INNER JOIN CUSTOMER c
ON KEYS o.O_C_ID)

For this join, ORDERS will serve as the outer keyspace and
CUSTOMER will be the inner keyspace. The ORDERS
keyspace will be scanned first (using one of the scan options
described above). Then, for each of the qualifying documents
from ORDERS, a KEYSCAN will occur on CUSTOMER based
on the key O_C_ID in the ORDERS document.

4.6 Cross Cluster Replication
Cross datacenter replication (XDCR) provides a way to replicate
active data to multiple, geographically diverse datacenters. This is
done either for disaster recovery or to bring data closer to users.

Figure 12. Cross datacenter replication architecture

Both intra-cluster replication and XDCR occur simultaneously, as
Figure 12 illustrates. Intra-cluster replication takes place on both
datacenters, and it happens within each cluster. At the same time,
XDCR serves to replicate documents across datacenters. XDCR is
also a consumer of the internal DCP stream, as it uses the DCP
stream to push in-memory document mutations to the destination
cluster. Some of the most notable attributes of XCDR are as
follows:

XDCR can be setup on a per bucket basis. Depending upon
application’s requirements, only a subset of data may need to be
replicated. This can be done either on a per bucket basis or even
within a bucket by using filtered replication (based on a regular
expression on the document ID, i.e., primary key, string).

XDCR is cluster topology aware. The source and destination
clusters can have different numbers of servers and thus different
data partitioning. If a server in the destination cluster goes down,
XDCR is able to utilize the updated cluster topology information
and can continue replicating data to the appropriate available
servers in the destination cluster.

4.6.1 Consistency Across Clusters
Within a cluster, Couchbase Server provides strong consistency at
the document level for the key-value API and controllable

consistency when querying. Across clusters, XDCR provides
eventual consistency [9]. This makes Couchbase a CP system
within a cluster but an AP system across clusters with respect to
the CAP theorem [12]. This choice was made to avoid taking a
performance hit on writes, maintaining high performance while
still providing 100% availability for reads / writes across clusters.

A built-in conflict resolution mechanism picks the same “winner”
on both clusters if a document is mutated on both before being
replicated. If such a conflict occurs, the document with the most
updates is considered the “winner.” If both clusters have the same
number of updates for a document, additional metadata fields are
used to pick the “winner.” XDCR applies the same rule on both
clusters to make sure that document consistency is maintained.

5. TUNING FOR OLTP PERFORMANCE
There are certain things commonly done in relational systems that
would not work well with today’s NoSQL data volumes and the
scale of the systems needed to support them.

5.1.1 Avoid using a PRIMARY index
Couchbase allows users to create a PRIMARY index as a way to
access all objects in a keyspace, but a best practice is to avoid
queries requiring a PRIMARY index scan. The fastest data access
will be via key-value look-ups or N1QL’s USE KEYS clause.

5.1.2 Use of covering indexes
For the best performance, appropriate GSI indexes can be created
to support a query without any document fetches. Such a covering
index includes all of the information needed to satisfy the query
and can thus avoid the need for an additional step to access the
indexed data. Covered queries, that is, queries that get all their
information from the index, deliver better performance. (This is
actually a trick used in the relational world as well; it essentially
uses an index as a “poor man’s materialized view”.)

6. A GLIMPSE INTO THE FUTURE
As described in the Introduction, Couchbase Server has evolved
significantly since the early days, and its evolution is ongoing.

Figure 13. Services in a future Couchbase Server

With a vision to provide a single platform that can be used for all
types of operational workloads, there are several key components
that will be added to Couchbase in the near future. The resulting
set of component services is sketched in Figure 13.

6.1 Near-term plans
6.1.1 Memory-optimized indexes
With a focus on its low-latency-driven memory-first architecture,
a new feature in Couchbase version 4.5 is support for memory-
optimized indexes.

These new indexes will reside completely in memory,
dramatically reducing dependence on disk. Recoverability is
provided via disk-backups. This functionality will allow users
with very high write-heavy workloads to continue to utilize N1QL
and indexing in addition to key-value access, as indexes can keep

249

up with higher mutation rates. It will also allow very fast index
scans to reduce query latencies. Section 10.1.2 presents an
overview of query performance with memory-optimized indexes.

6.1.2 Array indexes
One of the key strengths of JSON is its ability to nest objects or
items within arrays. Arrays are one very natural approach used to
embed related data objects within a parent (e.g., think line items
within orders). Nesting provides great flexibility from a data
modeling perspective, but it is also important for those individual
objects from within an array to be indexed and queried. N1QL
today allows users to query items within an array, but without an
index to support array predicates, the performance of such queries
can be an issue. Version 4.5 will enable users to create indexes on
array-valued fields, making those queries significantly faster.

6.1.3 Full-text search service
Another workload dimension that is required for some operational
applications is full-text search. This is typically based on a reverse
index, where all the words within the data are indexed to be able
to do term-based, phrase-based, and/or prefix-based searches.
Full-text search is another type of service currently being added
that will receive data mutations via in-memory DCP and will be
able to be scaled up or out independently as well.

6.2 Medium-term plans
One big area that Couchbase plans to add to the mix of services
available to operational applications is operational analytics. By
consolidating this into the core platform, rich applications can be
built with a single platform that enables end-to-end management
of operational data. Query-based insights from the latest updates
can then be fed back into applications almost instantly without
having to move data physically out of the cluster or being forced
to restructure (e.g., flatten) it via pre-analysis ETL.

The planned analytics service will be based on the open-source
Apache AsterixDB Big Data Management System [1, 2]. The
NSF-sponsored Asterix project set out to develop a next-
generation system to ingest, manage, index, query, and analyze
mass quantities of semi-structured data. The resulting platform,
AsterixDB, has an extremely complementary data model to that of
Couchbase. That commonality is one of the main reasons that the
two teams decided to collaborate. The planned analytical service
will be another new service that is fed via in-memory DCP and
that can be scaled either out or up independently with respect to
other services, especially the data service (to provide performance
isolation for the all-important front-end OLTP workloads). The
new analytics service will support a much wider range of queries
and will include a parallel database inspired scalable runtime
engine. Under the hood, AsterixDB includes partitioned, LSM-
based data storage and indexing, support for both natively stored
and external data, and a rich set of built-in types. A typical
workload on the analytics engine, unlike the OLTP-like N1QL
query engine, will include richer (and more expensive) queries
such as large joins, aggregations, grouping, and so on.

7. CONCLUSION
We have described the history and evolution of Couchbase Server
from its early roots as a key-value store to its current form, which
is a full-featured and fully queryable document data manager. We
pointed out a number of the unique features and requirements that
arose from the need to support low-latency, OLTP-like workloads.
We described the view from outside the system and the APIs
available to users. These external interfaces were designed to be

simple, but the internal architecture that supports them was built
to support the OLTP requirements of next-generation applications,
including flexible schemas, incremental scalability, and high
performance. We explained how the components of Couchbase
Server work together under the hood, including its data storage,
indexing, and query services, and we closed with a glimpse into
where things are expected to be going in the future.

8. ACKNOWLEDGEMENTS
The existence of Couchbase Server 4.1 (and 4.5) today is due to
the combined efforts of many terrific Couchbase team members
whose contributions we wish to acknowledge.

9. REFERENCES
[1] S. Alsubaiee et al, AsterixDB: A Scalable, Open Source
BDMS, Proc. VLDB Endowment 7(14), October 2014.

[2] Apache AsterixDB, http://asterixdb.apache.org/.

[3] R. Cattell, Scalable SQL and NoSQL Data Stores, ACM
SIGMOD Record 39(4), May 2011.

[4] Couchbase NoSQL Database, http://www.couchbase.com/.

[5] D. DeWitt and J. Gray, Parallel Database Systems: The Future
of High Performance Database Systems, CACM 35(6), June 1992.

[6] Y. Papakonstantinou, Semistructured Models, Queries and
Algebras in the Big Data Era, Tutorial in Proc. ACM SIGMOD
Conf., San Francisco, CA, June 2016.

[7] P. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to
the Emerging World of Polyglot Persistence, Addison-Wesley
Professional, 2012.

[8] M. Stonebraker. The Case for Partial Indexes, ACM SIGMOD
Record 18(4), December 1989.

[9] D. Terry, Replicated Data Consistency Explained Through
Baseball, CACM 56(12), December 2013.

[10] Magic Quadrant for Operational Database Management
Systems, Gartner, https://www.gartner.com/doc/3147919/magic-
quadrant-operational-database-management.

[11] R. Bello et al, Materialized Views in Oracle, Proc. 24th
VLDB Conf., New York, NY, August 1998.

[12] S. Gilbert and N. Lynch, Perspectives on the CAP Theorem,
Computer 45(2), February 2012

[13] K. Ong, Y. Papakonstantinou, and R. Vernoux, The SQL++
Query Language: Configurable, Unifying and Semi-structured,
http://arxiv.org/abs/1405.3631.

[14] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, Benchmarking Cloud Serving Systems with YCSB, Proc.
1st ACM Symp. on Cloud Computing, Indianapolis, Indiana, June
2010.

250

10. APPENDIX
10.1 Couchbase Server performance
In this section, we present some sample performance results,
obtained using the Couchbase Server 4.5 Developer Preview, to
provide a brief overview of the performance characteristics of
Couchbase for both key-value and query workloads. The testing
tool used was the Yahoo Cloud Serving Benchmark (YCSB) [14].
The Couchbase adapter for YCSB was built to operate against a
Couchbase Server cluster using the official Couchbase Java SDK
and provides a rich set of configuration options, including support
for the N1QL query language.

Figure 14. Performance test setup

The deployment topology used was simple, with the data, index
and query services running on all nodes of a 4-node cluster. There
are 4 YCSB clients that generate load. The number for threads for
each client was scaled up from 12 threads to 32 threads and the
maximum throughput was measured. There are two workloads
presented here; each was run on the 4-node Couchbase cluster
using an early version (Developer Preview) of the 4.5 release.

10.1.1 Key-value performance (YCSB workload A)
Workload A of YCSB is a mixed workload with 50% reads and
50% writes of keys. In this test, the thread counts for each of the

four YCSB clients were varied from 12 to 32 threads. A data set
of 10 million documents was used. The throughput in operations
per second was measured and is plotted in Figure 15. As shown, a
4-node cluster with a total of 128 client threads driving load is
capable of running approximately 178K operations per second.

Figure 15. Simple operation throughput (ops/sec) vs. threads

10.1.2 Query performance (YCSB workload E)
Workload E of YCSB is a query workload consisting of small
range queries. Short ranges of documents are queried via N1QL
instead of performing individual document operations.

Sample query: SELECT meta().id AS id FROM
‘bucket’ WHERE meta().id >= '$1' LIMIT $2;

Similar to workload A, the thread counts for each of the four
YCSB clients was varied from 12 to 32 threads. The throughput in
queries per second was measured and is plotted in Figure 16
below. As shown, a 4-node cluster with a total of 128 client
threads driving load is capable of running approximately 5400
small range queries per second.

Figure 16. Range query throughput (queries/sec) vs. threads

251

