
MeanKS: Meaningful Keyword Search in
Relational Databases with Complex Schema

Mehdi Kargar1, Aijun An1, Nick Cercone1, Parke Godfrey1, Jaroslaw Szlichta∗2 and Xiaohui Yu1

1 Department of Computer Science and Engineering, York University
{kargar,aan,nick,godfrey,}@cse.yorku.ca and xhyu@yorku.ca

2 University of Ontario Institute of Technology
jaroslaw.szlichta@uoit.ca

ABSTRACT
Keyword search in relational databases was introduced in
the last decade to assist users who are not familiar with a
query language, the schema of the database, or the content
of the data. An answer is a join tree of tuples that con-
tains the query keywords. When searching a database with
a complex schema, there are potentially many answers to
the query. Therefore, ranking answers based on their rele-
vance is crucial in this context. Prior work has addressed
relevance based on the size of the answer or the IR scores of
the tuples. However, this is not sufficient when searching a
complex schema.

We demonstrate MeanKS, a new system for meaningful
keyword search over relational databases. The system first
captures the user’s interest by determining the roles of the
keywords. Then, it uses schema-based ranking to rank join
trees that cover the keyword roles. This uses the relevance
of relations and foreign-key relationships in the schema over
the information content of the database. In the demonstra-
tion, attendees can execute queries against the TPC-E ware-
house and compare the proposed measures against a gold
standard derived from a real workload over TPC-E to test
the effectiveness of our methods.

1. INTRODUCTION
Keyword search, a well known mechanism for retrieving

relevant documents in information retrieval, has recently
been used for extracting information from relational databas-
es. Users usually do not have sufficient knowledge about
the structure of data nor query languages such as SQL [2,
3]. Keyword search over databases can bridge this gap. An
answer to the query is a set of tuples from the database that
cover the keywords of the query, and a natural structure —a
tree from the database’s schema— that spans those tuples.
Previous work restricts answers over minimal trees [2, 1],
meaning there is no answer over a sub-tree of the tree in

∗Szlichta is also a Fellow at IBM Centre for Advanced Stud-
ies in Toronto.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profi or commercial advantage and that copies bear this notice and the full cita-
tion on the firs page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specifi permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594533.

TRADE
Date: 2005-01-11, Price: $ 20.95, Quantity: 400

CUSTOMER ACCOUNT
Name: Cynthia Witherspoon

Vacation Account

SECURITY
Name: Common of Arden

Group, Inc.

CUSTOMER
First Name: Cynthia

Last Name: Witherspoon
Email: Cwitherspoon@attbi.com

COMPANY
Name: Arden Group, Inc.

CEO: Marry Moffet
Open Date: 1949-04-03

Figure 1: A non-minimal answer by DISCOVER [2].

question. However, there is another aspect of an answer:
relevance to the query. By restricting answers to a minimal
structure, some relevant answers may be missed.

Consider the keyword query “Cynthia Arden” over the
TPC-E1 schema. The TPC-E benchmark simulates the on-
line transaction processing (OLTP) workload of a brokerage
firm.2 The keywords Cynthia and Arden may appear in dif-
ferent relations. Each could refer to the name of a customer,
broker, company, CEO of a company, or be in the title of a
news item. Of course, each of these different relations for
Cynthia and for Arden potentially lead to rather different
answers. For example, Figure 1 shows an answer for the
keyword query “Cynthia Arden” on TPC-E, which says that
a customer Cynthia buys the stocks of a company named
Arden Group. This is an interesting and relevant relation-
ship between Cynthia and Arden assuming, the user wants
to find out the relationship between customer Cynthia and
company Arden Group. However, such an answer would be
missed if we restrict the answer to be structurally minimal
while covering all the query keywords (This happens in the
previous works such as DISCOVER [2].) This is because
Cythia also appears in an intermediate node of the tree and
thus the customer node is pruned. This also arises for Ar-
den.

Another issue in keyword search is to score answers for
relevance. The relevance of an answer depends on many fac-
tors: the tuples in the answer and how the keywords appear
in them; the bridging tuples that do not contain keywords;
and the join tree. How to measure the value of each of these
is open to question. Prior work has addressed relevance. In
[2], a simplistic solution of scoring relevance as the recipro-
cal of the number of edges in an answer’s tree was proposed.
This heuristic assumes that fewer joins involved mean the
tuples are related more closely. This approach might work
for a small and simple schema, but it fails to return relevant

1http://www.tpc.org/tpce/
2The TPC-E has a reasonably complex schema and contains
33 tables.

905

CUSTOMER
Cynthia

STATUS TYPE

COMPANY
Arden

CUSTOMER
ACCOUNT

CUSTOMER
Cynthia

COMPANY
Arden

SECURITY

TRADE

CUSTOMER
Cynthia

COMPANY
Arden

ADDRESS

COMPANY

STATUS TYPE

SECURITY

(a) (b) (c)

Figure 2: Three possible trees (i.e., MJNSs) for the
query “Arden:company Cynthia:customer”.

answers when the schema is large and complex. Consider
the query {Arden Cynthia} over the TPC-E schema. Also,
assume that Arden refers to a company name and Cynthia
refers to a customer name. Figure 2 shows three possible
join trees of different sizes that could produce answers that
connect the company Arden and the customer Cynthia.

If we rank the trees according to their size (i.e., the num-
ber of edges or nodes), the first tree (a) which connects a
customer and a company when they have the same status
gets the highest rank. However, based on the TPC-E schema
description, this is not a strong relationship; status type is
a dimension table which is connected to six tables in the
schema and stores the status value for other entities (such
as companies, customers and trades). An answer derived
from this tree would say that both Arden and Cynthia are
active. Looking at the customer and a company tables in
TPC-E, it turns out that all the customers and companies
have the Active status. Therefore, any given customer and
any given company in the TPC-E database share the same
status through the status type table. Thus, the first found
relationship (a) between Arden and Cynthia is, in fact, not
that interesting or relevant. The second tree (b) states that
company Arden’s stock is traded by customer Cynthia. This
is one of the strongest relations between a customer and a
company and is related to the purpose of the TPC-E schema.
In addition, it usually produces few results since trading the
stocks of one specific company by one specific customer is
not common. The third tree (c) is the largest and therefore
it is not straightforward to interpret. This tree states that
the company Arden has the same status as a security which
is related to a company that has the same address as cus-
tomer Cynthia. Two relations, address and status type, that
are involved in this tree makes it less meaningful and more
difficult to interpret for the user.

In [1], the authors take a different tact: they apply in-
formation retrieval (IR) measures to the answers to deter-
mine an individual measure per answer. We believe that for
keyword search in relational databases, the relevance of the
tree from which answers derive is paramount. We hypoth-
esize that relevance as measured by adapted IR techniques
is much less effective. For example, for the trees in Figure
2, assume that the IR scores of the tuples that contain key-
words are the same.3 Applying the ranking technique of [1],
the first tree (a) gets the highest score since it is the smallest
one. As we discuss previously, this is not a relevant answer
for the given query. In our system, IR scores are used as
a secondary sorting key to rank the final answers with the
same schema ranking (See Section 3.2 for more details.)

In this demonstration, we showcase a new system for key-
word search in relational databases (MeanKS)4. The unique
features of our system are as follows.

3This happens when Cynthia is the first name of a customer
and the related column contains only “Cynthia”
4Demo available at http://graph.cse.yorku.ca:8080/meanks

1. The system identifies the database entities that are po-
tentially interesting to the user based on the query key-
words the user provides, and allows the user to specify
their interests through a user interface.

2. The system returns the top minimal connected tuples
that not only contain the query keywords but also
cover the user interests (referred to as keyword roles
in our system).

3. The system uses schema-based ranking that ranks the
answers based on the minimal join trees that cover the
keyword roles.

4. The system provides alternative relevance measures for
join trees, which consider the importance of nodes,
edges or combinations of them.

2. PROBLEM STATEMENT
A relational database schema consists of a set of n rela-

tion schemas, denoted as {R1, R2, . . . , Rn}, where each Ri

is described by a set of attributes. Two relation schemas,
Ri and Rj , may be related by a foreign key relationship,
denoted as Ri ← Rj , where the primary key of Ri is refer-
enced by a foreign key of Rj . Thus, a relational database
schema can be considered as a graph G = 〈V, E〉 where
nodes are relation schemas and edges represent the foreign
key relationships. A relational database is an instance of a
relational database schema G. It consists of a set of rela-
tions, where each relation r(Ri) is a set of tuples conforming
to the relation schema Ri in G. Given a relational database
D and a set of l (≥ 2) keywords (Q = {k1, k2, . . . , kl}), the
problem of keyword search over D is to find a set of tuples
that are connected via foreign key relationships and cover
all the keywords in Q.

In our framework, the role of a query keyword is identi-
fied first. For each query keyword, we first find the list of
columns (and relations) that contain the keyword using an
inverted index or the built-in support for full-text keyword
search in the RDBMS of choice, and then a relation is chosen
through interaction with the user from a list as the role of
the keyword. With specified keyword roles, our algorithm
searches for answers that are defined as follows.

Definition 1. Minimal Joining Network of Tuples
Covering Roles. Given a database D with schema graph G
and a query Q containing a set of keywords {k1, k2, . . . , kl}
and their respective roles {r1, r2, . . . , rl} (where ri’s are re-
lations in D), a minimal joining network of tuples for query
Q is a tree T of tuples that satisfy the following conditions:

1) Joinable. For each edge (ti, tj) in T , where ti ∈ r(Ri)
and tj ∈ r(Rj), there is an edge Ri ← Rj or Ri → Rj in G
and ti �� tj ∈ r(Ri) �� r(Rj).

2) Role and keyword covering. For each query keyword
role ri, there exists a node tj in T such that tj ∈ ri and tj

contains keyword ki.
3) Minimal. If a tuple in T is removed, T is either not

joinable or does not cover all the roles or all the keywords.
For brevity, we refer to the answer defined in Definition 1

as a final answer. A final answer covering roles customer
and company is shown in Figure 1. Given a database, there
may be many final answers to a query. Instead of producing
all the answers which may overwhelm the user, the goal of
our algorithm is to produce the most meaningful final an-
swers. The final answers defined above can be generated

906

Find all
Potential Roles

Produce List
of MJNSs
up to Dmax

Rank MJNSs Produce Final
Answers

Associated to the
Selected MJNS

Run a
DISCOVER-

based
Algorithm

Inverted
Index

or
Full Text

Search

Nodes/Edges
Importance

Schema
Graph

INDEX

Selected
Roles

INDEX

INDEX

Generate
Associated SQLs
and Execute them

on RDBMS

Rank the final
answers of each
MJNS based on

IR scores

Figure 3: System Architecture.

through a sequence of join operations on the database. To
generate such answers, we first generate the minimal join-
ing networks of schemas (MJNSs) that represent the join
operations for producing the final answers. Next, we define
MJNS, and present our method for generating them.

Definition 2. Minimal Joining Network of Schemas
(MJNS): Given a database D with schema graph G and a
set r of query keyword roles {r1, r2, . . . , rl} (where ri’s are
relations in D), a minimal joining network of schemas that
cover r is a tree T of relation schemas in G that satisfy the
following conditions. 1) Joinable. Each edge in T is an
edge in G. 2) Role covering. For each query keyword role
ri, its schema is in T . 3) Minimal. If a relation schema
in T is removed, T is either not joinable or does not cover
all the roles in r.

Three possible MJNSs for the query“Arden:company Cyn-
thia:customer” over TPC-E schema is shown in Figure 2.
To generate MJNSs, we use a breadth-first search algorithm
similar to the candidate network (CN) generator of DIS-
COVER [2]. Our algorithm starts with a role schema as an
initial tree T and extends T with a relation schema in G that
has a foreign key relationship with a node in T . The expan-
sion of T stops once the schemas of all the roles are covered
in T . To avoid generating duplicate trees, each generated
tree is assigned an ID based on tree isomorphism during
the execution of the algorithm. The ID of a tree is checked
against the existing IDs that are generated so far and the
current tree is accepted if it is not generated previously.

After the MJNSs are generated, final answers can be pro-
duced by creating an execution plan to evaluate the MJNSs.
Since many final answers can be generated for a query but
some answers may not be interesting, we aim at producing
the most interesting final answers. To achieve this, we first
limit the number of nodes in an MJNS (which is a strategy
taken by DISCOVER as well). This limits the size of final
answers too.

3. SYSTEM ARCHITECTURE
The architecture of our system for finding meaningful an-

swers is shown in Figure 3. It consists of four functional
components and three data components. Below we first de-
scribe the data components and then describe the functional
components. The search strategy and ranking algorithms
are discussed at the end of this section.

3.1 Data Components

Figure 4: Role selection by the user for query
”Joseph Retail Andersen”.

For a given relational database and its schema, the fol-
lowing three data structures are pre-built to facilitate the
search process.

Inverted Index: For each keyword in the database, the
columns with its associated table that contain the keyword
are stored in this index, which is maintained and accessed
through a table in RDBMS. This index is used to find the
roles of each keyword. We can alternatively use the built-in
full text search of the RDBMS.

Schema Graph: In order to produce MJNSs, we need
to represent the database schema in a graph. In our system,
we use the neighbor index to implement the graph. For each
node, the neighbors of the node are stored in the index. The
relations between the tables (i.e., the foreign key relation-
ships) are stored in this index as well.

Node/Edge Importance: As discussed before, our rank-
ing strategy works based on the importance of nodes and
edges of the database schema. In order to improve the per-
formance, the scores of the nodes and edges are calculated
offline and is stored in a table in the RDBMS.5 This infor-
mation is later used for ranking the list of MJNSs.

3.2 Functional Components
After receiving the query keywords from the user, for each

keyword, our system finds the columns that contain one of
the keywords using the inverted index. The list of descrip-
tions of these columns for each keyword is shown to the user
so s/he may choose the most relevant description. Such de-
scriptions tell the meanings of the attributes, and can be pro-
vided by people (such as DBAs) familiar with the database
schema.6 Based on the user selection, the role (i.e., the rele-
vant database entity) of each keyword is identified. The role
selection page is shown in Figure 4.

After finding the role of each keyword, these roles are
passed to an engine to produce the list of MJNSs (up to the
maximum size, Dmax). The engine uses the schema graph
to produce the list of MJNSs. In the next step, this list
is sorted according to the chosen MJNS ranking measure.
The sorted list is then shown to the user for selecting the
appropriate MJNS. Three MJNSs with maximum size of six
(among 42 possible MJNSs) for the query “Arden:company
Cynthia:customer” over TPC-E schema are shown in Figure
2. For example, if the IF method (to be described later) is

5The scores should be updated periodically if the database
content changes.
6In our experiments on the TPC-E database, the short at-
tribute descriptions are taken from the TPC-E document.

907

… A
… a
… a
… a
… b
… b
… c
… c
… d

… A
… a
… b
… c
… d

r’

r

… A’
… a
… a
… a
… a
… b
… b
… b
… b

… A
… a
… b
… c
… d

r’

r

(a) (b)

Figure 5: Two different instances of the foreign key
connections between tables r and r′

used for ranking, the second MJNS (b), will get the highest
rank among the others. For each selected MJNS, the as-
sociated SQL statement is generated and executed against
the RDBMS. The final answers from this selected MJNS are
then ranked by their IR scores. A final answer, associated
to the second MJNS in Figure 2 (b), is shown in Figure 1.

3.3 Ranking Strategies
We propose and use several methods for ranking minimal

joining networks of schemas (MJNSs). The proposed meth-
ods work just based on the database schema and its given in-
stance, assuming that no extra information (e.g., query logs
or inheritance relationships among the tables) is available.
The methods use information-theoretic measures to evalu-
ate the importance of relations and/or edges in the given
database, and rank the MJNSs based on the importance of
the relations and/or edges in an MJNS. We classify the pro-
posed methods into three categories: (1) ranking based on
the importance of the edges in an MJNS; (2) ranking based
on the importance of the nodes in an MJNS; and (3) rank-
ing based on the importance of both nodes and edges in an
MJNS (i.e., a hybrid method). We found in [4] that one
of the proposed edge based ranking methods (IF) outper-
forms other methods7. (Due to space limit, we only present
one ranking method here; however, all are available in the
system and for demonstration.) The details of our proce-
dure for ranking MJNSs using other ranking strategies are
described in Kargar et al., [4].

We use the average importance score of the tables and
edges associated with these non-role relation schemas to
compute an importance score for an MJNS. To have a ground
truth, we construct a gold standard for relevance of answers
from a transaction log of the TPC-E database. This is used
to evaluate the effectiveness of our measures which do not
require such external information.
Edge-based Ranking, Instantiation Fraction (IF): In-
tuitively, edge strength can be measured by the fraction of
the join key values being instantiated. The more fraction of
primary key values are instantiated, the more important the
edge is. Unlike methods for summarizing database schema in
[5], we do not assume that by increasing the number of con-
nections between two tables, the importance of the edge de-
creases. Therefore, we propose the following measure, called
instantiation fraction (IF), to quantify the importance of an
edge based on the fractions of instantiated key values.

STIF (r.A, r′.A′) =
N inst

r.A

Nr
× N inst

r′.A′

Nr′

where N inst
r.A is the number of tuples in r that instantiates

the edge between r.A and r′.A′, and Nr is the total number

7We evaluated different methods through a user study and
by comparing them to the gold standard.

Figure 6: First page of the system with parameters.

of tuples of table r. STIF (r.A, r′.A′) of the the left and right
instances in Figure 5 is equal to 1 and 0.5, respectively. We
believe the left instance represents a stronger association
between r and r′. This is the reason the first MJNS (a) in
Figure 2 gets a lower rank than the second MJNS (b). The
status type table has five different statuses (i.e., Completed,
Active, Submitted, Pending, and Canceled). Neither the
customer table nor the company table instantiate all of the
statues of the status type table.

4. DEMONSTRATION PLAN
We developed a web-based browsing interface using Java

to support interactive keyword search in a relational database
(i.e., the TPC-E warehouse). The first page of the inter-
face is shown in Figure 6, where the user can specify query
keywords and other parameters of the system (such as the
ranking method, whether to penalize larger MJNSs and to
normalize the scores) (See [4] for more details.) The second
page of the system is for choosing the right roles (Figure
4). Then, the ranked list of MJNSs, based on the selected
ranking method, is shown to the user (Figure 2). The last
step for the user is to choose the relevant MJNS. The fi-
nal answers associated to the selected MJNS, which is a list
of trees of tuples ranked by their IR scores, are shown in
the last page (one final answer is shown in Figure 1). In the
demonstration, users are able to try different search methods
and compare the accuracies of them against a gold standard.

5. REFERENCES
[1] V. Hristidis, L. Gravano, and Y. Papakonstantinou.

Efficient ir-style keyword search over relational
databases. In Proc. of VLDB’03, 2003.

[2] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In Proc. of
VLDB’02, 2002.

[3] M. Kargar and A. An. Keyword search in graphs:
Finding r-cliques. In Proc. of VLDB’11, 2011.

[4] M. Kargar, A. An, P. Godfrey, J. Szlichta, and X. Yu.
Meaningful Keyword Search in RDBMS. Technical
report, 2013. www.cse.yorku.ca/techreports/2013.

[5] X. Yang, C. M. Procopiuc, and D. Srivastava.
Summarizing relational databases. In Proc. of
VLDB’09, 2009.

908

