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ABSTRACT
Sorting is a crucial operation that could be used to implement SQL
operators such as GROUP BY, ORDER BY, and SQL:2003 PAR-
TITION BY. Queries with multiple attributes in those clauses are
common in real workloads. When executing queries of that kind,
state-of-the-art main-memory column-stores require one round of
sorting per input column. With the advent of recent fast scans
and denormalization techniques, that kind of multi-column sorting
could become a bottleneck. In this paper, we propose a new tech-
nique called “code massaging”, which manipulates the bits across
the columns so that the overall sorting time can be reduced by elim-
inating some rounds of sorting and/or by improving the degree of
SIMD data level parallelism. Empirical results show that a main-
memory column-store with code massaging can achieve speedup of
up to 4.7X, 4.7X, 4X, and 3.2X on TPC-H, TPC-H skew, TPC-DS,
and real workload, respectively.

1. INTRODUCTION
In modern main-memory column-stores like SAP HANA [13],

MonetDB [8], Vectorwise [42], and Oracle Exalytics [34], queries
are read-mostly, data columns are encoded [30, 29] for memory ef-
ficiency, and their performance goal is to support real-time analytic.

Sorting, which could be used to implement SQL operators such
as GROUP BY, ORDER BY, and PARTITION BY1, is a crucial
operation in main-memory column-stores. There are a plethora
of works in main-memory databases on making sorting run faster.
Works including [21] and [10] pioneered the discussion of accel-
erating sorting on modern CPU architectures by leveraging SIMD
(Single Instruction Multiple Data) instruction set (e.g., SSE 128-
bits, AVX2 256-bits), whose instructions can execute one multi-
operand operation per cycle (each operand is b bits, where b, the
bank size, equals 8, 16, 32, or 64 in AVX2). Subsequent works
∗This work is partly supported by the Research Grants Council
of Hong Kong (GRF 521012, 15200715), Hong Kong Polytechnic
University, and Research Committee of CUHK.
†Work done while at Hong Kong Polytechnic University.
1PARTITION BY is part of SQL:2003 standard for the use of win-
dow functions.
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Figure 1: Time breakdown of TPC-H queries with ByteSlice
[14] fast scans and WideTable [31] implemented. Queries
with multiple attributes in their GROUP BY and/or ORDER
BY clauses. 10GB data. Time spent on multi-column sorting
is significant in general, except one exceptional case (Q13).

further improved the efficiency of in-memory sorting by reducing
memory access through multi-way merging [37], increasing IPC
(instructions per cycle) through bitonic merge network [26], and
enhancing scalability on multi-core through partitioning [3, 5, 36].
In what follows, we refer any SIMD-enabled sorting implementa-
tion as SIMD-sort.

In state-of-the-art column-store implementations, when there are
more than one column needed to be sorted, they are typically sorted
column-at-a-time. Consider a TPC-H query with an ORDER BY
order_date, retail_price clause. Column-stores like
MonetDB [8] would first sort column order_date in the first
round; then in the second round, it sorts column retail_price
for each group of (tied) order_date values. With the recent
advent of denormalization techniques that eliminate joins [31, 29]
and fast scan techniques that perform filtering with early stopping
[30, 14], that kind of multi-column sorting could take up a sig-
nificant portion of the query execution time. Figure 1 shows the
time breakdown of executing TPC-H queries that have multiple
attributes in their GROUP BY and/or ORDER BY clauses, which
can trigger multi-column sorting (experimental setting is given in
Section 6). In that experiment, WideTable denormalization [31,
29] and ByteSlice [14] fast scan were used, and we used one of
the most efficient SIMD-sort implementations to-date: merge-sort
with sorting-network kernel [5]. We see that the time spent on
multi-column sorting is significant — taking up 60% (Q9) to 92%
(Q10) of time in general, except for Q13, which carries out a multi-
column sorting after GROUP BY on a single attribute (so that the
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query execution is actually dominated by the single-column sorting
instead).

In this paper, we take the first step to study the issues of optimiz-
ing multi-column sorting in main-memory column-stores. Queries
that could get benefit include all those containing GROUP BY, ORDER
BY, or PARTITION BY clauses with multiple attributes, which are
not uncommon in real workloads. In TPC-H, we found 9 out of 22
such queries. In TPC-DS benchmark, we found 71 out of 99 such
queries.

Our key technique is called code massaging, which leverages
the properties of multiple available bank sizes in SIMD instructions
and forms sort keys that best utilize SIMD’s data parallelism. Using
the encoding scheme in [30], the TPC-H attributes order_date
and retail_price can be respectively encoded as 12-bit col-
umn and 17-bit column. For the example query above, state-of-the-
art main-memory column-store implementations would carry out
sorting in two rounds: first sort order_date using SIMD-sort
with 16-bit banks (i.e., b = 16); then sort retail_price using
SIMD-sort with 32-bit banks (i.e., b = 32), as retail_price
column is wider than 16 bits. A main-memory column-store, if
equipped with code massaging, could do a lot more better. For
example, code massaging would consider first “stitching” the two
columns as one (12+17)-bit super-column “order_date-retail
_price” and then sorting that using a 32-bit bank SIMD-sort.
In that code massage plan, the two columns are sorted in one go,
thereby eliminating one round of sorting. Code massaging would
also allow “bit-borrowing” among columns. For example, another
feasible plan is column order_date “borrows” one bit from col-
umn retail_price so that the query execution engine can first
sort the (12+1)-bit order_date column using a 16-bit bank SIMD-
sort , and then sort the (17–1)-bit retail_price column using
another 16-bit bank SIMD-sort. While this plan still requires two
rounds of sorting, a 16-bit bank SIMD-sort is used in place of a 32-
bank SIMD-sort in the second round, attaining 2X data parallelism
there.

To the best of our knowledge, this is the first work to pinpoint
and tackle the issue of multi-column sorting, which is emerging as a
time significant phase in recent main-memory column-store imple-
mentations. This paper makes four contributions around this new
issue. The principal contribution is code massaging, a technique
that manipulates the bits across the columns to accelerate multi-
column sorting. In order to choose the most promising code mas-
sage plan, our second contribution is an architectural-aware cost
model that quantifies the cost of different code massage plans, with
various architectural-sensitive parameter values (e.g., latency of a
cache miss) calibrated from controlled experiments. Our third con-
tribution is a round-based greedy plan search algorithm, which effi-
ciently explores the huge search space to identify the most promis-
ing plan. Our last contribution is the integration of code massaging
into a column-store prototype and the experimental evaluation on
TPC-H, TPC-H Skew, TPC-DS and real data. Empirical results re-
port a query speedup of up to 4.7X, 4.7X, 4X, 3.2X on TPC-H,
TPC-H Skew, TPC-DS, and real workload, respectively.

The remainder of this paper is organized as follows: Section 2
presents some essential background information and discusses the
related work. Section 3 presents our code massaging technique.
Section 4 presents an architectural-aware cost model. Section 5
presents the plan search algorithm. Section 6 presents our exper-
imental results. Section 7 contains our concluding remarks. For
easy reading, Table 3 in the Appendix summarizes the most fre-
quently used symbols in this paper.

2. BACKGROUND AND RELATED WORK
SIMD SIMD instructions interact with S-bit SIMD registers as a
vector of banks. A bank is a continuous section of b bits. In AVX2,
S = 256 and b is 8, 16, 32, or 64. We adopt these values in this
paper but remark that our techniques can be straightforwardly ex-
tended to other models (e.g., 512-bit AVX-512 [24] and Larrabee
[38]). The choice of b, the bank width, is on per instruction basis.
A SIMD instruction carries out the same operation on the vector of
banks simultaneously. For example, the _mm256_add_epi32()
instruction2 performs an 8-way addition between two SIMD regis-
ters, which adds eight pairs of 32-bit integers simultaneously. Sim-
ilarly, the _mm256_add_epi16() instruction performs 16-way
addition between two SIMD registers, which adds sixteen pairs of
16-bit short integers simultaneously. The degree of such data-level
parallelism is S/b.

Column Encoding In modern main-memory column-stores, data
is often stored in an encoded form [6, 12, 13, 27]. For example, in
dictionary encoding, native column values are compressed as fixed-
length order-preserving codes. All data types including numeric
and strings are encoded as unsigned integer codes. For example,
strings are encoded by building a sorted dictionary of all strings in
that column [7, 27]. Floating point numbers with limited precision
can be scaled to integers by multiplication with a certain factor [12].
From now on, we adopt fixed-length encoding and use the terms
code and value interchangeably.

Fast Scan/Lookup and Denormalization Scan and lookup are
two core operations in main-memory column-stores. A scan oper-
ation scans a column and returns a result bit vector that indicates
which records satisfy a filter. Once a column scan is completed, the
result bit vector is converted into a list of record numbers, which is
then used to look up values from other columns of interest for a
query. Recent studies [25, 30, 14] discuss how to carry out scans at
the speed of the processing core. Their main idea is to pack multi-
ple codes from the same column into the same CPU word so as to
leverage SIMD to carry out parallel predicate evaluation. The latest
work is ByteSlice [14], which chops codes into multiple bytes, so
that scans can be executed very efficiently through early stopping
while lookups can still be very efficient through byte stitching.

A recent trend of main-memory column-stores is to pre-join ta-
bles upfront and materialize join results as one or more WideTables
[31, 29]. Queries on the original database, even complex join queries,
can then be handled by fast scans on WideTables. Such a denormal-
ization approach would not incur much storage overhead because of
the various effective encoding schemes enabled by columnar stor-
age [31, 29].

Sorting Sorting is known to be both computational and memory
intensive in main-memory column-stores and has attracted great
attention in optimizing its performance. This line of works started
with [21] and [10], which pioneered the discussion of SIMD-enabled
sorting. Then, sorting had been revisited in the context of sort
merge join [26, 37, 3, 5]. It was first shown that a merge-sort im-
plementation based on bitonic sorting network and bitonic merge
yields superior performance [26, 37]. Later, merge-sort implemen-
tations based on multi-way merge and data partitioning for NUMA
architectures were introduced [3, 5]. Recently, to mitigate data
skew, a merge-sort implementation with range-partitioning and sam-
pling was proposed [36]. All these works are based on the merge-
sort framework because the structure of the merge-sort is intrinsi-

2Technically, it is a C function supported by SIMD instructions.
We use the C function names in place of the SIMD instructions for
simplicity.
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Figure 2: Multi-column sorting. Labels 1©, 2©, . . . denote the execution sequences. Steps with the same label mean they can be
executed in parallel. (a) Without code massaging (column-at-a-time) (b) With code massaging (1 round)

cally easy to be parallelized on multi-cores, compared with other
comparison-based sorts. The internal sorting operation of merge-
sort is usually based on sorting network, as sorting networks can be
implemented as a series of branch-free SIMD min/max instruc-
tions, thereby minimizing branch mis-predictions. Non-comparison
based sorting such as radix-sort had also been discussed [37, 11, 36,
22]. These works focused on exploiting SIMD to parallelize radix
calculation, and using streaming load/store instructions to reduce
cache pollution.

Overall, the performances of merge-sort and radix-sort are data-
dependent and comparable [37, 36]. Recently, the discussion of
sorting has also been extended to sorting an array of structures [22].
In [35], the discussion of sorting has been extended to the emerging
MIC (many integrated core) platforms (e.g., Intel Xeon Phi).

Multi-Column Sorting State-of-the-art column-store implemen-
tations sort multiple columns column-at-a-time [39, 13, 20, 42, 34].
Figure 2a illustrates an example of that. The example illustrates the
execution of the query belowQ1, whose result is listed on the right:

SELECT SUM(price) //Query Q1
FROM ...
GROUP BY nation_name, ship_date

nation SUM
_name ship_date (price)
AUS 0501 40
AUS 1201 50

... ... ...
USA 0301 50

In the example, the first round of sorting is carried out on column
nation_name (Step 1©). Then, the list of (rearranged) object
identifiers (oid’s) of the sorted column is extracted and passed to a
lookup operator, which aims to rearrange the codes in the other
column, ship_date, based on the order predefined by sorted

nation_name (Step 2©a). Based on the grouping information
obtained by scanning the sorted nation_name (Step 2©b), the
second round of sorting is carried out on column ship_date per
nation_name group (e.g., AUS) (Step 3©). After that round of
sorting, each 〈nation_name, ship_name〉 group (e.g., 〈AUS,0501〉)
invokes the lookup operator to fetch the values belonging to that
group from column price (Step 4©). Finally, price values within
each group are aggregated through the SUM operator (Step 5©).

3. CODE MASSAGING
The goal of code massaging is to speed up multi-column sorting

triggered by the existence of ORDER BY, GROUP BY, or PARTITION
BY clauses in a SQL query. Its key idea is to manipulate the bits
across the columns to be sorted to form new sort keys.

For correctness, we have to ensure that sorting multiple columns
with code massaging would return the same ordered list of object
identifiers as with the one without using code massaging (i.e., sort-
ing m columns in m rounds). Without loss of generality, we focus
on sorting in ascending order. Denote Ci as a column/attribute,
wi as the code width of Ci, and t.Ci as the code/value of attribute
Ci in tuple t. For an ORDER BY C1, C2, . . ., Cm clause, the
correct sorting order of two tuples t1 and t2 is defined as t1 ≺ t2,
where t1.Ck < t2.Ck for some 1 ≤ k ≤ m and t1.Ci = t2.Ci for
all i < k.

Now, let us denote y||z as the code formed by concatenating
code y and code z, and |x| be the width of code x. For instance,
given y = (111)2 and z = (0000)2, y||z = (1110000)2. So,
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Figure 3: Performance of Various Code Massage Plans

given two tuples t1 = 〈x1, y1||z1〉 and t2 = 〈x2, y2||z2〉, where
|x1| = |x2|, |y1| = |y2|, |z1| = |z2|, we have:

LEMMA 1 (CORRECTNESS OF CODE MASSAGING).

t1 ≺ t2
⇔〈x1, y1||z1〉 ≺ 〈x2, y2||z2〉
⇔〈x1||y1, z1〉 ≺ 〈x2||y2, z2〉

PROOF. If 〈x1, y1||z1〉 ≺ 〈x2, y2||z2〉, then there are two pos-
sible relationships between x1 and x2: either x1 < x2 or x1 = x2.

Case 1 (x1 < x2):

x1 < x2

⇒x1||y1 < x2||y2
⇒〈x1||y1, z1〉 ≺ 〈x2||y2, z2〉

Case 2 (x1 = x2):
Then there must be y1||z1 < y2||z2. Hence two possible rela-

tionships between y1 and y2: either y1 < y2 or y1 = y2.
Case 2a: (y1 < y2):

x1 = x2, y1 < y2

⇒x1||y1 < x2||y2
⇒〈x1||y1, z1〉 ≺ 〈x2||y2, z2〉

Case 2b: (y1 = y2):

y1||z1 < y2||z2, y1 = y2

⇒z1 < z2

x1 = x2, y1 = y2, z1 < z2

⇒x1||y1 = x2||y2, z1 < z2

⇒〈x1||y1, z1〉 ≺ 〈x2||y2, z2〉

The proof of the opposite direction is similar.

Lemma 1 essentially states that for ORDER BY clause, the sort
order remains intact even though we shift the bits across the columns.

[Example Ex1] Figure 2b shows an example based on query Q1.
With code massaging, the two columns nation_name (10-bit)
and ship_date (17-bit) are “stitched” together as one 27-bit col-
umn. Concretely, the code massaging process first left-shifts (�)
column nation_name by 17 bits, and then carries out a bitwise-
OR (∨) with column ship_date to form the 27-bit new column.
From the figure, we see that we can sort the 27-bit column using
one round, and by Lemma 1 we see that the ordered list of object
identifiers is the same as the one obtained through two rounds of
sorting in Figure 2a.

Figure 3a shows the performance results for this example (ex-
perimental setting is given in Section 6). In this experiment and the

rest of this section, we generated N = 224 tuples and a w-bit col-
umn with 213 distinct values3 uniformly distributed on a [0, 2w−1]
domain. Since the steps after sorting are the same no matter code
massaging is used or not (e.g., see Step 4©/ 3© in Figure 2a/b), we
only report the running time up to the point where all sortings are
done. We use the notation Ri: w/[b] to denote that a b-bit-bank
SIMD-sort is used to sort a w-bit column in the i-th round of sort-
ing. So, we denote the original column-at-a-time plan, which sorts
the two columns nation_name (10-bit) and ship_date (17-
bit) in two rounds, as plan

P Ex1
0 = {R1 : 10/[16], R2 : 17/[32]}

The code massage plan, which stitches the two columns into one
by left-shifting 17-bits from the right column to the left, is denoted
as P Ex1

�17={R1: 27/[32]}.
From Figure 3a, we observe that P Ex1

�17 has improved the perfor-
mance of such multi-column sorting by 44%. That attributes to not
only the elimination of one round of sorting, but also the elimina-
tions of one lookup operation and one scan operation (Steps 2©a
and 2©b in Figure 2a). From Figure 3a, we also observe that the
bitwise and memory operations required by code massaging (Step
1© in Figure 2b) incur insignificant cost.

Code massaging is not as simple as always stitching all input
columns together. One obvious example is that we cannot stitch all
input columns together when their total code width W exceeds 64
bits, the maximum bank width of AVX2. Another example is as
follows.

[Example Ex2] Figure 3b shows the performance results of a multi-
column sorting on a 15-bit column and a 31-bit column. We see that
a reckless stitch of the two columns as a 46-bit column would re-
sult in a degraded performance. Originally, the two columns could
be sorted by one 16-bit SIMD-sort and one 32-bit SIMD-sort (Plan
P Ex2
0 = {R1 : 15/[16], R2 : 31/[32]}). Stitching them together

(Plan P Ex2
�31 = {R1 : 46/[64]}) would require one 64-bit SIMD-

sort instead. 64-bit SIMD-sort has a relatively weaker data par-
allelism. That outweighs the benefit of eliminating one round of
sorting, explaining why P Ex2

0 is better than P Ex2
�31 for this specific

instance.
Code massaging actually involves a huge space of plan choices

in addition to the original column-at-a-time plan and the simple
“stitch-all” plan. In the following, we illustrate that with two more
examples.

[Example Ex3] This example is a multi-column sorting on a 17-bit
column and a 33-bit column. Figure 4a shows the performance of
all possible massage plans for that. The plans P Ex3

�33 and P Ex3
�17 at

the two extremes are referring to the same “stitch-all” plan: P Ex3
�33

3If w < 13, then 2w distinct values are generated instead.
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num. SIMD-sort (Nsort) 2.0e06 2.1e06 2.9e06 4.4e06 4.6e06 31756 15878 8192 7235 64 2
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Figure 4: [Example Ex3] ORDER BY 17-bit-column, 33-bit-column

shows the result of shifting all bits of the 33-bit column to the left
and forming a single 50-bit super column while P Ex3

�17 shows the
result of shifting all bits of the 17-bit column to the right and form-
ing the same 50-bit super column. Both plans require only one
round of 64-bit SIMD-sort. From Figure 4a, we observe that P Ex3

�33

and P Ex3
�17 are slightly inferior to the original column-at-a-time plan

P Ex3
0 for the same reason that we explained in Example Ex2.
Figure 4a indeed contains observations that are more intriguing.

First, we see that by left-shifting one bit from the original plan
P Ex3
0 ={R1: 17/[32], R2: 33/[64]}, the optimal plan P Ex3

�1={R1:
18/[32], R2: 32/[32]} is found. P Ex3

�1 is superior in terms of using
32-bit SIMD-sort in both rounds when compared with P Ex3

0 .
Second, as we further left-shift the bits from P Ex3

�1 , we observe a
time hill with plan P Ex3

�10={R1: 27/[32], R2: 23/[32]} as the peak,
plan P Ex3

�15={R1: 32/[32], R2: 18/[32]} as the left tail, and the
optimal plan P Ex3

�1 as the right tail. We explain that starting from
the right tail, i.e., P Ex3

�1 . Referring to Figure 4b, as we left-shift one
bit from P Ex3

�1 and result in plan P Ex3
�2={R1: 19/[32], R2: 31/[32]},

that would:

(a) increase the number of groups Ngroup formed by the tied val-
ues in the first round from 15878 to 31756, since the width of
the first column has increased by one and more distinct values
are found in that column;

(b) increase the number of SIMD-sort invocationsNsort in the sec-
ond round from 15878 to 31756, because each group formed in
the first round would invoke one SIMD-sort;

(c) decrease the number of codes for sorting N i
code in each group

i in the second round from 1056 to 528, because now there are
more groups.

Therefore, the time cost T k
sort of the k-th round of sorting can be

captured by:

T k
sort =

Nsort∑
i=1

Tsort(N
i
code, b) (1)

where Tsort(N
i
code, b) is the time spent by a b-bit SIMD-sort to

sort N i
code codes. Assume the implementation of merge-sort with

sorting-network kernel [5] is used, then:

Tsort(N
i
code, b) = Coverhead + Tmergesort(N

i
code, b) (2)

where Coverhead is the overhead of memory allocation and initial-
ization of a merge-sort function call, and Tmergesort(N

i
code, b) is

the cost of running a SIMD-enabled merge-sort.
So, following the discussion above, P Ex3

�2 has a larger Nsort but
a smaller N i

code when compared with P Ex3
�1 . That means P Ex3

�2 has
to carry out more SIMD-sort in round 2 but each SIMD-sort in that
round has a smaller input size. With the existence of Coverhead
per SIMD-sort, the increase of Nsort would increase the overall
overhead in T 2

sort, and that outweighs the decrease of per-merge-
sort running time caused by the decrease of N i

code. That explains
the uphill from P Ex3

�1 to the peak P Ex3
�10.

The downhill from the peak P Ex3
�10 to the left-tail P Ex3

�15 can be
explained similarly, but in a different angle. Referring to Figure
4b, we observe a decrease in the number of SIMD-sort (Nsort) in
round 2 starting from P Ex3

�11. That is because as we continue to
shift more bits to the left, more groups are generated in the first
round, and each group has fewer tuples. Eventually, some groups
would contain just one tuple. Notice that groups with one tuple
do not require sorting. So, when we proceed from P Ex3

�10 to P Ex3
�15,

whileNgroup would increase, more singleton groups are generated,
causing fewer SIMD-sorts are called (i.e., Nsort would decrease).
That explains the downhill from the peak P Ex3

�10 to P Ex3
�15. In Figure

4a, T 1
sort, the time cost of the first round of sorting, remain steady

throughout the whole hill because all plans between the left-tail
P Ex3
�15 and right-tail P Ex3

�1 use the same 32-bit SIMD-sort to sort the
same amount N = 224 of codes in the first column.

Let us move forward to observe the consequence of further left-
shift one more bit from the left-tail P Ex3

�15 ={R1: 32/[32], R2:
18/[32]} of the hill to P Ex3

�16={R1: 33/[64], R2: 17/[32]}. There,
we observe an increase in cost. That is because P Ex3

�16 has to use
a 64-bit SIMD-sort in place of a 32-bit SIMD-sort to sort a 33-
bit column in the first round. From P Ex3

�16 to P Ex3
�17={R1: 34/[64],

R2: 16/[16]} we observe a minor decrease in cost. That is due to
the switch of using a 16-bit SIMD-sort in round 2.4 The relatively
stable performance between P Ex3

�17 and P Ex3
�32={R1: 59/[64], R2:

4In current generation of SIMD, i.e., AVX2, we find that 16-bit
SIMD-merge-sort only outperforms its 32-bit counterpart slightly.
That is because some SIMD functions available for 32-/64-bit
banks are not available for 8-/16-bit banks. So, they have to be
simulated with more primitive instructions. That is also the reason
why we do not use 8-bit bank SIMD-merge-sort in this paper.
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oid A B
x 2 5
y 2 1
z 7 4

oid A||B
x 2 5
y 2 1
z 7 4

→
oid sort(A||B)
y 2 1
x 2 5
z 7 4

oid A||Bc

x 2 2
y 2 6
z 7 3

→
oid sort(A||Bc)
x 2 2
y 2 6
z 7 3

(a) Input (b) Wrong (c) Correct

Figure 5: Code massaging ORDER BY with attributes in dif-
ferent orders: (a) input and result of ORDER BY A ASC, B
DESC; (b) without complement (wrong); (c) complement before
stitch (correct)

1/[16]} is due to the consistent use of 64-bit SIMD-sort in round 1
and 16-bit SIMD-sort in round 2.

Let us wrap up this long example by explaining the increas-
ing cost from P Ex3

0 to P Ex3
�16, which involves right-shifting bits

from the 17-bit first column to the 33-bit second column. We
observe an increasing cost trend there because of the decrease of
the number of groups Ngroup and thus the increase of average
group size N

i
code. When N

i
code reaches a certain value, the in-

crease in N
i
code manifests the cost Tmergesort(N

i
code, b), which

has Θ(N
i
code logN

i
code) complexity, dominates Coverhead. That

explains the increasing trend from P Ex3
0 to P Ex3

�16.

[Example Ex4] This last example is a multi-column sorting on two
48-bit columns, which contains another important observation. The
original column-at-a-time plan P Ex4

0 ={R1: 48/[64], R2: 48/[64]}
requires two rounds of sorting. Figure 3c shows the performance of
P Ex4
0 and a code massaged plan, P Ex4

32×3={R1: 32/[32],R2: 32/[32],
R3: 32/[32]}. It shows that the time to sort two 48-bit columns can
be reduced by increasing the number of rounds! In this case, the
performance improvement is brought by the better utilization of
SIMD parallelism in three rounds, compared with a waste of 64–
48=16 bits in two rounds of sorting. That implies code massaging
should also consider increasing the number of sorting rounds.

We close this section by presenting four more aspects about code
massaging.

First, unlike ORDER BY, multi-column sorting incurred by GROUP
BY and PARTITION BY requires no specific sorting sequence among
the columns. That is, while the result of ORDER BY A, B is dif-
ferent from the result of ORDER BY B, A, the results between
GROUP BY A, B and GROUP BY B, A are the same. PARTITION
BY exhibits the same property as with GROUP BY in this aspect.
Therefore, the plan space of multi-column sorting incurred by GROUP
BY and PARTITION BY could be m! times larger than the plan
space incurred by ORDER BY (wherem is the number of attributes
involved in the clause).

Second, it is legitimate to massage the bits across non-adjacent
columns for GROUP BY and PARTITION BY clauses. For ex-
ample, consider a query with GROUP BY A, B, C and a tu-
ple 〈a1||a2, b, c1||c2〉. The end results would remain correct even
though the tuple is massaged as 〈a1||c1||a2, b, c2〉. Nevertheless,
we do not consider this option in this paper to avoid space explo-
sion.

Third, code massaging needs an extra step if the attributes in
an ORDER BY clause specify different sorting orders. Consider a
query with ORDER BY A ASC, B DESC that ensures all tuples
are sorted in ascending order according to column A but sorted
in descending order according to column B for tied values. Code
massaging has to carry out a complement on column B before it
stitches them together. Figure 5 illustrates that with an example.
The input data is listed in Figure 5a. Coincidentally, the result of
ORDER BY A ASC, B DESC is identical to its input. Prior to
stitching the two columns together, code massaging has to carry out

a complement operation on column B first (Figure 5c)5. Otherwise,
an incorrect result would be obtained (Figure 5b).

Lastly, we note that the code massaging process is very lightweight
because the column access pattern during code massaging is highly
sequential and branchless, allowing efficient superscalar execution
and cache line pre-fetching. We also note that code massaging
can easily support multi-threading — we can partition the input
columns evenly and each thread massages partitions from every
column independently.

4. COST MODEL
In this section, we present a cost model that estimates the exe-

cution time of an instance of multi-column sorting problem under
a specific code massage plan P . The cost model takes as inputs
a code massage plan P and basic statistics about the data such as
the number of tuples (i.e., number of codes per column) N , the
column width wi, and the value distribution of a column (e.g., a
histogram). The cost model could be used by any cost-based plan
search algorithm in quest of a low-cost code massaging plan.

Cost modeling in main-memory databases is still an active topic.
One popular direction is to develop cache-aware cost models (e.g.,
[32, 15]) that estimate the number of cache misses of a specific
database operation. Cache misses are highly correlated with the to-
tal CPU cycles in database access methods because the primary
action of these access methods is to retrieve values from mem-
ory [15]. Multi-column sorting, however, includes not only data
access but also computational demanding sorting operations. Re-
cent work shows that a calibrated cost model [16, 40] can provide
good estimates of query execution time. Therefore, we provide a
cache-aware cost model that captures both computational and data
access costs, with values of various architectural-dependent param-
eters (e.g., the latency of a cache miss) calibrated based on running
controlled experiments on the column-store hardware platform.

Given a code massage plan P and basic statistics about the data,
the cost model aims to compute, Tmcs, the CPU time to execute
multi-column sorting according to P . Referring to Section 3 and
Figure 2, Tmcs is composed of four major subcosts:

(a) Lookup (Tlookup): Time spent on reordering a column based
on another column’s sorting order (e.g., Step 2©a in Figure 2a);

(b) Code massaging (Tmassage): Time spent on massaging the
input columns to form new columns (e.g., Step 1© in Figure
2b);

(c) SIMD-sort (Tsort): Time spent on sorting N codes by SIMD-
sort (e.g., Step 2© in Figure 2b);

(d) Scan (Tscan): Time spent on scanning a column to form groups
based on the tied values (e.g., Step 2©b in Figure 2a);

In the following, we elaborate on each subcost:

[Estimating Tlookup] Tlookup gives the cost of using the lookup
operator to reorder a w-bit column C with N codes. This lookup
process is essentially issuing N random accesses to the column.
Let size(w) be 2dlog2dw/8ee, which gives the size (in bytes) of the
smallest data type that can hold a code in C, e.g., size(15) = 2
(int16) and size(17) = 4 (int32). Then, N · size(w) is the
memory footprint of column C. Further, let MLLC be the size
(in bytes) of the last level cache, which is given by the hardware
specification. So, we model the cache hit ratio as MLLC

N·size(w)
. Let

Ccache be the access latency of a data item in cache (usually in tens
5Example of complement: let x.B = 5 = (101)2, so complement
of x.B is: x.Bc = (101)c2 = (010)2 = 2.
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① >> 0
② & 132

③ v
④ << 0 

① >> 32
② & 11

③ v 
④ << 0 

① >> 0
② & 117

③ v 
④ << 1 

17 bits 33 bits

18 bits 32 bits

[32] bank

[32] bank [32] bank

[64] bank

① >> 16
② & 132

③ v 
④ << 0 

① >> 0
② & 116

③ v
④ << 16 

① >> 32
② & 116

③ v 
④ << 0 

① >> 0
② & 132

③ v 
④ << 0 

48 bits

[32] bank [32] bank [32] bank

[64] bank [64] bank
48 bits

32 bits 32 bits 32 bits

(a) P Ex3
�1 (b) P Ex4

32×3

Figure 6: Code Massaging Implementation

of cycles) and Cmem is the access latency of a data item in memory
(usually in hundreds of cycles), we can therefore model Tlookup as:

Tlookup = N ·
(
Ccache ·

MLLC

N · size(w)
+Cmem ·(1−

MLLC

N · size(w)
)
)

(3)

which is essentially the number of cycles of random accessing N
items with a cache hit ratio of MLLC

N·size(w)
.

To obtain the values of Ccache and Cmem, we use a linear sys-
tem based calibration method similar to [40]. In this method, we
calibrate the values of Ccache and Cmem simultaneously instead
of micro-benchmark them individually. This approach has the ad-
vantage of calibrating parameters that are correlated. Otherwise, it
would be difficult to micro-benchmark the cost of memory access
without cache access.

The calibration process is as follows. We generated an array of
Ncal w-bit integers and an array of random permuted oid’s. Then
we carried out the lookup procedure on the array based on the oid
array and measured the execution time Tmeasured. After that, we
plugged Tmeasured, Ncal, w along with MLLC (obtained from the
hardware specification) into T , N , w and MLLC of Equation 3,
respectively, to form an instantiation of the equation containing
two unknowns: Ccache and Cmem. Since there are two unknowns,
we need two instantiations of the equation in order to solve them.
So, we used two different Ncal values and generated two instantia-
tions of Equation 3 (with two different Tmeasured), and then solved
Ccache and Cmem as a linear system. By default, we used two Ncal

values that lead to a cache hit ratio (i.e., MLLC
N·size(w)

), of 0.1 and 0.9,
respectively. Alternatively, we can use more than two Ncal values
to generate more than two instantiations of Equation 3 and use sta-
tistical methods (e.g., linear regression) to obtain the best fit values.

[Estimating Tmassage] Tmassage gives the cost of massaging the
input columns according to a specific code massage plan P . The
code massaging process, in a specific sense, consists of multiple
invocations of a four-instruction program (FIP): (1) shift (� /�),
(2) mask, (3) bitwise-OR (∨), and (4) shift (� /�).6

Figure 6 illustrates the four-instruction program (FIP) in the code
massaging process for plan P Ex3

�1={R1: 18/[32], R2: 32/[32]} in
example Ex3 and the code massage plan P Ex4

32×3={R1: 32/[32], R2:
32/[32], R3: 32/[32]} in example Ex4. We see that the former goes
through that FIP three times whereas the latter goes through that
FIP four times. Let Cmassage be the number of CPU cycles of
executing an FIP. Then, we can model Tmassage as:

Tmassage = IFIP · Cmassage ·N (4)

where IFIP is the number of invocations of the FIP. IFIP = 3 for

6For ORDER BY clause with different sorting orders, the program
needs to do complement as well.

P Ex3
�1 and IFIP = 4 for P Ex4

32×3. The value of IFIP is the number
of elements in the union of two prefix sum sequences:

IFIP = |{s1, s2, ...} ∪ {s′1, s′2, ...}|

where {s1, s2, ...} is the prefix sum of the widths w1, w2, . . . of
the input columns involved, and {s′1, s′2, ...} is the prefix sum of
the widths w′1, w′2, . . . of the columns after massaging. For plan
P Ex3
�1={R1: 18/[32], R2: 32/[32]} that sorts a 17-bit column and a

33-bit column in example Ex3:

IFIP = |{17, 50} ∪ {18, 50}| = |{17, 18, 50}| = 3

To obtain the value of Cmassage, we carried out calibration based
on generating Ncal random codes using the massage plans in Ex-
amples Ex1 to Ex47. We measured the average time of executing
code massaging according to selected code massage plan and di-
vide that by Ncal · IFIP to get an estimation of Cmassage.

[Estimating Tsort] Tsort, or more specifically, Tsort(N, b), is the
time spent by a b-bit SIMD-sort to sortN codes, captured by Equa-
tion 2. The constant Coverhead in Equation 2 is the number of CPU
cycles spent on initial function call and memory allocation, and
how to calibrate this value would be discussed after we have intro-
duced the other constants. The cost Tmergesort(N, b) is specific
to the implementation. Assume the implementation of merge-sort
with sorting-network kernel [5] is used, then Tmergesort(N, b) can
be represented as:

Tmergesort(N, b) =

Tin-register(N,b) + Tin-cache(N, b) + Tout-of -cache(N, b)
(5)

Specifically, the merge-sort implementation in [5] is composed
of three phases:

(a) In-register sorting (Tin-register): Using SIMD instructions
with bank size b and S-bit registers, in-register sorting reads
in (S/b)2 codes each time, executes S/b sorting networks in
parallel, and generates as outputs S/b sorted runs. Each sorted
run contains S/b values, and each value is b/8 bytes. We call
each sorted run as an in-register sorted run because it has a size
of S/8 in bytes, which fits into a (SIMD) CPU register. So, if
we denote Cbsort-network as the number of cycles of running
in-register sort per code under bank size b, then

Tin-register(N, b) = Cbsort-network ·N (6)

(b) In-cache merging (Tin-cache): This phase recursively merges
in-register sorted runs from the first phase to form larger sorted
runs that fit into half L2 cache. The merging is carried out
by bitonic merge networks, which can also be parallelized by
SIMD. Let ML2 be the size (in bytes) of the L2 cache. Each
in-cache merged run is therefore 0.5ML2 in bytes and holds
0.5ML2/(b/8) values. As each in-register sorted run holds
S/b values, each in-cache merged run is therefore merged from
0.5ML2/(b/8)

(S/b)
in-register sorted runs in

⌈
log2( 0.5ML2/(b/8)

(S/b)
)
⌉

passes. So, if we denote Cbin-cache-merge as the number of cy-
cles spent on merging 0.5ML2/(b/8)

(S/b)
in-register sorted runs di-

vided by the number of values being merged (0.5ML2/(b/8)),
then we have:

Tin-cache(N, b) = Cbin-cache-merge ·N (7)

7For Example Ex3, the optimal plan P Ex3
�1 is used for calibration.
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(c) Out-of-cache merging (Tout-of -cache): This final phase merges
the in-cache merged runs from the second phase recursively
until a single sorted run is produced. In order to reduce cache
misses, instead of a binary merge, a merge tree with a larger
fanout F is used. Since the second phase will generate Nb/8

0.5ML2

in-cache merged runs, merging them requires dlogF
Nb/8

0.5ML2
e

passes. So, if we denote Cbout-of -cache-merge as the number of
cycles per tuple of merging F in-cache merged runs, we have:

Tout-of-cache(N, b) = Cbout-of-cache-merge·N ·dlogF

Nb/8

0.5ML2

e (8)

Calibrating the constants We calibrate Coverhead, Cbsort-network,
Cbin-cache-merge and Cbout-of -cache-merge in a batch by treating them
as four unknowns to a linear system. By putting Equations 1, 2, 5,
6, 7, and 8 together, we obtain a linear equation for T k

sort contain-
ing the above four unknowns. We generated an array of Ncal b-
bit random integers and an array of Ncal entries to hold the group
information. After that we executed the sorting algorithm multi-
ple times based on data with different Ngroup values (1, 2, 4, . . . ,
Ncal) to obtain different T k

sort values. Then we can solve the linear
system with the four constants as the unknowns. By default, we set
Ncal such that Ncal · b/8 is 100X in size of the last level cache and
uniformly distributed the integers to Ngroup groups. Finally, the
above steps are repeated for b equals to 16, 32 and 64, respectively.

[Estimating Tscan] Tscan gives the cost of a sequential scan of a
sorted column to extract the grouping information. Thus,

Tscan = Cscan ·N (9)

where Cscan is the average cost of sequentially scanning N val-
ues and filling in the grouping information to another array. Since
modern processors are very efficient in hiding sequential memory
access latency through prefetching, here we do not distinguish be-
tween cache hit and cache miss as we do for estimating Tlookup

(which incurs random memory access).
To obtain the value of Cscan, we generated an array of Ncal

sorted integers and pre-allocated another array with Ncal entries
to hold the grouping information. Then we executed the scan pro-
cedure to scan the array and fill the grouping information array and
measured the average cycles per row. By default, we set Ncal such
that the data size is 100X in size of the last level cache.

5. PLAN SEARCH
We begin this section with a quantification of the size of the

whole code massage plan space P . Let W =
∑m

1 wi be sum of
the column widths w1, w2, . . . , wm of m input columns involved.
The code massage plan space P is equivalent to the integer compo-
sitions problem [19], i.e., enumeration of all ways of writing W
as the sum of a sequence of (strictly) positive integers. Hence,
|P| = 2W−1. For multi-column sorting problems incurred by
GROUP BY and PARTITION BY, the sorting order among the
columns does not matter. So, their plan spaces are m! times larger,
although m is usually a small number in real workload (e.g., the
largest m in TPC-H is 7).

In the following, we present our round-based greedy plan search
algorithm. By round-based we mean the algorithm searches for the
optimal plan from candidate plans that are restricted to have only
one round of sorting, then from candidate plans that are restricted
to have only two rounds, and so on. By greedy, we mean, given a
restricted plan space (e.g., when considering plans only with three

rounds), the algorithm greedily assigns a certain column width to
the first round, then to the second round, and so on.

Bounding the number of rounds Normally, our plan search al-
gorithm should consider candidate plans up to W rounds of sort-
ing for not missing the optimal plan (remember Example Ex4?).
So, consider a multi-column sorting instance, whose original plan
P0 = {R1 : 17/[32], R2 : 30/[32], R3 : 12/[16]} requires
three rounds of sorting, the plan P1×59 = {R1 : 1/[16], R2 :
1/[16], . . . , R59 : 1/[16]} that requires W = 17 + 30 + 12 = 59
rounds is actually viable. In the following, we show that plans with
more than b 2(W−1)

bmin
c+1 rounds (where bmin is minimum bank size

used by the available SIMD-sort implementations) are dominated
by plans with fewer than or equal to b 2(W−1)

bmin
c+ 1 rounds in cost.

Therefore, for the example above, our plan search algorithm would
only consider plans that require at most b 2·(59−1)

16
c+ 1 = 8 rounds

of sorting, when we have 16/32/64-bit SIMD-sort implementations
available.4

LEMMA 2. Plans with more than b 2(W−1)
bmin

c + 1 rounds are

dominated by plans with fewer than or equal to b 2(W−1)
bmin

c + 1
rounds in cost.

PROOF. Consider a candidate/original plan P with K rounds
(where K ≤ W ). If we stitch two columns Ci and Cj in P , we
get a new plan P ′ with K − 1 rounds and a column C′ of size
w′ = wi + wj . When (a) Ci and Cj are adjacent, i.e., Cj = Ci+1

and (b) w′ ≤ bi, where bi is the minimum bank size that is enough
to holdCi, we can conclude that P ′ is better than P in cost 8. As an
example, consider plan P1×59 above, whose K = 59. If we stitch
columns C1 and C2 to be column C′, we get a new plan P ′ with
K–1=58 rounds. Note that as w′ = 2 ≤ b1 = 16, so P ′ would use
the same b1-bit SIMD-sort to sortC′ but with one round fewer than
P1×59. Therefore, P ′ must be better than P1×59 in cost. In other
words, for each candidate plan P with K rounds, if we are able to
find two columns Ci and Cj that satisfy (a) and (b), that implies all
plans with K rounds can be dominated by some plans with K − 1
rounds. Hence, all candidate plans with K rounds can be pruned.

In contrast, consider P0 = {R1 : 17/[32], R2 : 30/[32], R3 :
12/[16]} above, whose K = 3. If we stitch columns C1 and C2

to be column C′, we get a new plan P ′ with K − 1 = 2 rounds.
However, as w′ = 17 + 30 = 47 � b1 = 32, column C′ has to
be sorted using a 64-bit SIMD-sort, which has a lower degree of
parallelism. Likewise when we try to merge C2 and C3. Therefore,
P ′ may not be better thanP0 in this case. In other words, plans with
K = 3 rounds should be retained for the sake of not discarding any
competitive plans.

Summing up the above, when considering plans with K rounds,
denoted as PK , if we stitch any two adjacent columns in a plan
P ∈ PK (condition (a) holds) and the resulting plan P ′ may not
be better than P , then we shall retain plans with K rounds in the
search space for costing. The only reason that the resulting plan P ′

may not be better than P when condition (a) holds is: condition (b)
is violated. So, that gives us:


w1 + w2 > b1

w2 + w3 > b2

· · · · · ·
wK−1 + wK > bK−1

=⇒ 2

K∑
i=1

wi − w1 − wK >

K−1∑
i=1

bi

8A formal proof of this is given as Property 1 in Appendix A.
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2W − w1 − wK >

K−1∑
i=1

bi

2W − 2 ≥ 2W − w1 − wK >

K−1∑
i=1

bi ∵ w1 ≥ 1, wK ≥ 1

2W − 2 ≥
K−1∑
i=1

bi

2W − 2 >

K−1∑
i=1

bi ≥
K−1∑
i=1

bmin ∵ ∀ibi ≥ bmin

2W − 2 >

K−1∑
i=1

bmin = (K − 1)bmin

K <
2(W − 1)

bmin
+ 1

K ≤
⌊2(W − 1)

bmin

⌋
+ 1 (10)

Tracing backward, when K ≤ b 2(W−1)
bmin

c + 1, condition (b) is
violated, then we should retain plans with that value of K for the
sake of not discarding any competitive plans. In other words, our
round-based plan search algorithm can skip plans with more than
b 2(W−1)

bmin
c+ 1 rounds.

Round-based enumeration and greedy costing Our round-base
enumeration strategy is to first enumerate and cost candidate plans
with k = 1 round, then candidate plans with k = 2 rounds, and

Algorithm 1 Plan Search Algorithm
Input: original column-at-a-time plan P0

Input: cost model T (·)
Input: input statistics (number of rows, etc.)
Input: time threshold ρ
Output: P ∗: plan with the lowest cost
1: W =

∑
i P0.wi . Total num of bits

2: P ∗ = P0 . Initialize global optimal
3: Start stopwatch Ω

4: for k = 1 . . . b 2(W−1)
bmin

c+ 1 do
5: for each valid bank size combination (b1, . . . , bk) ∈ Bk

do
6: if Ω > ρ · Tmcs(P ∗) then
7: return P ∗ . Time’s up
8: P̂ = ∅ . Initialize local optimal
9: for i = 1 . . . k − 1 do

10: for each possible a bits assigned to Ri do
11: Estimate T i+1

sort given P̂ ∪ {Ri : a/[bi]}
12: end for
13: â = argmina T

i+1
sort given P̂ ∪ {Ri : a/[bi]}

14: P̂ = P̂ ∪ {Ri : â/[bi]} . Greedy construction
15: end for
16: Assign the remaining bits to Rk

17: if Tmcs(P̂ ) < Tmcs(P ∗) then
18: P ∗ = P̂ . Update global optimal
19: end for
20: end for
21: if handling GROUP BY or PARTITION BY then
22: Generate next permutation of P0 then repeat Lines 4 – 20
23: return P ∗

so forth. The last set of candidate plans to be considered are those
with b 2(W−1)

bmin
c+ 1 rounds.

When enumerating candidate plans that are restricted to only k
round(s) of sorting, it first partitions the subspace according to var-
ious bank size combinations. Then, for each subspace under a spe-
cific bank size combination, it assigns aj-bits to the j-th bank based
on minimizing T j+1

sort , the time cost of the (j + 1)-th round of sort-
ing, starting from j equals 1, till j equals k − 1; remaining bits are
assigned to k-th round.

For example, consider P0 = {R1 : 17/[32], R2 : 30/[32], R3 :
12/[16]}. Our plan enumeration strategy would first enumerate
candidate plans that are restricted to only one round of sorting, then
to only two rounds, and finish until it has enumerated plans with
b 2·(59−1)

16
c + 1 = 8 rounds. Specifically, when k = 1, only one

valid bank size combination is available — the use of one 64-bit
bank because 64 > W = 59 > 32. Therefore, candidate plans
are in the form of P1 = {R1 : aj/[64]} and then the goal is to
cost all valid plans in P1. In this example, the only valid plan is
{R1 : 59/[64]}, i.e., aj = 59, so this plan would be costed. Next,
our plan enumeration strategy would consider k = 2, i.e., plans
with only two rounds of sortings. When k = 2, valid candidate
plans P2 are in the form of:
{R1 : a1/[16], R2 : a2/[64]} {R1 : a1/[32], R2 : a2/[32]}
{R1 : a1/[32], R2 : a2/[64]}
Note that candidate plans in the form of {R1 : a1/[16], R2 :

a2/[16]}, {R1 : a1/[16], R2 : a2/[32]}, {R1 : a1/[32], R2 :
a2/[16]} are invalid because the two banks are insufficient to hold
W = 59 bits. Candidate plans in the form of {R1 : a1/[64], R2 :
a2/[16]}, {R1 : a1/[64], R2 : a2/[32]}, {R1 : a1/[64], R2 :
a2/[64]} are pruned for the same reason given by Property 1 of
Lemma 2.

Given a valid bank size combination, our plan enumeration strat-
egy would then further trim the search plan by considering only
plans that are in compliance with the input instances. For exam-
ple, consider plans in the form of {R1 : a1/[16], R2 : a2/[64]},
the plan {R1 : 1/[16], R2 : 63/[64]} would not be enumerated
because the two columns would be wider than W = 59 bits. So,
for this example, the subspace consists of plans instantiated with
(a1 = 1, a2 = 58), (a1 = 2, a2 = 57), . . . , (a1 = 16, a2 = 43).
These 16 plans would be costed.

When k ≥ 3, each subspace formed by a valid bank size com-
bination alone has size O

(
W−1
k−1

)
. To avoid plan explosion, we thus

enumerate only the subspace with a chosen aj value that gives the
(j + 1)-th round the lowest sorting cost T j+1

sort .
Consider a specific subspace {R1 : a1/[16], R2 : a2/[16], R3 :

a3/[16], R4 : a4/[16]} when k = 4. The value of a1, the number
of bits to assigned to the (j = 1)-th bank, is determined based
on minimizing T 2

sort, the time spent on the (j + 1)-th round of
sorting. Recall from Equation 1 that different a1 values would lead
to different Nsort and N i

code values. So, among 16 different values
for a1 (from 1, 2, . . . , 16), the one that gives the lowest T 2

sort would
be greedily chosen as the value of a1.

Assuming a1 = 5 gives the lowest T 2
sort , the enumeration

would proceed to determine the value of a2 recursively. Specifi-
cally, with a1 = 5, the enumeration would focus on plans in the
form of {R1 : 5/[16], R2 : a2/[16], R3 : a3/[16], R4 : a4/[16]}
and choose a value for a2 that minimizes T 3

sort, so on and so forth.
Finally, among plans that have been enumerated and costed, the

one that minimizes Tmcs is chosen and returned.

Pseudocode and time-bound optimization Algorithm 1 depicts
the pseudocode of the plan search algorithm. The pseudocode is
self-explanatory and mainly summarizes what we have discussed
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Figure 7: Q16 in TPC-H: (a) perfect cost model A16 based on
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our cost model. Both ROGA and RRS find the actual optimal
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opt .

Table 1: Cost Model and Plan Quality

Measure
TPC-H TPC-H Skew TPC-DS Real Data

ROGA RRS ROGA RRS ROGA RRS ROGA RRS

(a) rank 4.8 110.8 5.2 72.7 6 47 8 43.2

(b) Best Rank 1 1 1 1 1 1 1 1

(c) Worst Rank 48 1206 58 576 53 223 36 169

Cost Model MRE 0.42 0.57 0.36 0.4

above, so we do not give it a full walkthrough here. The only issue
worth noticing is that we introduce a time threshold ρ (line 6) to
the whole optimization process. One reason is that multi-column
sorting, if accelerated by code massaging, could be executed really
fast. Another reason is that the optimization would take a longer
time when the total code width W is really very large. Therefore,
we have to ensure that the searching process itself would not be a
bottleneck. So, the algorithm starts a stopwatch at the beginning
of the optimization process, and the algorithm terminates once the
elapsed time Ω has exceeded a percentage ρ of the cost of the best
plan so far. Nevertheless, since our algorithm is round-based (in-
crementing k one-by-one) and the optimal plans are usually those
with small k values, such early stopping never discards any optimal
plans in our experiments.

6. EXPERIMENTAL EVALUATION
The techniques used and proposed in this paper can be integrated

into any main-memory column-store. The implementation can be
done by (i) modifying the storage manager to support ByteSlice
data layout [14]; (ii) adding four physical operators into the query
execution engine: ByteSlice-Scan and ByteSlice-Lookup
that respectively execute fast scans and lookups on ByteSlice data
as proposed in [14]; SIMD-Sort that carries out (single-column)
SIMD sorting as proposed in [5] with multi-threading support; and
Code-Massage that carries out code massaging as depicted in
Figure 6; (iii) modifying the query optimizer to include our cost
model (Section 4), our plan search algorithm (Section 5), and WideTable
query rewriting [31]. We note that changes to these components
can be done in any typical relational column-stores. In this pa-
per, we present results based on our own column-store prototype.
Appendix B presents a reference implementation based on open-
source MonetDB.

We run our experiments on two hardware platforms. The first is
a server with a 2.60GHz Intel Xeon E5-2660 v3 10-core processor,
and 32GB DDR3 memory. Each core has 32KB L1i cache, 32KB
L1d cache and 256KB L2 unified cache. All cores share a 25MB L3

cache. The second is a PC with a 3.40GHz Intel i7-4770 quad-core
processor, and 16GB DDR3 memory. Each core has 32KB L1i
cache, 32KB L1d cache and 256KB L2 unified cache. All cores
share an 8MB L3 cache. Both CPUs are based on Haswell mi-
croarchitecture which supports AVX2 instruction set. Due to space
limit, we mainly present Xeon experimental results and but include
i7 results when necessary.

All implementations are done in C++ and compiled using g++
4.9 with optimization flag -O3. We use Intel Performance Counter
Monitor [23] to collect the performance profiles. All experiments
are run in a single process with a single thread by default. We
discuss multi-thread experiments in Section 6.4.

We evaluate our techniques based on TPC-H, TPC-H skew [9]
(skew factor zipf = 1), TPC-DS, and real data. There are 9 out
of 22 TPC-H queries and 71 out of 99 TPC-DS queries require
multi-column sorting. As TPC-H queries do not have PARTITION
BY clauses, we complement that by selecting TPC-DS queries that
include PARTITION BY clauses. Among 12 eligible TPC-DS
queries, 8 of them include moving window, which is not yet sup-
ported by our prototype. So, we can only include 4 TPC-DS queries
in the experiments. A scale factor of one is used by default. The
real data is the Airline Origin and Destination Survey dataset re-
leased by Bureau of Transportation Statistics in US. The dataset is
4G in size and is publicly available at [1]. Table 4 and Table 5 in
the Appendix list the table schema and the five queries that require
multi-column sorting extracted from a real application on top of
that dataset.

6.1 Quality of Plans
The effectiveness of code massaging depends on (i) the accuracy

of the cost model and (ii) the quality of the plan search algorithm.
Recent works that focus on query latency prediction [2, 40] em-

ploy mean relative error (MRE) to measure the accuracy of the cost
model. In this paper, we also report the MRE of our cost model for
a query workload Q. The last row of Table 1 shows that our cost
model has MRE between 0.36 and 0.57 for all workloads, which is
good enough even in the context of latency prediction [28, 40].

Define PQi
opt as the optimal plan for a queryQi returned by a plan

search algorithm based on our cost model. We report the quality of
a plan search algorithm for a workloadQ as

rank =
1

|Q|

|Q|∑
i=1

rank(PQi
opt,Ai)

where (i) Ai is the perfect cost model based on exhaustively enu-
merating all feasible plans for Qi and measuring their actual run-
ning times (yes, it took us weeks to obtainAi’s); and (ii) rank(PQi

opt,Ai)

is the rank of PQi
opt with respect toAi. For example, if the plan PQi

opt

chosen by a plan search algorithm is the second best plan based on
Ai, then rank(PQi

opt,Ai) = 2. In other words, if a plan search
algorithm is always able to find the actual optimal plan for a given
workload Q based on our cost model, then rank = 1. So, while
MRE focuses on the difference between the actual execution cost
of a multi-column sorting instance Tactual and its estimated cost
Tmcs, the metric rank focuses on the reliability of the cost model
and the plan search algorithm.

Figure 7 shows an example of how rank complements MRE.
Figure 7a plots the actual execution costs Tactual of all feasible
plans for TPC-H query Q16, which has 3 attributes in its GROUP
BY clause. Figure 7b plots the estimated costs Tmcs of all feasi-
ble plans based on our cost model. If we simply look at the MRE,
our cost model reports an MRE of 0.42 for TPC-H workload (Ta-
ble 1). However, we can see that our cost model indeed captures the

1272



 0
 1
 2
 3
 4
 5
 6

Q1 Q2 Q3 Q7 Q9
TPC-H

Q10 Q13 Q16 Q18 Q1 Q2 Q3 Q7 Q9
TPC-H Skew

Q10 Q13 Q16 Q18 Q36 Q67
        TPC-DS

Q70 Q86 Q1 Q2 Q3
Real Data

Q4 Q5

sp
e
e
d
u
p

Figure 8: Speedup of Multi-column Sorting.

Table 2: Percentage of Time Used by ROGA in Multi-column Sorting

Workload
TPC-H TPC-H Skew TPC-DS Real Data

Q1 Q2 Q3 Q7 Q9 Q10 Q13 Q16 Q18 Q1 Q2 Q3 Q7 Q9 Q10 Q13 Q16 Q18 Q36 Q67 Q70 Q86 Q1 Q2 Q3 Q4 Q5

% 0.002 0.09 0.07 0.04 0.06 0.1 0.07 0.01 0.1 0.004 0.08 0.08 0.05 0.05 0.1 0.06 0.02 0.1 0.09 0.1 0.05 0.01 0.08 0.02 0.01 0.09 0.07
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Figure 9: Query Execution Time (1G, 5G, and 10G data)

actual behavior very well. Figure 7b also shows all the plans (in cir-
cles©) enumerated by our round-based greedy algorithm (ROGA
for short). For comparison, Figure 7b also shows all the plans (in
crosses ×) enumerated by a recursive random search (RRS) algo-
rithm [41] that searches the plan space based on our cost model.
RRS is a powerful technique developed to solve black-box opti-
mization problems. It first samples the subspace randomly to iden-
tify promising regions that contain the optimal setting with high
probability. It then samples recursively in these regions which ei-
ther move or shrink gradually to local-optimal settings based on
the samples collected. RRS then restarts random sampling to find a
more promising region to repeat the recursive search. RRS has been
adopted as a plan search algorithm in a number of recent works
(e.g., [17, 18]). For TPC-H query Q16, our cost model is actually
reliable enough to allow both our plan search algorithm ROGA and
RRS to find the actual optimal plan, i.e., rank(PQ16

opt ,A16) = 1
for both ROGA and RRS, despite an MRE of 0.42 for the whole
query workload is reported. In the experiments, the default time

threshold ρ for ROGA is 0.1%, meaning ROGA would not spend
more than 0.1% of the optimal plan (estimated) execution time to
find the plan. For fairness, we stop RRS when ROGA stops.

Table 1 also reports the quality of the plan search algorithms
in terms of rank. We see that ROGA consistently returns higher
quality plans than RRS. For example, the rank of ROGA is 4.8
on TPC-H data (see row (a)), meaning the 5-th best actual plan
is found for all involved TPC-H queries on average. In contrast,
the rank of RRS is only 110.8 on TPC-H data. We notice that
both ROGA and RRS can find out the actual optimal plan for some
queries in the workloads (see row (b)). Worst cases happen when
working on TPC-H skew data (see row (c)). Nevertheless, ROGA
can find out the 58-th best actual plan. In contrast, RRS can only
find the 576-th best actual plan in the same experiment.

6.2 Multi-Column Sorting Speedup
Figure 8 shows the speedup of multi-column sorting time by us-

ing code massaging for eligible TPC-H, TPC-DS, and real queries.
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Figure 10: Throughput: Varying Number of Cores.

When code massaging is disabled, multi-column sorting is car-
ried out using the column-at-a-time plan. When code massaging
is enabled, multi-column sorting is carried out using the best plan
among the column-at-a-time plan and a variety of enumerated code
massage plans, returned by ROGA. From Figure 8, we observe
that multi-column sorting with code massaging yields at least 1.8X
speedup (real query Q4) and up to 5.5X speedup (TPC-H Q2). We
also observe that the time used by ROGA to find a good code mas-
sage plan is negligible (see Table 2). Indeed, under ρ = 0.1%, 22
out of all 27 queries (9 TPC-H queries on uniform and skewed data
+ 4 TPC-DS queries + 5 real queries) completed the whole plan
search process before the deadline. In Appendix C, we present ex-
periments of varying ρ values on different workloads and hardware
platforms. We see that ρ = 0.1% is a sufficiently good threshold
in general because it gives ROGA (usually more than) enough time
to find a very high quality plan, without making itself as a bottle-
neck. In general, we recommend ρ = 0.1% based on our empirical
results above. Finding ρ automatically is feasible and we discuss
that in Appendix C.

6.3 Overall Query Speedup
Figure 9 shows the execution times of TPC-H, TPC-DS, and real

queries on both Xeon and i7 CPUs. TPC-H and TPC-DS datasets
have three scale factors 1, 5 and 10. In TPC-H, 9 queries Q1, Q2,
Q3, Q7, Q9, Q10, Q13, Q16, Q18 require multi-column sorting.
However, for space reasons, we only selectively present the results
of Q1, Q3, Q9, Q13, Q18 on TPC-H dbgen data, Q2, Q7, Q10, Q16,
Q18 on TPC-H skewed data, all 4 eligible queries on TPC-DS data,
and all 5 eligible queries on real data.

From the experimental results, we observe that query execution
with code massaging enables a query speedup of up to 4.7X (Q18;
5G; i7) on TPC-H, 4.7X (Q18; 10G; i7) on TPC-H skew, 4X (Q67;
10G; Xeon) on TPC-DS, and 3.2X (Q3; i7) on real data. TPC-H
query Q13 is an exception. TPC-H Q13 has a GROUP BY clause on
a single attribute C_COUNT and an ORDER BY clause on two at-
tributes CUSTDIST and C_COUNT. During evaluation, the GROUP
BY clause is first evaluated. So, the ORDER BY clause, which re-
quires a multi-column sorting, is actually working on each individ-

ual group. In this case, the time percentage spent by multi-column
sorting is actually insignificant (see Figure 1). Therefore, the 4.2X
speedup brought by code massaging (see Figure 8 TPCH-Q13) is
insignificant with respect to the whole query execution. Despite
that, we observe from Figure 9 that code massaging consistently
yields promising query speedup on data in different scales.

6.4 Varying Number of Cores
Figure 10 shows the throughput (in terms of the number of mil-

lion tuples per second) of selected queries when code massaging is
enabled with different number of threads. Each thread is pinned to a
distinct physical core in the processor. Linear core/thread scalabil-
ity is observed across all workloads and two different CPU models.

7. CONCLUSION
Recently, there is a resurgence of interest in main-memory an-

alytic databases because of the large RAM capacity of modern
servers (e.g., Intel Xeon E7 v2 servers can support 6TB of RAM)
and the increasing demand for real-time analytic platforms. With
the advent of recent fast scans and denormalization techniques, we
observe that multi-column sorting would become a bottleneck for
queries possessing multiple attributes in their GROUP BY, ORDER
BY, or PARTITION BY clauses. Queries of that kind are not un-
common in real workloads. This paper therefore provides the first
solution, namely, code massaging, to this emerging problem. Code
massaging reduces the time of multi-column sorting by manipulat-
ing the bits across input columns so that the overall sorting time
can be reduced through fewer sorting rounds and/or higher degree
of SIMD data parallelism. Experiments on TPC and real workloads
show that a main-memory column-store with code massaging can
achieve up to 4.7X speedup in query execution. Our future work
is to include radix-sort [11] into our study. The performance of
in-memory radix-sort depends on the size (number of bits) of the
radix, which is a parameter. Code massaging would allow a care-
ful choice of the radix size when radix-sorting multiple columns,
thereby improving the performance of multi-column sorting with a
different flavor.
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APPENDIX
A. STITCHING COLUMNS CK AND CK+1 WITH

WK +WK+1 ≤ BK YIELDS BETTER PLAN

PROPERTY 1. Stitching columnsCk andCk+1 withwk+wk+1 ≤
bk yields better plan.

PROOF. Without loss of generality, assume the plan P before
stitching has n rounds. Then if we are allowed to stitch Ck and
Ck+1 of P as stated to form a new plan P ′, the plans would look
like:
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Table 3: Major notations in this paper
Notation Meaning

P A code massage plan
P0 The original column-at-a-time plan (no massag-

ing)
Ri : w/[b] The i-th round of a plan, containingw bits of data

and using a b-bit bank SIMD-sort
Ci The i-th column of a plan/tuple
wi The number of bits of the Ci

bi The bank size used in the i-th round of a plan
m The number of input columns to be sorted
Tmcs The total cost of multi-column sorting based on

our cost model
T i
sort The sorting subcost of the i-th round
C Calibrated constant used in cost model

MLLC ,ML2 The capacity (in bytes) of the last level cache
(LLC) / L2 cache

N Input size (number of rows) to a multi-column
sort program

Ai The perfect cost model based on exhaustively
enumerating all feasible plans for query Qi and
measuring their actual running times

Q A query workload

P = { R1 : w1/[b1], · · ·
Rk : wk/[bk], Rk+1 : wk+1/[bk+1],
· · · , Rn : wn/[bn]}

P ′ = { R1 : w1/[b1], · · ·
Rk : (wk + wk+1)/[bk], Rk+1 : ∅,
· · · , Rn : wn/[bn]}

The resulted plan P ′ should have n − 1 rounds. For the sake
of proof, we insert a dummy “empty round” (∅) at the (k + 1)-th
round above to make both P and P ′ have the form of n rounds. It
can be seen that any Ri for i < k and i > k + 1 of both plans are
identical.

Referring to Figure 2 and Section 4, three types of subcosts are
incurred for each round: Tlookup, T k

sort and Tscan, while Tmassage

is incurred upfront. Let’s define cost(P.Ri) be the sum of Tlookup,
T i
sort and Tscan in the i-th round. We can therefore represent the

total cost Tmcs of plan P and plan P ′ as:

Tmcs(P ) = Tmassage(P ) +

n∑
i=1

cost(P.Ri) (11)

Tmcs(P ′) = Tmassage(P ′) +

n∑
i=1

cost(P ′.Ri) (12)

Now we are going to prove Tmcs(P )− Tmcs(P ′) > 0.
We first perform a round-wise comparison based on our cost

model, to show that
∑n

i=1 cost(P.Ri) −
∑n

i=1 cost(P
′.Ri) =

cost(P.Rk+1):

1. When i < k, cost(P.Ri) = cost(P ′.Ri)

Intuitively, both plans behave identically from the first round
until the k-th round. To quantify that, let us compare P.Ri

and P ′.Ri. Note that the following of both are the same when
i < k: (a) input size; (b) SIMD-sort bank size; (c) group
information. Referring to our cost model in Section 4, these
parameters suffice to determine Tlookup, T k

sort and Tscan. As
a result, all subcosts of the i-th round remain the same and
thus cost(P.Ri) = cost(P ′.Ri).

2. cost(P.Rk) = cost(P ′.Rk)

Note the three factors (a), (b) and (c) above still remain the
same for the k-th round. It is straightforward to see both (a)

input size and (b) bank size remain the same. For (c), note
the important fact that the group information fed to the i-th
round is determined by the number of bits prior to the i-th
round. Hence, though the bits allocated to P.Rk and P ′.Rk

are different, they both have
∑k−1

j=1 wj bits prior to them, so
their costs are equal based on our cost model.

3. cost(P.Rk+1)− cost(P ′.Rk+1) = cost(P.Rk+1)

This is obvious as cost(P ′.Rk+1) = cost(∅) = 0.

4. When i > k + 1, cost(P.Ri) = cost(P ′.Ri).
The reasoning is akin to (2). Although the bits allocated to
Rk and Rk+1 are different, the number of bits prior to Ri

for i > k+ 1 are
∑i−1

j=1 wj in both plans. So all factor of (a),
(b) and (c) are the same for both P.Ri and P ′.Ri.

Summarizing above, we have:
n∑

i=1

cost(P.Ri)−
n∑

i=1

cost(P ′.Ri)

=

n∑
i=1

(
cost(P.Ri)− cost(P ′.Ri)

)
= cost(P.Rk+1)

(13)

Now let’s consider Tmassage. It is actually possible for P ′ to
incur a higher Tmassage by introducing more invocations of the
four-instruction program (IFIP , cf. Section 4). However, the in-
crease of IFIP is bounded by 1 (i.e., IFIP (P ′)−IFIP (P ) ≤ 1),
as we can always form columns of P ′ by carrying out one more
FIP that stitches Ci and Ci+1 of P . So,

Tmassage(P ′)− Tmassage(P )

= IFIP (P ′) · Cmassage ·N − IFIP (P ) · Cmassage ·N
=
(
IFIP (P ′)− IFIP (P )

)
· Cmassage ·N

≤ Cmassage ·N

(14)

Putting Equations 11, 12, 13, 14 together, we have:

Tmcs(P )− Tmcs(P ′) ≥ cost(P.Rk+1)− Cmassage ·N (15)

In reality, Cmassage ·N is always at least one order of magnitude
smaller than cost(P.Rk+1), because the former only includes the
cost of carrying out one FIP for N codes, while the latter includes
the costs of lookup, sorting and scanning N codes. So Tmcs(P )−
Tmcs(P ′) > 0.

In summary, we can concludeP ′ is a better plan thanP by stitch-
ing adjacent columns as stated.

B. MONETDB REFERENCE IMPLEMEN-
TATION

Figure 11 shows a reference system architecture if implement-
ing the techniques mentioned in this paper into MonetDB (modi-
fied/added components are shaded). Specifically:

• We shall add a ByteSlice storage manager that implements
ByteSlice [14] column-store layout.

• We shall add four BAT9 algebra operators to the MonetDB ex-
ecution engine (aka. Gorblin Database Kernel [20]), includ-
ing ByteSlice-Scan and ByteSlice-Lookup that ex-
ecute fast scans and lookups on ByteSlice data as proposed in

9Binary Association Table, the primitive data structure used in
MonetDB’s execution engine.
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Figure 11: Implementing Code Massaging into MonetDB

[14], SIMD-Sort adapted from [4] that carries out (single-
column) sorting with SIMD and multi-threading support, and
Code-Massage that carries out code massaging process de-
scribed in Figure 6. Other operators in MonetDB shall leave
intact because operations other than scan and lookup manipu-
late intermediate data structures (BAT in this case) instead of
base column storage [14].

• We shall add a Fast-MCS (fast multi-column sorting) mod-
ule in the MonetDB MAL10 optimizers framework. In Mon-
etDB, an MAL plan is optimized by a series of modules in
an optimizer pipeline [33]. Each module takes an MAL plan
as input and transforms it into a more efficient one. For ex-
ample, the garbageCollector module takes as input an
MAL plan and injects calls to the garbage collector to free up
space. Similarly, the Fast-MCSmodule shall (a) examine an
input MAL plan and identifies the MAL instructions carrying
out multi-column sorting, then (b) invoke the plan search al-
gorithm (cf. Algorithm 1) to find an optimal massaging plan,
finally (c) re-write the MAL instructions for multi-column
sorting with code massaging. For example, a simplified set
of MAL instructions to sort column a and column b with 16-
bit bank would be:

(permuted_oid, group_info):=
SIMD-Sort(a, 16, NULL)

permuted_b :=
Lookup(b, permuted_oid)

(final_oid,final_group_info):=
SIMD-Sort(permuted_b, 16, group_info)

Assume stitching these two columns as one and sorting it with
32-bit bank turns out to be the optimal plan in this case, the
MAL plan re-written by Fast-MCS module would be:

super_column :=
Code-Massage(a,b,‘stitch’)

(final_oid,final_group_info):=
SIMD-Sort(super_column,32, NULL)

10MonetDB Assembly Language, the language to express a physical
plan to be interpreted by the execution engine.

• We shall add a WideTable Query Rewriting module
in the MonetDB logical plan optimizer. In MonetDB, the log-
ical plan parsed from SQL is optimized using domain-specific
rules. For example, Pushselect optimizes the logical plan
by pushing down selections. So, the WideTable Query
Rewritingmodule shall translate the logical plans into WideTable
aware plans (i.e., to remove joins from the plans and use de-
normalized tables).

C. VALUE FOR TIME THRESHOLD ρ

Our experiments use ρ = 0.1% by default. Figures 12a, 12b
and 12c show the time breakdown and the rank of resulted plan of
one TPC-H, one TPC-DS, and one real query under various ρ on
both Xeon and i7. We have the following findings. First, ROGA
is so efficient that its running time is not observable in the figures.
Second, we see that ROGA can complete even we do Not Set (N/S)
any time threshold. Third, the effectiveness of ROGA is indeed not
sensitive to ρ unless a really stringent value (e.g., 0.01%) is given.
Indeed we found 22 such queries out of all 27 queries (9×2 TPC-H
queries on uniform and skewed data + 4 TPC-DS queries + 5 real
queries) that follow the findings above.

For the remaining 5 out of 27 queries, their total code width W
is larger than 87, which may require up to 11 rounds of sorting
(cf. Equation 10). Figures 12d, 12e, and 12f show the time break-
down of three of them. For those queries, we still see ρ = 0.1%
is a good choice because that gives ROGA sufficient time to find a
very competitive plan, without making itself as a bottleneck.

So, overall, we generally recommend ρ = 0.1%. In general,
we believe such an empirical approach is sufficient to determine
the value of ρ. As a future work, we will study the following two
approaches that can automate the process of finding ρ:

• Offline calibration: In this approach, the system uses a col-
lection of sample queries and invokes the plan search algo-
rithm (Algorithm 1) on each query with different ρ values.
It uses a wide range of possible ρ values, from very strin-
gent (e.g., 0.01%) to very loose (e.g.,10%, ρ higher than this
is considered unacceptable anyway). For each query, we will
record a list of estimated cost (Tmcs) with their corresponding
ρ. We mark the “best” plan for each query as the one with the
lowest estimated cost (Tmcs), which is usually obtained at the
highest ρ. As observed in Figure 12, many queries find their
best plans much earlier before using the largest ρ. So we find
the smallest threshold ρ0 that allows every query to reach its
best plan. In other words, no query would obtain better plans
with lower estimated cost if we increase ρ beyond ρ0. Note
that in this approach, the system only invokes the cost model
to estimate the costs without actually executing the queries.
So the process is fast and incurs very little overhead.

• Online calibration: In this approach, the optimizer assigns
different ρ values to different queries online. Specifically, the
plan search algorithm starts with setting ρ = ρlow, where
ρlow is a low watermark. When time is up, we check whether
the best plan found so far (P ∗) has been updated. If yes,
we anticipate further improvement is possible and extend the
time limit by, say, ρ ← ρ × 2. When the new time limit
is reached, we check whether P ∗ has been updated again and
increase ρ conditionally. To prevent ρ from growing infinitely,
we cap it with a high watermark ρhigh. When ρ grows above
ρhigh, we stop the plan search algorithm anyway. ρlow and
ρhigh can be set upfront as sufficiently small and large values
respectively, for example, 0.01% and 10%.
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Figure 12: Sorting time breakdown with various time threshold; N/S: do not set any time threshold

Table 4: Schema of the real dataset
Attribute name of Description Attribute name of Description
relation Ticket relation Market
ItinID Itinerary ID ItinID Itinerary ID
Year Year MktID Market ID
Quarter Quarter (1-4) Year Year
OriginAirportID Origin airport ID Quarter Quarter (1-4)
OriginCountry Country of origin airport OriginAirportID Origin Airport ID
OriginStateName State name of origin airport DestAirportID Destination Airport ID
RoundTrip Round Trip Indicator (1=Yes) OpCarrier Operating carrier
DollarCred Dollar Credibility Indicator Passengers Number of passengers
ParePerMile Itinerary Fare Per Miles Flown in Dollars MktFare Market fare (yield per itinerary mile× miles flown)
RPCarrier Reporting Carrier MktDistance Market distance (including ground transport)
Passengers Number of passengers MktDistanceGroup Distance group, in 500 Mile intervals
Distance Itinerary distance (including ground transport) MktMilesFlown Market Miles flown (Track Miles)
DistanceGroup Distance group, in 500 Mile intervals ItinGeoType Itinerary geography type
ItinGeoType Itinerary geography type (1=Non-contiguous Domestic)

Table 5: Queries on the real dataset
Query ID SQL Semantic
Q1 SELECT OriginAirport, DollarCred, FarePerMile FROM Ticket Check the relationship between credibility

WHERE OriginStateName = ‘Texas’ ORDER BY DollarCred, FarePerMile and fare per mile in a given state.
Q2 SELECT OriginAirportID, DistanceGroup, Passengers, For each origin airport and distance group,

RANK() OVER (PARTITION BY OriginAirportID, DistanceGroup ORDER BY Passengers) obtain number of passengers in order.
FROM Ticket WHERE ItinGeoType = 1

Q3 SELECT RPCarrier, OriginState, RoundTrip, DistanceGroup, AVG(Passengers) For each carrier, calculate the average
FROM Ticket GROUP BY RPCarrier, OriginState ,RoundTrip, DistanceGroup number of passengers per state, per trip

type, and per distance group.
Q4 SELECT OriginAirportID, DestAirportID, AVG(MktFare) FROM Market Retrieve the average fare between

WHERE OpCarrier = ‘B6’ GROUP BY OriginAirportID, DestAirportID each pair of airport.
Q5 SELECT OpCarrier, MktFare, For each carrier and itinerary type,

RANK() OVER (PARTITION BY OpCarrier, ItinGeoType ORDER BY MktFare) check its rank of market fare.
FROM Market WHERE MktDistanceGroup = 1
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