
Exploring Cloud Opportunities from

an Array Database Perspective
Alex Dumitru

Jacobs University Bremen
College Ring 1

28759 Bremen, Germany
+494212003139

m.dumitru@jacobs-
university.de

Vlad Merticariu
Jacobs University Bremen

College Ring 1
28759 Bremen, Germany

+494212003139

v.merticariu@jacobs-
university.de

Peter Baumann
Jacobs University Bremen

College Ring 1
28759 Bremen, Germany

+494212003178

p.baumann@jacobs-
university.de

ABSTRACT

Since array data of arbitrary dimensionality appears in massive

amounts in a wide range of application domains, such as geographic

information systems, climate simulations, and medical imaging, it

has become crucial to build scalable systems for complex query

answering in real time. Cloud architectures can be expected to

significantly speed up array databases.

We present an enhancement of the well-established Array DBMS

rasdaman with intra-query distribution capabilities: requests, in-

coming in the form of database queries, are broken into sub-queries

which are then distributed in a network of known peers. The

splitting strategies ensure that the network’s processing power is

fully exploited, while at the same time enabling optimizations such

as network traffic minimization.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server

E.1 [Data Structures]: Arrays

H.2 [Database Management]: Query languages

General Terms

Algorithms, Performance, Design, Reliability, Experimentation.

Keywords

Distributed array databases, rasdaman, Big Data.

1. INTRODUCTION
Multi-dimensional, high-volume arrays appear in a large variety in

manifold domains, such as medical imaging, geographic

information system, environmental and astronomical observations,

or high precision simulations of physical phenomena [6][16].

While in classical relational systems tuples are well below database

page size, single array objects easily exceed today’s server RAM,

such as 4-D climate simulation data cubes with dozens of

Terabytes. Operations on arrays are numerically quite expensive,

and consequently array database queries normally are CPU-bound

as opposed to the often IO-bound relational query evaluation.

Therefore, efficient processing is a critical factor for the overall

query response time.

Beyond query optimization [15], parallel query processing is the

most promising technique to speed up complex operations on large

data volumes [5]. Intra-query parallelism is a well-established

mechanism for achieving high performance in relational database

systems. However, specific properties of arrays require different

approaches in the attempt of applying the same methods on array

database systems. The most characterizing property of arrays is the

well-defined Euclidean neighborhood of cells, which has high

impact on access locality (when a particular cell is accessed it is

extremely likely that its neighbor pixels will get accessed, too) and

induces efficient partitioning techniques for storage, like tiling and

[11] chunking [12].

In this contribution we describe the extension to an established

Array DBMS, rasdaman [13], that takes advantage of the shared-

nothing cloud architecture in order to distribute the processing

resulting from complex, array based operations. The preliminary

runs show promising results in terms of processing speed-up and

scalability.

The remainder of this paper is organized as follows. In Section 2

we review the state of the art. Our approach to distributed array

query processing in a cloud, the rasdaman federation, is introduced

in Section 3. In Section 4, first performance evaluation results are

presented, and Section 5 gives a conclusion.

2. STATE OF THE ART
Exploiting parallelism to process queries has been widely explored

for improving query response times [1][3]. Different strategies and

algorithms have been devised to address this issue in relational

databases. As RDBMSs are usually IO-bound, most of them focus

either on partitioning the data and applying the same query

execution tree to smaller partitions or distributing a limited set of

operators to different processors on the same machine [2].

Array support for databases has only recently found major interest

in the database community, although relevance has been claimed

already early by Maier [17], and the fully multi-dimensional Array

Algebra [7] and its implementation, rasdaman [13], have been

around for some time. Meantime, several more array database

approaches exist, and a first workshop dedicated to this class of

DBMSs has been held [14].

ArrayStore is a storage manager designed for large multi-

dimensional arrays [4]. It supports parallel processing of an array

on several nodes simultaneously. However the intra-query

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.

DanaC’14, June 22 2014, Snowbird, UT, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2997-2/14/06…$15.00.

http://dx.doi.org/10.1145/2627770.2627775

mailto:Permissions@acm.org

functionality is provided by applying the entire set of operations on

each pre-partitioned chunk and merging the results.

An earlier attempt at implementing intra-query parallelization in

rasdaman was done using MPI for inter-process communication

[5]. It defined two types of servers, Scheduling Servers that receive

queries and distribute them across the network and Slave Servers

used for answering query fragments. However, this implementation

restricts the scalability of the system as the number of servers from

each type has to be carefully chosen based on the load in the system

and the number and type of queries being executed. Further, it has

a single point of failure.

The approach reported here uses a different paradigm, a shared-

nothing architecture in which queries are dynamically split into

execution units – i.e., subqueries – which are shipped to the data

sites. Queries are split in a way that minimizes intermediate result

transfer between the participating nodes.

3. THE RASDAMAN FEDERATION

3.1 The rasdaman engine
In this section we offer a brief overview of the rasdaman Array

DBMS, as far as required for this discussion. The complete

rasdaman query language, algebra, architecture, and impact on

standardization are presented elsewhere [7][8][9].

In rasdaman, arrays are modeled as function mappings form an n-

dimensional domain to a value set. Arrays are typed – with atomic

or structured types – and have an extent that can have fixed or

variable bounds in each direction.

Anticipating its embedding into the relational model, arrays in

rasdaman are grouped into tables (called collections) with two

columns, one holding the array and the other one an object

identifier. In this respect, rasdaman can be seen as a column store

specialized towards arrays.

The rasdaman query language [7], rasql, respects the set-oriented

SELECT/FROM/WHERE paradigm of SQL and extends it with n-

D array operators. These are based on the rasdaman Array Algebra,

a minimal, safe, and optimizable framework for array processing.

As an example, the following query iterates over all arrays in

collection ExampleImageSet, filters those where the average nir

(near-infrared) value exceeds threshold 200, and returns a TIFF of

the band ratio between the red and nir channel for a given bounding

box:

SELECT encode(

 ((m.red – m.nir) / (m.red + m.nir))

 [0:1000,0:1000],

 “image/tiff”)

FROM ExampleImageSet AS m

WHERE avg_cells(m.nir <= 200)

Prior to evaluation, queries undergo heuristic optimization based on

about 150 rewriting rules [15]. Finally, queries are processed using

the “tile streaming” paradigm so that large objects are loaded and

evaluated only piecewise.

3.2 Concept description
Among the parallelization techniques that rasdaman implements,

the latest one is intra-query parallelization where incoming queries

are transparently split and distributed over a network of known

peers. In the effort of adapting the engine to cloud processing

patterns, two main components have been identified: one handling

communication and gathering information about the collections

sitting on every server, and a processing unit responsible with

dividing work among available nodes and executing operations on

local data. Each node has an instance of both.

The federation daemon collects and stores statistics from the other

network nodes and provides real time updates about local changes.

Information exchanged includes available datasets, CPU load, and

memory usage per rasdaman host. In a consistent state, all

federation daemons in a system will store the same information.

The processing component is represented by the rasdaman server.

Using information from the federation daemon it breaks queries

into sub-queries to be executed on peer nodes, ships them, and

assembles the intermediate results provided by the nodes into the

final query result. Actually, the rasdaman server structure is more

involved, but we omit the details as they do not contribute to the

discussion on hand.

Thus, we define a rasdaman network node as a pair of a federation

daemon and a rasdaman server. A rasdaman peer network, then, is

a collection of one or more nodes that can communicate with each

other. Any peer can receive a query and will subsequently act as

this query’s dispatcher, so all peers are at the same level and there

is no single point of failure. Should a node become inaccessible

then the peers will recognize this and will not any longer consider

this peer for distribution. Conversely, a peer at any time can join

the network.

An important aspect of the rasdaman network is its flexibility. In

the next subsections we will describe each component in detail and

explain how network settings can be tweaked to match different

scenarios.

3.3 Communication Model
As mentioned above, communication between nodes is maintained

by the federation daemon. Its main purpose is to ensure consistency

between the nodes in the network by keeping track of changes in

the local metadata and propagating them timely throughout the

network. Three design goals have received particular attention:

3.3.1 Robustness
The federation daeemon needs to be highly resilient against internal

(wrong configuration parameters, implementation mistakes) and

external (network delay, dependent services failing) errors. Failures

are considered regular events in the workflow that can happen at

any time. Internally the daemon is divided into subservices, each

performing a specific task such as metadata tracking, statistics

gathering, etc. Each node is independent and is automatically

restarted upon failures. This allows the service to function well in

face of occasional localized failures which are expected in cloud

environments, thereby making it highly robust. Furthermore, the

rasdaman engine is designed to continue serving local collections

even in case the daemon stops working completely for some reason.

3.3.2 Consistency
Consistency of the metadata in the network is another important

quality. As the queries that rasdaman executes usually involve long

running processes dealing with large sets of data being executed on

multiple servers, incorrect metadata can lead to queries failing or

returning wrong results.

The nodes send status messages regularly, exchanging information

about the metadata that is stored on the local node plus their

knowledge of the overall network. Each node keeps in its own

registry a list of the local metadata objects together with a sequence

number incremented each time a change is detected. A status

message consisting of the local status along with the information

received from the other nodes in the network is broadcast at regular

intervals. When a node receives a status message it decides if it

needs to update its registry entry for the sender node based on the

following algorithm:

 If the sequence number received is larger than the one kept in

the registry then the local entry is updated.

 If the sequence number is identical to the local one but the

object is different, a simple majority vote in the network is

started to decide which metadata information is correct.

 If sequence number and object are identical to the local

registry information, no action is taken.

Furthermore, at each metadata change, a status message is

automatically broadcast to ensure prompt consistency.

3.3.3 Flexibility
One of the main qualities of the rasdaman engine is the flexibility

that it gives system administrators to adjust the system in order to

increase performance and adapt to the current environment, for

example by choosing the storage method or the tiling scheme.

The federation daemon continues this tradition by offering

administrators both the option of configuring the communication

parameters (status message frequency, node timeout interval etc)

and the network topology. Nodes can be grouped into two

categories, which can be combined:

 Inpeer – the current node accepts requests from the node listed

as an inpeer but abstains from sending requests to it.

 Outpeer – the current node can send requests to the outpeer

node but is not allowed to receive requests from it.

This can be exploited by administrators to create complex network

topologies both inside internal cloud networks and between

external networks. Data centers can use this feature to enable or

disable communication patterns between them based on data access

agreements. It also allows them to scale their connection by adding

or removing entry points, on-demand.

3.4 Query Distribution Model
A rasdaman server receiving a query splits and distributes it in two

steps: first the query is broken down, and then the optimal server is

chosen for the execution of each subquery.

3.4.1 Query breakdown
Goal is to divide the query into sub-queries that can be executed

independently on different federation nodes (again, we ignore

parallelization inside a node in this context). The following

algorithm maximizes parallelization:

1. For each object addressed in the query received, inquire the

federation daemon to determine set of servers on which the

object is available. Each object access node in the query tree

is tagged with the set of nodes offering it.

2. Starting from each object access node the query tree is walked

upwards to combine larger processing units. The node set tags

are propagated accordingly. When tree branches meet, their

tag sets are intersected to yield the parent node’s tag set.

3. When a tag set gets empty then the distribution algorithm

stops, and considers the children as independent subqueries to

be distributed to some node listed in the tag set.

The algorithm ensures that the sub-trees to be executed remotely

are maximal. This basic algorithm can be modified for different

goals. For example, we consider the data flow along each operator

1 single core 2007 Xeon processor 1.2 GHz, 615 MB RAM

tree edge and determine breakpoints with minimal transport costs.

This way, network traffic can be optimized.

Fig. 1 shows a scenario where the user wants to derive the

difference between the NDVI maxima of images A and B; NDVI

(Normalized Difference Vegetation Index) belongs to the family of

band ratio algorithms and allows, by comparing the nir (near-

infrared) and red bands of a satellite image, to determine the

probability of a pixel containing vegetation. The receiving node

doesn’t host neither A or B, however it knows, through the

federation daemon, where they sit. Therefore, sub-requests can be

spawned to fetch information from these servers. The split doesn’t

take place at the bottom of the tree (i.e. where data are loaded into

the engine), but a position in the query tree where the data traffic is

minimized. In the example on hand, the max aggregate delivers a

single number, hence is an optimal point for sub-query generation.

The nodes A and B compute the maximum NDVI over each array

in parallel and send back the resulting two values. The receiving

node performs the subtraction and sends the result back to the user.

3.4.2 Determining the optimal server
After identifying the query sub-trees that can be executed remotely,

each one is labeled with a set of possible network destinations. This

set is determined in the query breakdown phase and contains the

servers that have all the objects affected by the sub-tree available.

When more than one server is available for the execution of a sub-

tree, the best one is chosen based on the statistics offered by the

federation daemon. Preferences can be set by the network

administrator, depending on the anticipated query load. As queries

usually are CPU-bound a common strategy is to select the server

with the most CPU resources available [16]).

4. PRELIMINARY RESULTS
While rigorous performance evaluation is under work, we already

have made first measurements to assess feasibility of our approach.

To this end, a rasdaman federation has been deployed in the

Amazon Elastic Cloud (EC2) environment [10]. Test queries have

been executed in a series of scenarios varying in the number of

network nodes. Each node instance was of type “micro”1. The test

Figure1. Sample distribution of a rasdaman query in a

peer network.

data set consists of a 2-D RGB image of 9 million pixels

representing the visible channels of a hyperspectral satellite image.

We have measured the execution time of two queries:

 “the average over all the image cells”:

SELECT avg_cells(a) FROM satImages a

 “the histogram over the red channel”:

SELECT MARRAY x in [0:256]

 VALUES count_cells(a.red = x)

FROM SatImages as a

Fig. 2 shows the results obtained. We observe good speedups for

both queries. However, the average query computing is clearly

affected by the overhead induced by the query breakdown and data

shipping as the number of servers grows. The second query is much

more computationally intensive, hence the overhead gets

negligible. This indicates several dimensions that need to be taken

into account when estimating the system’s scalability, some of

which we will discuss in the conclusion below.

5. Conclusion
We have presented a system which, given a SQL style query on

array data of any dimensionality, breaks it into sub-queries

distributed to a network of known peers, taking full advantage of

the available processing power. Several optimizations have already

been implemented (such as minimizing the network traffic or

sending requests to the servers having the most available CPU),

however, as described below, there are still many to be applied.

In this paper, we tried to determine whether cloud computing may

be used to speed up array database queries. Since the execution time

is usually heavily influenced by the CPU power, we believe that the

answer is yes: cloud computing represents a great opportunity for

speeding-up Array DBMS queries.

Future work plans include two main topics: transparent query

object distribution. Currently, in order to distribute an object over

several servers, the user has to split it manually and insert each part

locally.

Both these features can be automated. As a first step, we plan to

extend rasdaman’s query rewriting engine with rules targeting

distributed objects. Then we will investigate different partitioning

strategies, which we hope will stay at the basis of our automated

data ingestion process.

ACKNOWLEDGMENTS
Part of this work has been supported through EU FP7 EarthServer

(www.earthserver.eu). Thanks to George Merticariu for the cloud

benchmarking suite.

6. REFERENCES
[1] Hamid Pirahesh, C. Mohan, Josephine Cheng, T. S. Liu, and

Pat Selinger. Parallelism in relational data base systems:

architectural issues and design approaches DPDS, ACM,

New York, NY, USA, 1990.

[2] De Witt, D.J., " A Multiprocessor Organization for

Supporting Relational Database Management Systems,"

Computers, IEEE Transactions on , vol.C-28, no.6,

pp.395,406, June 1979.

[3] Hong, Michael A. Olson Wei Michael, and Michael Ubell

Michael Stonebraker. "Query processing in a parallel object-

relational database system." Data Engineering: 3, 1996.

[4] Soroush, Emad, Magdalena Balazinska, and Daniel Wang.

"Arraystore: a storage manager for complex parallel array

processing." Proceedings of the 2011 ACM SIGMOD

International Conference on Management of data. ACM,

2011.

[5] Hahn, Karl, and Bernd Reiner. "Intra-query parallelism for

multidimensional array data." 28th International conference

on very large data bases (VLDB), Hongkong. Vol. 20. 2002.

[6] Baumann, Peter, et al. Geo/environmental and medical data

management in the RasDaMan system. VLDB. 97, 1997.

[7] Peter Baumann: A Database Array Algebra for Spatio-

Temporal Data and Beyond. The Fourth International

Workshop on Next Generation Information Technologies and

Systems (NGITS '99), Zikhron Yaakov, Israel, Lecture Notes

on Computer Science 1649, Springer Verlag, July 5-7, 1999.

[8] Baumann, Peter. "The OGC web coverage processing service

(WCPS) standard." Geoinformatica 14.4 (2010): 447-479.

[9] Baumann, Peter, et al. "The multidimensional database

system RasDaMan." ACM SIGMOD Record, Vol. 27, No. 2.

ACM, 1998.

[10] Amazon Web Services. Amazon Elasic Compute Cloud -

User Guide. API Version. 15.10.2013.

[11] P. Baumann, S. Feyzabadi, C. Jucovschi: Putting Pixels in

Place: A Storage Layout Language for Scientific Data. Proc.

IEEE ICDM Workshop on Spatial and Spatiotemporal Data

Mining (SSTDM-10), pp. 194 – 201, December 14, 2010.

[12] S. Sarawagi, M. Stonebraker. Efficient Organization of Large

Multidimensional Arrays. Proc. ICDE, Washington, DC,

USA, pp. 328-336, 1994.

[13] Peter Baumann: On the Management of Multidimensional

Discrete Data. VLDB Journal 4, Special Issue on Spatial

Database Systems, pp. 401-444, 1994.

[14] P. Baumann, B. Howe, K. Orsborn, S. Stefanova:

Proceedings of the 2011 EDBT/ICDT Workshop on Array

Databases, Uppsala, Sweden, March 25, 2011 ACM 2011.

[15] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland

Ritsch, Norbert Widmann: Spatio-Temporal Retrieval with

RasDaMan. Very Large Data Bases(VLDB), Sep 7-10, 1999.

[16] Rusu, Florin, and Yu Cheng. "A Survey on Array Storage,

Query Languages, and Systems." arXiv preprint

arXiv:1302.0103, 2013.

[17] Maier, David, and Bennet Vance. "A call to order."

Proceedings of the twelfth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems.

ACM, 1993.

Figure 2. Query execution time for different network sizes.

http://www.earthserver.eu/

