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ABSTRACT
In the recent years, the idea of reaching customers through human
experience has triggered a new marketing strategy known as live
campaigns. We can expect that live campaigns will become more
pervasive and pro�table, but not before addressing key business
challenges. It can be easily ruined if the campaign agency fails to
identify the optimal location and time. In this paper, we address the
challenge of �nding a suitable location from online location based
services for arranging a live campaign according to given schedule
among a set of candidate locations. We study the predictive power
of various spatio-temporal mining features on the capability of
gathering audience through the use of a dataset collected from
Foursquare of New York City. Finally, we develop models which
will predict the expected audience at a location based on these
features. We achieve 50.46% accuracy in individual feature based
approach and an accuracy of 72.6% in Support Vector Machine
(SVM) regression model.
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1 INTRODUCTION
The numbers of location based social network (Foursquare, Yelp,
etc.) users as well as social network (Facebook, Twitter, etc.) users
are increasing day by day. With the growth of users, we see an
increasing demand of various location based service applications.
Users go to a place, share their location via location based social
networks and express their feelings and thoughts (status, likes,
comments, etc.) via social networks. These enormous amount of
social, temporal and spatial data give us a great opportunity to
design application models for numerous �elds including urban
planning, lifestyle, business, politics, tourism, etc. To get optimal
output in any �elds we need to take the maximum bene�t from these
data. Suppose a co�ee shop, placed in 100 meters down the road, is
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not getting enough customers which may force to close the shop
within a month. However, mining the location based information
of customers; we can discover that if the same co�ee shop is placed
in the street corner, it may attract lots of customers [13].

In the recent years, Location Based Service (LBS) has become
popular due to the enormous use of smartphones. The smartphones,
equipped with Global Positioning System (GPS) modules, can pro-
cess holders’ location information. This has brought the �ood of
LBS applications in the smartphone ecosystem. It has attracted
considerable attention due to its potential for a range of highly
personalized and context-aware services. A good example can be
the smartphone camera with Instagram LBS. If one takes a photo
with a smartphone camera, the location where the photo is taken is
embedded in the picture automatically, which helps one to remind
about the photo. Furthermore, the aggressive expansion of Social
Network Services (SNS) has also assisted its growth by construct-
ing connections between location information and social network.
Location has become a crucial facet of many online services. Peo-
ple are more willing to share information about their geographic
position with friends. As a consequence, service providers have
access to a valuable source of data on the geographic location of
users as well as online friendship connections among them. The
combination of these two factors o�ers not only a groundbreaking
opportunity to understand and exploit the spatial properties of the
social networks arising among online users, but also a potential
window on real human socio-spatial behavior.

In this paper, we would like introduce a novel problem which
is about arranging live campaign through location-based data. To
the best of our knowledge, this is the �rst attempt to study live
campaign problem using location based social network. Numerous
studies have been conducted to investigate consumers’ acceptance
of advertising, including mobile and Internet advertising; however,
public attitude toward advertising is getting negative [1], because
consumers usually �nd advertising information useless or even
annoying. As a result, traditional and previously proven forms of
advertisement are no longer as e�ective as they once were. Now-a-
days, human experience is one of the most e�ective media to reach
customers and to utilize it we need to incorporate human inter-
action into the marketing scenario. This demands a new medium
of advertising where producers and consumers both get optimum
opportunities to spread information and gather information corre-
spondingly. Live campaign is the new form of advertising growing
throughout the world. It o�ers short business promotional activity
in public spaces surprising people through entertainment and re-
freshment. But a big deal is to �nd the suitable place and time slot
to reach the maximum spectators. So, we e�ectively incorporate
the solution for the problem of �nding suitable place with given
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time slot. Our solution is also applicable to those areas where maxi-
mum spectators are needed such as raising social awareness, live
billboard, asking vote from young people and live interview for
public opinion.

Our overall contributions are summarized as follows:
• We formulate the problem of �nding suitable places for

live campaigns using location-based data. (Section 2)
• Then, we construct several features from available dataset

for training and testing purposes. (Section 3)
• We also show collective impact of several features applying

Support Vector Machine (SVM) method. (Section 4)
• Finally, the results from extensive set of experiments show

the e�ectiveness of our approach. (Section 4)

2 PROBLEM FORMULATION
In this section we formalize the problem of �nding live campaign
hotspot in the context of location-based social networks. Our goal is
to identify the best area amongst a candidate set of potential areas
for arranging a live campaign on a particular day and time. As a
particular place may have very sparse check-ins, we will aggregate
the check-ins to all the places within a circular area and �nd the
campaign quality of that area instead of a place. In this case we
give an area for the live campaign, the exact place can be selected
by the marketing people.

We take a candidate set of areas L in which a commercial en-
terprise is interested in arranging an advertising campaign for ∆t
hours of duration on the dth day of the week at hth hour of the day
as input. We wish to identify the optimal area l ∈ L, such that the
arranged campaign will potentially attract the largest number of
audience. An area l is represented by its latitude and longitude coor-
dinates and a radius of 400 meters. The ranking of places according
to their advertising quality is then estimated using the features
mined by incorporating the characteristics of the area nearby. Our
main assumption in the formulation of this task is that the number
of empirically observed check-ins by social media users can be used
as a proxy for the measure the audience of the live advertisement
at a place.

3 SOLUTION OVERVIEW
In this section we present a brief sketch of the steps for solving
our problem. At �rst we introduce the dataset we want to use for
our analysis. Then we de�ne the features we mine for ranking
geographic areas according to the predicted advertising quality.

3.1 Dataset
The dataset used in this analysis is collected from a widely used
location-based social media called Foursquare. We collect this large-
scale check-in data1 available from [2]. This dataset contains check-
ins in New York City collected for about 10 month (from 12 April
2012 to 16 February 2013). It contains 227,428 check-ins in New
York city for 38,312 unique venues. Each check-in is associated with
its time stamp, its GPS coordinates and its semantic meaning (repre-
sented by �ne-grained venue-categories). This dataset is originally

1Dataset available in https://sites.google.com/site/yangdingqi/home/foursquare-
dataset

Figure 1: Check-in pattern for Time Square, New York with
∆t = 1

used for studying the spatial-temporal regularity of user activity in
LBSNs.

3.2 Prediction features
We now introduce the features that we have mined from the dataset
in the city of New York. Each feature returns a numeric score χ̂l that
corresponds to a quality assessment of the area for live advertising.
We employ check-in data analysis for extracting the features. As
we are working with user contributed data, a major concern is the
e�ect of noise. So we devise two noise sensitive features which can
give low score to the areas a�ected by noisy check-in pattern.

3.2.1 Density. It measures the number of Foursquare venues in
an area l ∈ L. Formally:

χ̂l = |{p ∈ P |dist (p, l ) < 400}|

Here, the function dist denotes the geographic distance between
two places in meters and P denotes the set of venues in New York.
We denote the number of neighboring venues within the area l
with N (l ). Intuitively, a denser area could imply higher likelihood
for an opportunistic visit. Thus, we may expect higher audience in
that area.

3.2.2 Neighbors Entropy. It measures the spatial heterogeneity
of an area l ∈ L. It shows how diverse the area is in terms of types
of venues such as food, shop, work, etc. We apply entropy measure
from information theory [21] to the frequency of venue types in the
area. We denote the number of neighboring venues of type γ with
Nγ (l ). The entropy de�nes how many bits are required to encode
the corresponding vector of type counters Nγ (l ) |γ ∈ Γ, where Γ is
the set of all types. Formally:

χ̂l = −
∑
γ ∈Γ

Nγ (l )

N (l )
× loд2

Nγ (l )

N (l )

The higher the entropy, the more heterogeneous the area is. In
general, an area with higher entropy can serve more people.

3.2.3 Check-in count. It measures the estimated check-in count
of an area l ∈ L for ∆t hours of duration on the dth day of the week
at hth hour of the day. We �nd the check-in pattern of an area by
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Figure 2: Representing a check-in pattern as a vector

plotting the check-in data with respect to three dimensions: week-
day, hours (grouped according to the duration ∆t ) and normalized
check-in count. We show an example check-in pattern in Figure 1.
Check-in count represents the normalized check-in count at dth

day and hth hour in the check-in pattern.

3.2.4 Check-in consistency. This is our �rst noise sensitive fea-
ture. It measures the degree of changes in check-in pattern of an
area with the passage of time. It gives higher score to those areas
whose check-in patterns are more stable throughout the year. It
may happen that, the check-in count feature gives high score to an
area because of a special event (e.g. fair, concert etc.) on some days.
In that case check-in count gives us the wrong estimation. In case
of live campaign we want to minimize the risk of losing audience.
So we prefer areas with stable check-in pattern.

We represent our check-in pattern as a vector of 7 × 24 cells
(7 days each having 24 hours) as in Figure 2. Thus we measure
the correlation between two check-in patterns. We calculate the
overall check-in pattern considering all check-in data and monthly
check-in patterns considering month wise check-in data for each
area. Then we measure correlation between the overall check-in
pattern and each monthly check-in pattern. Check-in consistency
represents the average of all these correlation measures.

3.2.5 Check-in identity. This is our second noise sensitive fea-
ture. It makes sure that the check-ins found at the area is not just
the noisy e�ect of the area of interests. For measuring this feature
we consider unique check-ins of a place, i.e., we do not consider
multiple check-ins of a person for the same location. The reason
behind this is that if a person alway create a check-in from his/her
home or o�ce that will make noisy e�ect. We normalize check-in
identity of a location in the following way:

Cidentity =
#uniquecheckins
#totalcheckins

3.2.6 Openness. This one is our static feature. It measures the
amount of open space within an area. We measure this feature
based on the inverse of density. We assume that a place is more
open if its density is less. An area with open spaces is suitable for
community gathering.

3.2.7 Temporal Signal. We also measure the time of day when
people are willing to visit a place. To construct this feature, we
divide 24 hours into four time slots, namely, morning (m), noon (n),
afternoon (a) and evening (e). The reason behind this feature is that

people are interested to visit a certain place in particular time of
the day. This feature assigns high value to popular time of the day
for a speci�c location. For example, visitors are generally interested
to visit a shopping center in the afternoon or evening and so these
two time slots get higher values than morning and noon. We use
this feature in SVM regression model. We normalize the temporal
signal in the following way:

Tsiдnal =
∑

i ∈{m,n,a,e }

#checkinsi
#totalcheckins

3.2.8 Distance from nearest subway station. The New York City
subway is a popular public transportation systems in New York.
This feature measures the distance between the center of the area
and the nearest subway station. Mass people have greater access
to those areas which are closer to subway stations. We consider
spatio-temporal data of the subway stations listed in Table 1. We
calculate the distance between a subway station and a venue based
on latitude and longitude.

Table 1: List of subway stations in the dataset

Category ID Category Name
4bf58dd8d48988d1fe931735 Bus Station
4bf58dd8d48988d12b951735 Bus Line
4bf58dd8d48988d1fc931735 Light Rail Station
4bf58dd8d48988d1fd931735 Metro Station
4bf58dd8d48988d129951735 Train Station
4f4531504b9074f6e4fb0102 Platform
4bf58dd8d48988d12a951735 Train
52f2ab2ebcbc57f1066b8b51 Tram Station

4 EXPERIMENTAL RESULTS
In this section, we present experimental study to evaluate the per-
formance of our proposed algorithm. We used the dataset described
in section 3.1 to train and test our approach. We divide our exper-
iments into two steps. In the �rst step, we conduct experiments
incorporating each of the features directly and measure perfor-
mance. In the second step, we train and test across SVM model to
see the combined e�ect of all features. We conduct each experiment
30 times and present the average results. To run all experiments,
we use a laptop PC of Core i3 2.2 GHz CPU and 4 GB RAM. We
implement all our methods in C++ and R programming language.

We compute the actual rank list R of the candidate areas based
on the ground truth i.e. observed check-in and we also compute the
predicted rank list R′ based on the score predicted by our feature-
based model. Given these two ranked lists, we formally de�ne the
metrics, we use to assess the quality of predictions achieved by our
model.

We measure the fraction of times that the optimal location in
the predicted list R′ is at the top-X% of the the actual rank list
R which represents our ground truth. We refer to this metric as
Accuracy@X%. In Figure 3, we report Accuracy based on some
individual features for various data size. List size on this Figure
represents X% of predicted top ranked locations are on the X% of
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Figure 3: Accuracy@X% for various Sizes of dataset
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Figure 4: NDCG@K for various Sizes of dataset

actual ranked locations. In Figure 3, we also see that the ranking
method based on openness feature outperforms other features.

We have not reported some features in Figure 3 because of multi-
dimensional or integrity property. For example, the temporal signal
feature has four di�erent properties (morning, noon, afternoon,
evening) which lacks integrity. However, we use all features to-
gether while training SVM model.

We also measure the extent to which the top-k locations in actual
rank list R are highly ranked in the predicted list R′. For this we
adopt the NDCG@k (Normalized Discounted Cumulative Gain)
metric frequently used in the performance evaluation of informa-
tion retrieval systems [22]. The metric assesses the cumulative gain
achieved by placing the most relevant instances in the top-k of the
prediction list as formally de�ned by the Discounted Cumulative
Gain measure:

DCG@k =
k∑
i=1

2r el (li ) − 1
loд2 (i + 1)

where rel (li ) is the score relevance of an instance at position i
in R′. The result is then normalized by the DCG of the ideal pre-
diction, when the instances are sorted by the relevance with the
most relevant in the �rst position. Thus the resulting scores lie in
the range from 0 < NDCG@k ≤ 1. As a relevance score for an
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Figure 5: ROC-Curve for various true-valued datasets

instance li we will use its relative position in actual ranking R, i.e.,
rel (li ) =

|L |−rank (li )+1
|L | . The rel (li ) score is equal to 1 when the

area is ranked �rst in terms of check-ins and it linearly decreases
to 0 as the rank goes down the list. As a baseline for comparison,
we use the expected value of NDCG@k for a random ranker which
is achieved by randomly permuting the instances in the testing set.
In Figure 4, we report NDCG@k based on individual features for
various values of k . In this Figure, we see that almost all features
show similar NDCG values except consistency feature. When the
value of k is 5 then our approach retrieves all relevant locations. For
k = 10, the value of NDCG@10 decreases drastically which means,
it retrieves some irrelevant locations. For other values of k , we also
see �uctuations in the values of NDCGs . We can conclude that all
individual features achieve high relevant venues when k = 5.

We also design a second kind of experiment where we apply
SVM to all of our features altogether. For this experiment, we cre-
ate a binary classi�er using top ranked X% locations of data. For
example, when we take top ranked 5% locations, we assign 1 to
all these locations (P) and we assign 0 to rest of the 95% locations
(N). Then, we train and test SVM across this dataset using 10-fold
cross-validation. We use linear kernel in SVM which represents
linear combination of all features. There are four possible scenarios
in a binary classi�er: when a predicted ranked location is on the
actual ranked list we treat this as true positive (TP), but when a
predicted place is not on the actual ranked list we treat this as
false positive (FP). When a location is not on the predicted ranked
locations but present on the actual ranked list, we treat this as true
negative (TN); however, when a location is not on the predicted
ranked locations and also absent on the actual ranked list, we treat
this as false negative (FN). Considering all these scenarios, we esti-
mate accuracy, true positive rate (TPR) and false positive rate (FPR)
based on the following formulas:

Accuracy =
TP +TN

38, 312
,TPR =

TP

P
, FPR =

FP

N

We report Receiver Operating Characteristics (ROC) curves in
Figure 5 for various sizes of true valued dataset. When a ROC-curve
gets more closer to left upper corner of the graph, it achieves better
results [23] and it also gets higher value for area under that ROC-
Curve. In this Figure, 5% indicate that there are only 5% true valued
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data (i.e., assigned to 1) and rest of the data are false valued (i.e.,
assigned to 0). In the dataset, there are 38,312 distinct locations
in total. We assign 5% locations to 1 and other 95% locations to 0
i.e., 1,916 distinct locations are assigned as top 5% ranked based
on number of checkin counts and other locations are not on top
5%. We achieve 72.6% and 95.84% accuracy for true valued data size
of 30% and 5%, respectively and accuracy for other data size lies
between these two values. We get Area Under ROC-curve (AUROC)
as 0.90 and 0.96 for true valued data size of 30% and 5%, respectively.
From these two analyses, it seems that when we consider top 5%
true valued data, SVM performs better. There also exists Precision-
Recall curve analysis for binary classi�cation which shows better
comparison in case of imbalanced dataset. When a Precision-Recall
(PR) curve gets more closer to right upper corner of the graph, it
achieves better results and it also gets higher value for Area Under
PR (AUPR) curve. To investigate more, we estimate AUPR curve as
0.83 and 0.64 for true valued data size of 30% and 5%, respectively
(see Figure 6). In this case, we see that 30% true valued data size
performs better. The reason behind is that when we consider only
5% true valued data, there is higher probability to get high TPR
value. So, we need to analyze both AUROC and AUPR to reveal
the true scenario. Finally, we calculate spearman correlation for
30% and 5% true valued locations against predicted locations and
�nd the results as 0.64 and 0.33, respectively. So, SVM method
performs better in the case of 30% true valued data which achieves
an accuracy of 72.6%. Finally, we report accuracy as percentage for
best individual feature (openness) and SVM regression model in
Table 2.

Table 2: Comparison of accuracy for best model of individ-
ual feature (openness) and SVM regression model

Size of True
Valued Data

Individual Feature
(Openness) SVM Regression

5% 41.34 95.84
10% 41.76 91.67
15% 43.76 87.22
20% 45.77 82.5
25% 47.85 77.6
30% 50.46 72.6

5 RELATEDWORKS
To the best of our knowledge, we are the �rst to explore live cam-
paign problem using location based social network. However, many
related works exist in the �eld of recommender systems which are
discussed as follows.

Georgiev, Noulas and Mascolo propose a recommender system
to predict whether a person would attend a future event based
on check-in data collected from Foursquare [3]. They mine many
popular events along with several social, temporal and spatial fea-
tures from the data. Finally, they formulate an event prediction
task where they try to rank events for each user based on the pre-
diction features. In [3], authors quantify social and spatial factors
from users’ check-in data successfully. To materialize place type
preference of the user into a vector of real numbers they treat user
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Figure 6: Precision Recall Curve for various true-valued
datasets

as document and place type as term. To measure the in�uence of
places visited by friends, they design a directional weighted graph
(called socio-spatial graph) that combine social and spatial in�u-
ences. Then, they apply random walks with restart on this graph
to calculate probability of participation for a user-event pair. Sklar,
Shaw and Hogue propose a real-time event detection engine for
Foursquare to measure how unusually busy a place becomes [4].
They focus on probabilistic model that yields a negative binomial
distribution over the number of people to check in at any given
time. Quercia et al. study event prediction problem where they
provide cold-start event recommendations for users whose home
location is known [5]. However, in their work, they do not focus on
personalization. Three other prominent examples of event recom-
mender systems have been built in the domains of on-going cultural
events, scienti�c and conference talks. Lee exploits trust relations
together with explicit user feedback to recommend cultural events
[6], while Minkov et al. combine content-based with collaborative
�ltering approaches to capture user preferences towards latent top-
ics hidden in scienti�c talk announcements [7]. After that Liao et al.
build latent models based on o�ine spontaneous interactions and
co-attendance information to recommend related events in o�ine
ephemeral social networks formed around conference talks [8].

Jensen studies the identi�cation of the appropriate geographic
positioning of retail stores [9][10]. Jensen’s approach uses a spa-
tial network based formulation of the problem, where nodes are
55 di�erent types of retail stores and weighted signed links are
de�ned to model the attraction and repulsion of entities in the
network. Porta et al. propose an approach which is based on the
analysis of the spatial distribution of commercial activities [11][12].
In these works, the authors investigate the relationship between
street centrality and retail store density in the cities of Bologna
and Barcelona respectively, verifying how the former acquires a
signi�cant role in the formation of urban structure and land us-
age. Karamshuk et al. further extend the results of these works by
adding to the analysis features mined from the human mobility
traces and e�ectively show that the combination of the geographic
and mobility features provides better insights on the quality of an
area as a potential spot to open a new retail facility [13]. Speci�cally,
they study the problem of identifying the optimal location for a new
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retail store placement. They evaluate a diverse set of data mining
features, modeling spatial and semantic information about places
and patterns of user movements in the surrounding area.

In the recent years, many e�orts focus on the temporal dynamics
of online social networks and mobile networks. For example, Song
et al. study the periodicity of people’s activities with respect to
their most visited location [14]. Cheng et al. and Ye et al. show that
the daily and weekly check-in patterns for speci�c locations can re-
veal semantic information (e.g., that two locations are similar), and
can facilitate location based search and location recommendation
[15][16]. Liang et al. use check-in data and event related tweets to
model crowd-based population [18]. They estimate the duration of
time a user might spend in a crowd, the number of user leaving a
crowd at any time and the number of posts generated from a crowd.
Finally, they validate their model by predicting tra�c volume for
Manhattan and by predicting number of posts for some events.
They focus on statistical and probabilistic analysis, and consider
both event-driven and location-driven crowds. Hasan and Ukkusuri
propose a model to analyze large-scale geo-location data from so-
cial media to infer individual activity patterns [19]. Combined with
the data from traditional surveys, their model provides an activity
generation mechanism which is potentially a useful component of
an activity-travel simulator. Lee investigates how microblogging
social networks can be used as a reliable information source of
emerging events by extracting their spatio-temporal features from
the messages to enhance event awareness [20]. In this work, author
applies a density-based online clustering method for mining mi-
croblogging text streams, in order to obtain temporal and geospatial
features of real-world events.

In this paper, we have discussed features that are extracted from
analyzing all the business perspectives discussed above. We have
also shown the in�uence of these features on location based social
services.

6 CONCLUSION
In this paper, we tackle a novel problem, namely, �nding optimal
places for live campaigns in the context of location-based social
networks. We have analyzed the aggregated e�ect of check-in from
the leading location-based service, Foursquare. Further, we have
introduced some static geographic factors that may in�uence the
human mobility pattern. We conduct two kinds of experiments,
namely, direct individual feature based experiment and SVM regres-
sion using linear kernel with 10-fold cross-validation. For 30% true
valued data, we have achieved a maximum of 50.46% accuracy in
individual feature based approach and an accuracy of 72.6% running
SVM regression model using all features altogether.

We will further extend the work using textual information from
twitter [17] and wide range of datasets. This work has a very im-
portant business implication in the �eld of mobile computing. So,
we also have a plan to develop a recommender system for Mobile
Application.
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