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ABSTRACT
Numerous databases promoted as SQL-on-Hadoop, NewSQL
and NoSQL support semi-structured, schemaless and het-
erogeneous data, typically in the form of enriched JSON.
They also provide corresponding query languages. In addi-
tion to these genuine JSON databases, relational databases
also provide special functions and language features for the
support of JSON columns, typically piggybacking on non-
1NF (non first normal form) features that SQL acquired over
the years. We refer to SQL databases with JSON support
as SQL/JSON databases.

The evolving query languages present multiple variations:
Some are superficial syntactic ones, while other ones are
genuine differences in modeling, language capabilities and
semantics. Incompatibility with SQL presents a learning
challenge for genuine JSON databases, while the table ori-
entation of SQL/JSON databases often leads to cumber-
some syntactic/semantic structures that are contrary to the
semistructured nature of JSON. Furthermore, the query lan-
guages often fall short of full-fledged semistructured query
language capabilities, when compared to the yardstick set
by XQuery and prior works on semistructured data (even
after superficial model differences are abstracted out).

We survey features, the designers’ options and differences
in the approaches taken by actual systems. In particu-
lar, we first present a SQL backwards-compatible language,
named SQL++, which can access both SQL and JSON data.
SQL++ is expected to be supported by Couchbase’s CouchDB
and UCI’s AsterixDB semistructured databases. Then we
expand SQL++ into the Configurable SQL++, whereas mul-
tiple possible (and different) semantics are formally captured
by the multiple options that the language’s semantic configu-
ration options can take. We show how appropriate setting of
the configuration options morphs the Configurable SQL++
semantics into the semantics of 10 surveyed languages, hence
providing a compact and formal tool to understand the es-
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sential semantic differences between different systems. We
briefly comment on the utility of formally capturing seman-
tic variations in polystore systems.

Finally we discuss the comparison with prior nested and
semistructured query languages (notably OQL and XQuery)
and describe a key aspect of query processor implementa-
tion: set-oriented semistructured query algebras. In particu-
lar, we transfer into the JSON era lessons from the semistruc-
tured query processing research of the 90s and 00s and com-
bine them with insights on current JSON databases. Again,
the tutorial presents the algebras’ fundamentals while it ab-
stracts away modeling differences that are not applicable.

1. INTRODUCTION
This is a summary of the SIGMOD

2016 tutorial. The reader is referred to
http://db.ucsd.edu/TutorialSIGMOD16/ for the
complete material, which includes the full presented
slideware and extended companion papers.

2. TOPIC AND AUDIENCE OF THIS TU-
TORIAL

Numerous databases promoted as SQL-on-Hadoop,
NewSQL and NoSQL support Big Data applications. These
databases generally support the 3Vs.(i) Volume: amount of
data (ii) Velocity: speed of data in and out (iii) Variety :
semi-structured, schemaless and heterogeneous data, which
is the focus of this tutorial. Due to the Variety require-
ment, many databases have adopted semi-structured data
models, which are generally slightly different subsets of en-
riched JSON. The databases provide corresponding query
languages.

In addition to these genuine JSON databases that utilize
variants of JSON as their data model, relational databases
also provide special functions and language features for the
support of JSON columns, often piggybacking on non-1NF
(non first normal form) features that SQL acquired over the
years. We refer to SQL databases with JSON support as
SQL/JSON databases.

In total, the tutorial’s evolving companion survey dis-
cusses the following as of April 2016 (and potentially more
by the time the reader accesses it).

1. Apache Hive [34] (description of Hive largely applicable
to Cloudera Impala [11] also)

2. IBM Jaql [7]

3. Apache Pig [26]

2229

http://dx.doi.org/10.1145/2882903.2912573


4. Apache Cassandra CQL [22]

5. MongoDB [25]

6. Couchbase’s N1QL [13, 9]

7. JSONiq [17]

8. AsterixDB’s AQL [6]

9. Google Big Query (aka Dremel [23])

10. Mongo JDBC [35] (a JDBC driver provided by the Uni-
tyJDBC middleware for SQL-compliant access to Mon-
goDB)

11. SQL-92 - as the anchor of SQL compliance

Myriads of developers and researchers currently use gen-
uine JSON databases as well as SQL/JSON databases.
Database builders and researchers work on expanding the
databases’ query language abilities. Both parties face the
challenges described below regarding surveying and com-
paring models and query languages, past and present.
This tutorial provides a deep understanding of the cur-
rent data models and query languages of genuine JSON and
SQL/JSON databases, hence enabling comparisons.

The tutorial does not limit itself to the current status of
JSON querying: The database builders and researchers need
to draw lessons from the rich body of past research on nested
[19, 32, 2], object-oriented [4] and semistructured data mod-
els and querying [14, 8, 31], which have been a topic of in-
tense database research: They were first researched in the
form of labeled graphs in the mid-90s. Then semistructured
data research boomed in the form of XML and its labeled
tree abstraction. The current industrial boost to semistruc-
tured data emerged primarily from startups, often on the
mobile and web space, that utilize Javascript and JSON.1

Many of the important language design issues of the first
eras must be recalled in the new era of semistructured data.

Similarly, when it comes to implementations, we dis-
cuss set-at-a-time algebras for semistructured and object-
oriented data, in the interest of transferring into the new
space time-tested lessons on algebra-based relational query
processing as well as lessons from set-at-a-time algebras from
past research on nested relational algebra, OQL and XQuery
[10, 37, 12, 5, 18, 30, 24, 3, 1, 36, 33, 21, 29, 20, 16, 38].

More broadly, we compare SQL (which we use as a base-
line) with the recent crop of semistructured databases and
connect the recent activity around JSON querying to the
(much richer) past activity on nested relational, OQL and
XML/labeled tree models and respective query languages
and implementations.

3. CHALLENGES IN COMPREHENDING
THE SPACE OF SEMISTRUCTURED
DBS

A first challenge is that the evolving query languages have
many variations. Some variations are due to superficial syn-
tactic differences that simply create “noise” when one tries

1Their JSON motivation is essentially the same one that the
early semistructured research works had: flexible, schema-
less data. Douglas Crockford’s book “Javascript: The Good
Parts”characteristically muses about JSON that“the less we
need to agree on in order to interoperate, the more easily we
can interoperate”.

to understand and compare systems. However, other varia-
tions are genuine differences in query language capabilities
and semantics.

Indeed, the evolving query languages of both the genuine
semistructured databases and the SQL/JSON databases fall
short of full-fledged semi-structured query language capabil-
ities.2 The designers of the new query languages can gain by
understanding and picking the salient features of past full-
fledged declarative query languages for non-relational data
models: OQL [4], the nested relational model [19, 32, 2],
XQuery, and other XML query languages [31, 14, 8].

Part of the confusion around current genuine JSON query
languages is derived from the lack of compatibility with the
well known SQL. In the interest of broadening the audi-
ence, this tutorial assumes that the audience is well-aware
of SQL and the standard material of graduate textbooks
on SQL system implementation. The tutorial does not as-
sume knowledge of other query languages. Consequently we
explain the JSON model and query languages as minimal
extensions to SQL.S

Similarly, part of the confusion and the large semantics
behind SQL/JSON is due to the retrofit of SQL for JSON
columns, while certain limitations of SQL (such as the need
of a schema) remain in place. Again, the tutorial does not
require knowledge of non-1NF, often proprietary, features
that have been added to SQL. Rather it only requires text-
book SQL-92 language and teaches the non-1NF concepts.

A final challenge in understanding the new space of
semistructured data is the lack of a succinct, mathemati-
cally clear, formal syntax and semantics by the vendors.

In summary, the mentioned challenges and confusions hurt
researchers and developers:

1. They inhibit a deep understanding of the capabilities
and important idiosyncracies of the various query lan-
guages. Potential users can be lost in superficial details
and miss fundamental points.

2. They impede progress towards declarative languages
and systems for querying semi-structured data. Lan-
guage designers and query processor implementors
need to appreciate the available options, in order to
proceed to well-designed fully-fledged languages and
efficient implementations thereof.

4. A SYSTEMATIC SURVEY OF MODEL
AND LANGUAGE OPTIONS AND VARI-
ATIONS

Step 1: Extending the relational model and SQL for
semistructured As discussed above, part of the confusion
is derived from the lack of compatibility with the well known,
baseline SQL, which both researchers and practitioners gen-
erally understand. Therefore, the first step of this tutorial
towards explaining the large space of current and past works
is the introduction of Configurable SQL++. Neglecting tem-
porarily the “configurable” aspect (discussed in Step 2), one
may think of SQL++ as a semi-structured query language,
based on extending SQL with a minimal number of features.

2Most genuine semistructured databases also fall signifi-
cantly short of full-fledged SQL capabilities, which is not
surprising since many commercial JSON databases started
as key-value and document-oriented databases.

2230



SQL++ is backwards compatible with the“textbook”SQL-92
and mostly backwards compatible with other relevant fea-
tures of the SQL standard. (The cases where it is not, such
as differences in type coercion, lend themselves to interest-
ing discussed comparisons.) Hence SQL++ can be easily
understood by SQL programmers and researchers.

The enabler of the relatively easy extension from SQL
to genuine JSON database capability is that the semi-
structured SQL++ data model is a superset of both JSON
and the SQL data model. One should think of JSON ob-
jects as tuples. Then the SQL++ model can be thought of
as expanding JSON with bags (as opposed to having JSON
arrays only) and enriched values, i.e., atomic values that are
not only numbers and strings (vendors have already made
this extension). Vice versa, one may think of SQL++ as
expanding SQL with JSON features: arrays, heterogeneity,
and the possibility that any value may be an arbitrary com-
position of the array, bag and tuple constructors, hence en-
abling arbitrary nested structures, such as arrays of arrays.
Consequently, the SQL++ query language inputs and out-
puts SQL++ data. Notice that there was no such straight-
forward correspondence between the XML model and rela-
tional, primarily due to the lack of explicit tuples in XML.

Then we incorprorate into SQL++ salient features of past
full-fledged declarative query languages for non-relational
data models: SQL non-1NF features (starting with SQL
2003), OQL, the nested relational model and query lan-
guages, and XQuery (and other XML-based query lan-
guages). For example, in the spirit of XQuery, JSONiq and
OQL, SQL++ is a fully composable and semi-structured
language, hence being able to input and output nested
and heterogeneous structures. In this tutorial, a new stu-
dent/researcher of semistructured data, who missed the
OQL and XQuery eras, will be able to absorb the essen-
tial teachings of XQuery while they are succinctly cast as
a minimally modified SQL. We describe these modifications
next, which will enable an audience member with SQL back-
ground to comprehend the fundamentals of the extension to
genuine JSON databases with minimal effort.
Minimal semantics changes Instead of inventing (or re-
inventing) multiple syntactic/semantic features for the same
fundamental functions (something that, as we show, occas-
sionally happens in SQL/JSON databases), the extension
from SQL to SQL++ is most often achieved simply by re-
moving semantic restrictions of SQL. Here are a few exam-
ples:

1. Unlike SQL’s FROM clause variables, which bind to tuples
only, the FROM clause variables of SQL++ bind to any
JSON element.

2. SQL++ is fully composable in the sense that subqueries
can appear anywhere, potentially creating nested results
when they appear in the SELECT clause.

3. While correlation of the subqueries in a FROM clause is
not allowed in SQL-92, the SQL++ subqueries of a FROM
clause may be freely correlated with (earlier defined) vari-
ables of the same FROM clause.

4. The groups created by the GROUP BY are directly usable
in nested queries - as opposed to SQL’s approach where
they may only participate in aggregate functions in very
limited and particular ways. Interestingly, the SQL++
approach ends up explaining in a simple, formal way even
SQL’s grouping and aggregation.

5. Unlike SQL, the SQL++ semantics do not require schema
or any homogeneity on the input data.

A complete specification of SQL++ can be found in [27].
Notice that features 2 to 4 above are also present in SQL
2003, which includes many 1NF features. In the interest
of unifying genuine JSON databases with non-1NF features
of SQL, this tutorial explains such features using SQL++,
which leads to syntax and semantics succinct and signif-
icantly shorter than the SQL 2003 specification. A key
methodology that leads to short, succinct semantics is the
staging, which reminds of XQuery’s specification: First we
define an SQL++ core. Consequently, additional features
and SQL compatibility is achieved as syntactic sugar over
the core.

Besides restriction removals, some extensions are also pre-
sented. For example, pivoting the tuples’ attribute/value
pairs to columns is a feature of some databases. Therefore,
SQL++ can allow a pair of variables of the FROM clause
to range over the attribute name and attribute value pairs
of input tuples. Similarly, when a FROM clause ranges over
an array, SQL++ allows a pair of variables to capture the
data at an array position and the index of this position. In
this way SQL++ seamlessly expands the logic of SQL to
“schema” inspection and arrays.

SQL++ shows positive early adoption signs: Couch-
base and UCI’s AsterixDB are in the process of
adopting SQL++.3 An earlier version of SQL++
has been used by the federated query processor of
the UCSD FORWARD application development platform
http://forward.ucsd.edu/sqlpp.

After having taught Step 1, we will show that multiple
model and language differences are superficial syntactic dif-
ferences.
Step 2: Substantial Semantic Differences between
Databases However, not all differences are superficial. Fur-
thermore, this tutorial does not suggest that SQL++ (or
some close descendant thereof) will become a standard and
remove the many variations that are now found in this space.
If nothing else, the gap between genuine JSON databases
and SQL/JSON is relatively deep as SQL/JSON is very
much based on tables and semantics around tables. Fur-
thermore, via communication with genuine JSON database
vendors we recognize that a model and query language stan-
dard is premature for such a young and fast-evolving area.
Yet, the language designers and researchers need to know
now the design options that are available to them and the
options that have been used by others, especially as it per-
tains to the handling of semi-structured aspects (semantics
for missing attributes, heterogeneous types, etc), which are
not captured by the SQL backwards compatibility. Towards
this goal the tutorial utilizes an extension of SQL++ into
Configurable SQL++, which is essentially a guery language
generator. Depending on the options that are chosen for var-
ious features, different capabilities are assumed and different
semantics emerge.

The Configurable SQL++ explains the multiple options
that language designers have and the options they have cho-
sen in current systems. The Configurable SQL++ includes
configuration options that describe

1. which features are supported and

3The tutorial’s author has collaborated with the AsterixDB
and Couchbase teams on specifying SQL++.
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2. (for the supported features) different options of language
semantics that formally capture the variations of existing
database query languages.

One particular example where configuration options cap-
ture differences concisely, is the behavior of paths of the
various query languages in the absence of information. For
example, consider a JSON object {a:1, b:2} and a path
that navigates into the absent path c. Languages differ on
what is the result of c. Is it an error? Is it a special value?
If it is a special value, how does it behave in other features
of the query language? Is the query writer given control on
what special value may emerge or whether an error will be
thrown? A configuration option captures these differences
precisely.

By appropriate choices of configuration options, the
Configurable SQL++ semantics morphs into the seman-
tics of other query languages. Hence, the audience will
be able to understand the essential differences between
the various query languages, without being swamped by
their superficial syntactic differences. Given the time
constraints, the comparisons will be mostly around the
SQL standard, three well known databases (Cassandra
CQL, MongoDB, Couchbase N1QL) and one academia-
originating system (AsterixDB AQL). Selected features will
be explained as particular settings of various configura-
tion options. The reader can find the “configuration op-
tions” surveying approach, as well as coverage of additional
databases, in the companion documents of this tutorial at
http://db.ucsd.edu/TutorialSIGMOD16/.

We expect that some of the results listed in the fea-
ture matrices describing configuration options will change
in the next years as the space evolves rapidly. Despite
the forthcoming changes, we expect Configurable SQL++
to remain a standing tool in understanding the space,
since by understanding each database’s capabilities in terms
of applicable options, the reader can focus on the fun-
damental differences of the databases. To further facil-
itate understanding of Configurable SQL++ and the ef-
fect of the various configuration options, we provide a web-
accessible reference implementation of Configurable SQL++
at http://forward.ucsd.edu/sqlpp.

Finally, with respect to configurability, we note the poten-
tial applicability of the formal capture (by the Configurable
SQL++) of capability and semantic differences in the area
of polystore querying and query rewriting [15].
Step 3: Additional Features We will also discuss fea-
tures, many of which coming from XQuery, that have not
been captured by configuration options and are not present
in current industrial languages. These will prompt a more
open-ended discussion of language designs and tradeoff’s. A
notable one is type coercion - the approaches and the pros
and cons.
Step 4: Set-at-a-time Algebras It is desirable that
the processing of semistructured queries by genuine JSON
databases leverages existing SQL query processing tech-
niques. A distinguishing feature of SQL query processing
is the utilization of algebraic plans that consist of set-at-a-
time operators. The tutorial shows next that SQL++ query
processing can be based on a SQL++ algebra, which is a set-
at-a-time algebra that extends the relational algebra. The
point is particularly relevant to genuine JSON databases, as
they evolve from key-value stores to full-blown databases.

The SQL++ algebra is representative of multiple algebras

that were proposed and used in the context of semistruc-
tured and nested data. It combines ideas that had first ap-
peared in the context of set-at-a-time algebras for XQuery
and OQL. Nested relational algebras are also explained as a
subset of the SQL++ algebra.

In the interest of capturing multiple algebraic approaches,
we present a non-minimal set of algebraic operators, along
with algebraic equivalences that explain how certain opera-
tors can be replaced by others. The provided equivalences
explain how the various approaches connect to each other,
while the commentary highlights the tradeoffs.
Open Issues Finally, we emphasize open issues in the ex-
pansion from structured to semistructured querying (dealing
with lack of typing, potential expansions to include graphs)
and briefly discuss interoperability challenges induced by
language differences.

5. OTHER DATA
Prerequisite Knowledge The attendees must have solid
knowledge of SQL-92, since it is the baseline upon which the
semistructured aspects are then added. Also solid knowl-
edge of relational algebra. Knowledge of SQL-2003 and/or
XQuery are a plus but not required.
Relevant Aspects of Presenter’s Bio Yannis Papakon-
stantinou is a Professor of Computer Science and Engi-
neering at UCSD. A common theme of his research is the
extension of database platforms and query processors be-
yond centralized relational databases and into semistruc-
tured databases, integrated views of distributed databases
and web services, textual data and queries involving key-
word search. His research has received more than 12,500
citations, according to Google Scholar, most of which refer
to his work on semistructured data, semistructured query
processing and related middleware.

In addition to his academic activity in middleware,
semistructured data and query processing, Yannis was the
Chief Scientist of Enosys Software, which built and com-
mercialized an early Enterprise Information Integration plat-
form for structured and semistructured data, utilizing XML
and XQuery. The Enosys Software was OEM’d and sold un-
der the BEA Liquid Data and BEA Aqualogic brand names,
eventually acquired in 2003 by BEA Systems.
Acknowledgments The presenter thanks his coauthors of
[28] and [27], on which most of this tutorial presentation is
based on.

Many of the language-related aspects of the proposed tu-
torial have been presented by Yannis Papakonstantinou dur-
ing the past year at talks at the following companies and
universities that develop NoSQL databases, SQL-on-Hadoop
databases or middleware that operates over them: Ama-
zon, Couchbase, MapR, Informatica (which develops middle-
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