
Towards A General-Purpose Query Language
for Visualization Recommendation

Kanit Wongsuphasawat
University of Washington

kanitw@uw.edu

Dominik Moritz
University of Washington

domoritz@uw.edu

Anushka Anand
Tableau Research

aanand@tableau.com

Jock Mackinlay
Tableau Research

jmackinlay@tableau.com

Bill Howe
University of Washington

billhowe@uw.edu

Jeffrey Heer
University of Washington

jheer@uw.edu

ABSTRACT
Creating effective visualizations requires domain familiarity
as well as design and analysis expertise, and may impose
a tedious specification process. To address these difficul-
ties, many visualization tools complement manual specifica-
tion with recommendations. However, designing interfaces,
ranking metrics, and scalable recommender systems remain
important research challenges. In this paper, we propose
a common framework for facilitating the development of
visualization recommender systems in the form of a spec-
ification language for querying over the space of visualiza-
tions. We present the preliminary design of CompassQL,
which defines (1) a partial specification that describes enu-
meration constraints, and (2) methods for choosing, ranking,
and grouping recommended visualizations. To demonstrate
the expressivity of the language, we describe existing recom-
mender systems in terms of CompassQL queries. Finally, we
discuss the prospective benefits of a common language for
future visualization recommender systems.

Keywords
Visualization Tools, Visualization Recommendation, Mixed-
initiative Systems

1. INTRODUCTION
Visualization is an essential tool for data analysts to ex-

plore and reason about data. However, to create a visu-
alization, analysts typically have to specify queries and vi-
sual encodings manually, either via a programming library
such as ggplot [22, 23] or via a graphical interface such as
Tableau [17]. While manual specification provides flexibility
for creating a variety of charts, it can be tedious and impede
comprehensive coverage of the data in exploratory analysis.

Moreover, creating visualizations that effectively achieve
analysis or presentation goals requires visual analysis exper-
tise and knowledge of the data domain. In practice, users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939506

might not have complete specifications of the ideal visual-
izations in mind; as a result, they have to iteratively create
and refine visualizations to search for satisfactory results [9].
Due to the tedium of the specification process and the size
of the search space, users may explore only a fraction of
the space, choose an inferior presentation, or even overlook
critical insights in the data [25].

To address these difficulties, some tools complement man-
ual specification with recommendations, fostering mixed-
initiative interactions [10]. Users can indicate their intent
in the form of partial specifications, and the system in turn
completes the unspecified parts to produce recommenda-
tions, reducing the burden of providing complete and correct
specifications. For example, a user of Voyager [25] can se-
lect a set of data fields, and the system in turn suggests
visual encodings ranked according to perceptual principles.
To help users explore large or unfamiliar data, some sys-
tems [16, 21] use summary statistics to suggest potentially
interesting fields or relevant subsets of the data.

These different types of recommendations are useful for
specific tasks. To develop more effective visualization rec-
ommender systems, important research challenges include
designing appropriate interfaces, ranking metrics, and scal-
able data processing engines. To assist these goals and pro-
vide a shared foundation for research, we propose a unified
framework in the form of a query language for expressing
desired recommendations.

In this paper, we first discuss different types of recommen-
dations and common patterns in the recommendation pro-
cess, including phases of enumerating, choosing, and ranking
candidate visualizations. We then present the preliminary
design of CompassQL, a query language that defines a set of
visualization recommendations through a set of enumeration
constraints combined with methods for choosing, ranking,
and grouping visualizations. We demonstrate the expres-
sivity of the language design by describing existing visu-
alization recommendation systems in terms of CompassQL
queries. Finally, we discuss the potential benefits of the
query language for the development of future visualization
recommendation tools.

2. BACKGROUND

2.1 Visualization Specification Languages
Specification languages are fundamental to visualization

creation, either as programming interfaces [1, 22] or as un-

http://dx.doi.org/10.1145/2939502.2939506

Figure 1: A bar chart showing aggregate data, its
Vega-Lite specification, and a SQL query that de-
fines an aggregation equivalent to the specification.
The specification defines data source, mark type,
and mappings between encoding channels (x and y)
and (potentially transformed) data fields.

derlying representations for graphical user interfaces [17, 25].
Chart typologies, or templates commonly found in spread-
sheet and dashboard tools, provide the simplest interfaces,
but have limited expressivity: users can only create a chart
if the tool provides a template. Conversely, with low-level
graphic APIs like OpenGL one can express any number of vi-
sualizations, but at the cost of significant software engineer-
ing effort. Grammar-based languages offer primitives such
as marks and scales for composing visualizations. Low-level
grammars such as D3 [7] and Vega [15] support a broad range
of custom visualization designs, but are verbose and require
explicit definitions of all primitive components. Higher-level
grammars such as ggplot2 [22], Vega-Lite [25] and Tableau’s
VizQL [17] are more concise and convenient for enumera-
tion. These specifications can omit details such as scale and
axis definitions. A rule system is used to resolve appropriate
defaults for these components.

2.2 Vega-Lite
In this paper, we represent visualizations using the Vega-

Lite grammar. Vega-Lite specifications describe visualiza-
tions as mappings from data to properties of graphical marks
such as points or bars. Fig. 1 shows a schematic Vega-
Lite specification for a bar chart. The data property de-
scribes a tabular data source (e.g., via url), which is a set
of records with named fields. Based on the mark type and
a set of encoding mappings between visual channels and
data fields, Vega-Lite automatically generates necessary vi-
sualization components including scales, axes, and legends.
Vega-Lite uses a rule-based approach to determine the de-
fault properties of these components. To facilitate analysis,
Vega-Lite supports data transformation such as aggregation,
binning, filtering, and sorting. In addition, it also supports
faceting a single plot into trellis plots [5] with row and col-

umn channels.
With Vega-Lite, users can express a variety of common,

useful plots of both raw and aggregate data. Examples in-
clude bar charts, histograms, dot plots, scatter plots, line
graphs, and area graphs. The online documentation [3] de-
scribes the complete syntax and semantics of Vega-Lite.

3. VISUALIZATION RECOMMENDATION
We now discuss different types of visualization recommen-

ders, and a general pattern for the recommendation process.

3.1 Types of Recommender Systems
Fig. 2 displays a matrix that categorizes visualization tools

Data Query
Recommenders

SeeDB [21]
Rank-by-Feature Framework [16]

Scagnostics [18,24]
…

Polaris [17]
ggplot2 [22]
Vega-Lite [3]

…

APT [12]
Tableau’s Show Me [13]

Spotfire Recommendation [2]
…

Visual Encoding

Data Query

Completely
Specified

Completely or Partially
Suggested

Completely
Specified

Completely
or Partially
Suggested

Hybrid
Recommenders

Manual Specification
Tools

Encoding
Recommenders

Voyager [25]
VizDeck [14]

Small Multiples, Large Singles [19]
…

Figure 2: Matrix of visualization tools grouped by
the type of recommendations.

based on whether the system suggests what data to visualize
(data query recommendations) or how to visualize it (visual
encoding recommendations).

Encoding recommenders such as APT [12], Tableau’s
Show Me [13], and Spotfire Recommendations [2] suggest
effective graphical representations for provided data fields,
assisting users with less design expertise to quickly create
visualizations. Nevertheless, users still have to manually
specify data queries to explore different data.

Conversely, data query recommenders [16, 21] and related
techniques [4, 6, 24] suggest variations of query parameters
(such as different projections) for a fixed visual encoding
template. These systems can facilitate exploration of large
data sets, but their utility is limited by the use of fixed
visualization forms.

To support a broader set of analysis tasks, a few projects
have developed hybrid recommenders [14, 19, 20, 25], which
suggest both visual encodings and data queries. While hy-
brid recommendation is still nascent, initial user studies
show promise for this approach [25]. Going forward, im-
portant challenges include formulating and evaluating useful
ranking metrics, and designing interfaces that appropriately
balance user control and automatic recommendation.

3.2 Recommendation Process
Visualization recommender systems typically follow a sim-

ilar process. First, a recommender system searches for a
set of visualizations that match the user’s intent. To per-
form this search, the system enumerates different data query
and/or visual encoding parameters to produce specifications
that satisfy a set of constraints. Given some satisfiable can-
didates, the system then orders recommendations based on
a utility function. To avoid redundant recommendations,
the system may group similar candidates and select a top-
ranked representative from each group.

Enumeration. A system may enumerate data query pa-
rameters including projected fields, filters, aggregation, sort-
ing, and field transformations such as binning. It may also
enumerate visual encoding parameters including encoding
mappings between data fields and visual channels such as
x-position, y-position, or color.

To qualify for recommendation, a candidate visualization
must satisfy two types of constraints. First, it should re-
spect any data query or encoding constraints that partially
express the user’s intent. Second, it must satisfy expres-
siveness constraints [12]. For example, a visualization that
encodes a quantitative field with the shape of symbols is

misleading since different shapes are unordered and there-
fore cannot convey the magnitude of quantitative values.
Visualizations that use misleading encodings can be omit-
ted from consideration.

Ranking. With a set of qualified candidates, the system
then suggests the top item or produces an ordered list of
recommendations based on various ranking functions.

Variations of encodings are typically ranked based on per-
ceptual effectiveness metrics, applying prior works [8, 12]
that rank the effectiveness of each encoding mapping based
on the type of the encoded field and the encoding channel.

To rank different data queries, a recommender system
might use a naive order based on the data schema [25]. This
simple approach can work for datasets with small numbers
of fields, but does not scale if there are many fields. With
more fields, the system might take a data-driven approach
to compute statistics that best suit a task. For example, if
the user is interested in correlation between two fields, the
system might rank visualizations based on Pearson’s corre-
lation coefficient [16]. If the user looks for anomalies in the
data, the system might instead use the number of outliers
or other metrics that measure deviation, normality, or uni-
formity to rank the recommendations [11, 16, 21].

For hybrid recommendations, designing a holistic ranking
metric that takes both data query and encoding parame-
ters into account can be complicated. Existing tools apply
separate encoding-based or data-based metrics to rank the
recommendations. The Small Multiples, Large Singles sys-
tem [19] varies only one of either the data query or the en-
coding parameter at a time, and thus can apply either type
of metric directly. Voyager [25] groups visualizations backed
by the same data query, applies an encoding-based metric
to choose group representatives, and orders them using a
data-based metric.

Reducing Redundancy. Many candidate visualizations
may be similar and thus redundant, increasing the number of
charts the user has to consider without providing additional
value. For example, it is often unnecessary to suggest both
horizontal and vertical bar charts of the same data fields. A
recommender system might group similar charts to reduce
redundancy and encourage diversity. For example, Show
Me Alternatives [13] suggests only one instance each for a
set of basic chart types, as shown in Fig. 3c. To support
broader exploration, Voyager groups visualizations with the
same data query and only presents the most perceptually
effective item from each group in its main view (Fig. 8a).

4. VISUALIZATION QUERY LANGUAGE
We present the preliminary design of CompassQL, a query

language that supports each of our identified phases of visu-
alization recommendation. We plan to extend the Compass
visualization recommender engine in Voyager [25] using this
query language design to support a variety of visualization
recommender tools.

A CompassQL query consists of a partial specification
(which provides enumeration constraints) coupled with
methods for choosing, ranking and grouping recommenda-
tions. With this query language, a recommender system
may set some query parameters as a part of a template,
with other parameters interactively specified by users. For
illustration, in subsequent figures we highlight user provided
parameters in red.

Partial Specification. We extend the Vega-Lite visu-

alization grammar [3] with explicit enumeration specifiers
to define properties that should be enumerated. We denote
enumeration specifiers with bold, capital letters. Enumer-
ated values are implicitly any compatible values. For exam-
ple, setting the mark property in Fig. 3a to M means that
the system should enumerate all possible mark types (e.g.,
bar, line, area, point). To enumerate a set of visualiza-
tions with a varying number of fields, an encoding mapping
can be optional as well. For example, a query in Fig. 7
enumerates both 1D and 2D visualizations.

Besides matching specified values, expressiveness con-
straints are also implicitly applied. For example, a recom-
mender system should not assign quantitative fields to the
shape channel, nor enumerate mean aggregation for ordinal
fields. To avoid combinatorial explosion of the result set, a
partial specification might contain extra constraints for enu-
meration specifiers. For instance, the aggregate function A
in Fig. 8d is constrained to either - (no aggregate) or mean.

Choosing and Ordering. A query might specify the
choose by property to define how to choose the top recomm-
endation, or set the order by property to produce a ranked
list recommendations in decreasing order of scores.

Both the choose by and order by properties refer to
ranking methods that are either provided natively by the
query engine or defined by developers as user-defined func-
tions. We assume that commonly used ranking methods
such as encoding effectiveness (Effectiveness) will be pro-
vided by the query engine by default.

These ranking methods can take a visualization specifi-
cation s, the data relation D, and values of enumeration
specifiers as input. Some ranking methods such as encod-
ing effectiveness may depend only on the specification and
simple statistical properties such as cardinality. However,
data-driven metrics such as mutual information and devi-
ation require more expensive data computation. A rank-
ing method might also invoke an external module such as
a learning model that improves over time. For example,
Fig. 3a shows a query for Show Me Automatic Marks [13],
which attempts to suggest the most effective mark; the query
choose a specification s that maximizes the effectiveness

score. In Fig. 4a, the query sets order by property to a user-
selected ranking R1 of the enumerated field F to produce an
ordered list of histograms.

Grouping. To reduce redundancy, a query can include a
group by clause, providing a key function to induce group-
ings. When group by is provided, the choose by property
defines how the system chooses a top representative for each
group; meanwhile, the order by property specifies how the
system orders the representative from each group in the list
of recommendations. For example, as shown in Fig. 8d, Voy-
ager groups visualizations by matching data queries, and
chooses the most perceptually effective visualization to rep-
resent a group; the chosen visualizations are then ordered
by query simplicity: raw plots are shown before aggregate
plots. Similar to the ranking methods, system developers
may provide user-defined key functions to the query engine.

5. EXAMPLE COMPASSQL QUERIES
We now consider example queries for different types of

recommendations supported by existing systems.

5.1 Encoding Recommendations
Encoding recommenders generate variations of visual en-

(a)

(b)

(c)

Partial Specification
Mark M

Encoding x: Mean(Horsepower)
y: Cylinders

Recommendation Method
Choose by Effectiveness(s,D)

Partial Specification
Mark bar

Encoding x: Mean(Horsepower)
y: Cylinders
C: Origin

Recommendation Method
Choose by Effectiveness(s,D)

Partial Specification
Mark M

Encoding C1: Mean(Horsepower)
C2: Cylinders

Recommendation Method
Group by ChartType(s)

Choose by Effectiveness(s,D)
Order by Effectiveness(s,D)

Figure 3: Tableau’s Show Me features [13] and
their CompassQL queries, which rank effectiveness
of each specification s for dataset D. (a) Automatic
Marks determines the most effective mark type for
the specified data query and encoding mappings. (b)
Add To Sheet recommends the most effective encod-
ing mapping for a new field added to an existing vi-
sualization. (c) Show Me Alternatives suggests chart
types for provided data fields. The interface high-
lights the most effective chart type with blue border.

codings for a fixed, user-provided data query. Their recomm-
endation queries have enumeration specifiers for mark type
or visual channels in the encoding mappings. All of them
rank outputs based on their encoding effectiveness.

Show Me [13] is a set of features that provides automa-
tion to facilitate the creation of visualizations in Tableau.
Fig. 3a shows a query for Automatic Marks. Since the mark

property is specified as enumerable, the system generates
multiple candidate visualizations by varying the mark type
and recommends the most effective presentation. In Fig. 3b,
the user selects a field (Origin) to add it to the view with
Add To Sheet. The system enumerates and ranks alternative
mappings between the selected field and available encoding
channels. Fig. 3c shows a query for Show Me Alternatives,

Figure 4: Data query recommendations. (a-b)
Rank-by-Feature Framework [16] queries for ranking
histograms and scatterplots by the selected metrics
R1 and R2. (c) a query for ranking bar charts of ag-
gregate views V with varying dimension A and mea-
sure M by the deviation between select target and
reference data subsets (DQ, DR) akin to SeeDB [21].

which recommends alternative chart types for selected fields
or fields of the current chart, if users do not select any fields.
All channels in the encoding mappings and marks are spec-
ified as enumerable. The recommendations are shown as
a list of compatible chart types, with the top-ranked type
highlighted. If the user selects a chart type that has multiple
compatible encoding mappings, Show Me recommends the
top-ranked encoding.

APT [12] and Spotfire Recommendations [2] sug-
gest encodings for selected fields akin to Show Me Alterna-
tives (Fig. 3c) and thus have similar partial specifications.
However, APT only recommends the top result (choose by

= Effectiveness(s,D)). Meanwhile, Spotfire appears to sug-
gest variations of the same chart type with different encoding
mappings and thus does not group by chart types.

5.2 Data Query Recommendations
CompassQL queries that recommend the data to view fix

the visual encoding templates and only have enumeration
specifiers for data query parameters such as the data fields.

The Rank-by-Feature Framework [16] ranks his-
tograms and scatterplots based on selected metrics. In the
queries shown in Fig. 4 (a-b), the metrics R1 and R2 are
functions of the enumerated fields (F for histograms; F1
and F2 for scatterplots). The framework provides many
metrics such as distribution normality and distribution uni-
formity for histograms as well as correlation and the num-
ber of potential outliers for scatterplots. Other works such
as Scagnostics [24] propose a set of cognostics [18], or
metrics that measure the relative interestingness of different
displays, for ranking scatterplots as well.

SeeDB [21] suggests bar charts of aggregate views with
the highest deviation between the user provided target and
reference data subsets (DQ and DR). Fig. 4c shows a re-
commendation query akin to this suggestion1. The system
ranks each aggregate view V that computes a selected ag-
gregate function f of field M grouped by field A based on
the deviation between the data subsets, which is defined as
the distance between their probability distributions:

Deviation(V,DQ, DR) := S(P [V (DQ)], P [V (DR)])

where S is a distance function (e.g., earth mover’s distance)
and P [V (D)] is a probability distribution of V given a data
subset D.

1 SeeDB presents recommended views as grouped bar charts
that juxtapose each dimension’s value of both data subsets.
Our formulation enables an implementation of an equivalent
display that shows small multiple bar charts of the recom-
mended view (each multiple represents each data subset).

Figure 5: Automatic Selection of Partitioning Vari-
ables for Small Multiple Displays [4] can be ex-
pressed as a CompassQL query that enumerates par-
tition fields and ranks them based on a random-
ized, non-parametric permutation test that deter-
mines interesting conditional structure in the data.

Partial Specification
Mark point

Encoding x: Miles_per_Gallon
y: F

Recommendation Method
Order by SchemaIndex(F)

Figure 6: The Small Multiples Large Singles sys-
tem [19] when a user chooses to enumerate the field
on y-axis, expressed as a CompassQL query.

Partial Specification
Mark M

Encoding C1: A1(F1)
C2: A2(F2) (Optional)
A1, A2 ∈ {-, Mean}

Recommendation Method
Order by RankingModel(S, D, userVotes)

Figure 7: VizDeck [14] showing 1D and 2D visu-
alizations ordered by a ranking model trained with
user votes, expresses as a CompassQL query.

Automatic Selection of Partitioning Variables for
Small Multiple Displays [4] is a method to rank parti-
tioning fields that reveal interesting pattern in the data with
a randomized, non-parametric permutation test and cognos-
tics [18]. The query shown in Fig. 5 varies the partition field
P, which is mapped to the row channel to create small mul-
tiples of scatterplots, and ranks each small multiple based
on this method.

5.3 Hybrid Recommendations
Hybrid recommendation queries can have enumeration

specifiers for both data query and encoding parameters.
Small Multiples, Large Singles [19] shows small multi-

ple displays that are variants of a main display. The variants
are produced by changing either a data query (filtering data,
changing an axis) or a visual encoding parameter (changing
size, color, or the parameters of a layout algorithm). For ex-
ample, Fig. 6 shows the interface and a CompassQL query
with the field F on the y-axis varied.

VizDeck [14], as shown in Fig. 7, displays a ranked list
of 1D and 2D visualizations which the user can vote up or
down. The system ranks the results using a combination of

1

2

1 2 3

(a)

(b)

(d) (e) (f)

3

(c)

Figure 8: Voyager [25]. (a) The Main View shows
visualizations with different data queries, promot-
ing exploration of different fields. The Exact Match
section contains all and only the selected fields. The
Suggestion section contain all selected fields and one
extra field to encourage further exploration. (b)
The Expanded View displays various encodings of the
same data query. (c) Groups of enumerated visual-
izations. The Main View only displays the top item
from each group (highlighted with green border).
(d-f) CompassQL queries for different sections.

heuristics and a model of visualization quality that learns the
relationship between summary statistics of the data (e.g.,
entropy, coefficient of variation, kurtosis, and periodicity)
and voting feedback collected by the interface.

Voyager [25] suggests visualizations based on selected
fields, showing both variations of data queries and visual
encodings. The Main View (Fig. 8a) has two sections that
display visualizations for different data queries to encourage
exploration of different fields. The Exact Match section lists
visualizations of selected fields with varying aggregation lev-
els. The Suggestion section adds an extra field to promote
further exploration. Fig. 8d and 8e illustrate recommendat-
ion queries for the Main View. Both queries group results
by data query and suggest the top chart from each clus-
ter. The Exact Match section orders visualizations by data
query simplicity, showing raw plots before aggregate plots.
The Suggestion section orders visualizations by schema in-
dices of the added fields, then by the same query simplicity
criteria. Users can browse different encodings of a particular
data query in the Expanded View (Fig. 8b). Fig. 8f shows its
query, which is similar to encoding recommenders. It enu-
merates only mark and encoding mappings, and then ranks
outputs by encoding effectiveness. To reduce redundancy,
the Expanded View also groups visualizations with similar
encodings and only suggests one visualization for each clus-
ter. For example, it does not suggest another scatterplot
that is a transpose of the scatterplot shown in Fig. 8b.

6. DISCUSSION & FUTURE WORK
In this paper, we present a preliminary design of Com-

passQL, a query language that describes parameters of the
visualization recommendation process, and demonstrate ex-
ample queries for different types of recommendations.

As a next step, we plan to extend Compass recommendat-
ion engine to supports CompassQL queries. Just like SQL
has enabled researchers and companies to develop highly
optimized but compatible engines and various higher-level
applications, we hope that CompassQL will facilitate the
development of compatible recommender engines as well as
recommender interfaces. For example, having a clear sepa-
ration of the engine and the interface may allow database
researchers to focus on optimizing scalable processing while
allowing HCI researchers to focus on the design of better rec-
ommender interfaces. The visualization community could
assess the encoding effectiveness rankings and integrate the
findings into recommender systems. Meanwhile, statisti-
cians might formulate improved data-centric ranking meth-
ods. Overall, we hope to foster collaborative research efforts
to design visualization recommender systems that help peo-
ple explore data more effectively.

7. ACKNOWLEDGMENTS
We thank Alvin Chueng and members of the UW Inter-

active Data Lab for their feedback. We also thank Stef van
den Elzen for permission to use Fig. 6. This work was partly
supported by the Intel Big Data ISTC, DARPA XDATA, the
Gordon & Betty Moore Foundation, and the UW eScience
Institute.

8. REFERENCES
[1] Matplotlib documentation. http://matplotlib.org/.

[2] Spotfire recommendations.
http://spotfire.tibco.com/recommendations.

[3] Vega-Lite documentation.
https://vega.github.io/vega-lite/docs/.

[4] A. Anand and J. Talbot. Automatic selection of
partitioning variables for small multiple displays.
Visualization and Computer Graphics, IEEE
Transactions on, 22(1):669–677, 2016.

[5] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The
visual design and control of trellis display. Journal of
computational and Graphical Statistics, 5(2):123–155,
1996.

[6] E. Bertini, A. Tatu, and D. Keim. Quality metrics in
high-dimensional data visualization: an overview and
systematization. IEEE Transactions on Visualization
and Comp. Graphics, 17(12):2203–2212, 2011.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3

data-driven documents. IEEE Transactions on
Visualization and Comp. Graphics, 17(12):2301–2309,
2011.

[8] W. Cleveland and R. McGill. Graphical perception:
Theory, experimentation, and application to the
development of graphical methods. Journal of the
American Statistical Association, 79(387):531–554,
1984.

[9] L. Grammel, M. Tory, and M. Storey. How
information visualization novices construct
visualizations. IEEE Transactions on Visualization
and Comp. Graphics, 16(6):943–952, 2010.

[10] E. Horvitz. Principles of mixed-initiative user
interfaces. In Proc. ACM Human Factors in
Computing Systems (CHI), pages 159–166, 1999.

[11] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein,
and J. Heer. Profiler: Integrated statistical analysis
and visualization for data quality assessment. In Proc.
Advanced Visual Interfaces (AVI), pages 547–554.
ACM, 2012.

[12] J. Mackinlay. Automating the design of graphical
presentations of relational information. ACM
Transactions on Graphics, 5(2):110–141, 1986.

[13] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me:
Automatic presentation for visual analysis. IEEE
Transactions on Visualization and Comp. Graphics,
13(6):1137–1144, 2007.

[14] D. B. Perry, B. Howe, A. M. Key, and C. Aragon.
Vizdeck: Streamlining exploratory visual analytics of
scientific data. 2013.

[15] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer.
Reactive vega: A streaming dataflow architecture for
declarative interactive visualization. Visualization and
Computer Graphics, IEEE Transactions on,
22(1):659–668, 2016.

[16] J. Seo and B. Shneiderman. A rank-by-feature
framework for interactive exploration of
multidimensional data. IEEE Transactions on
Visualization and Comp. Graphics, 4(2):96–113, 2005.

[17] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A
System for Query, Analysis, and Visualization of
Multidimensional Relational Databases. IEEE
Transactions on Visualization and Comp. Graphics,
8(1):52–65, 2002.

[18] J. W. Tukey and P. A. Tukey. Computer graphics and
explaoratory data analysis: An introduction. In
Proceedings of the Sixth Annual Conference and
Exposition: Computer Graphics, 1985.

[19] S. van den Elzen and J. J. van Wijk. Small multiples,
large singles: A new approach for visual data
exploration. Computer Graphics Forum,
32(3pt2):191–200, 2013.

[20] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and
A. Parameswaran. Towards visualization
recommendation systems. Workshop on Data Systems
for Interactive Analytics (DSIA), 2015.

[21] M. Vartak, S. Rahman, S. Madden, A. Parameswaran,
and N. Polyzotis. SeeDB: Efficient data-driven
visualization recommendations to support visual
analytics. VLDB 2015, 8(13):2182–2193, 2015.

[22] H. Wickham. ggplot2: Elegant Graphics for Data
Analysis. Springer, 2009.

[23] L. Wilkinson. The Grammar of Graphics. Springer,
2005.

[24] L. Wilkinson, A. Anand, and R. L. Grossman.
Graph-theoretic scagnostics. In IEEE Transactions on
Visualization and Comp. Graphics, volume 5, page 21,
2005.

[25] K. Wongsuphasawat, D. Moritz, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager:
Exploratory analysis via faceted browsing of
visualization recommendations. IEEE Transactions on
Visualization and Comp. Graphics, 22(1):649–658,
2016.

	Introduction
	Background
	Visualization Specification Languages
	Vega-Lite

	Visualization Recommendation
	Types of Recommender Systems
	Recommendation Process

	Visualization Query Language
	Example CompassQL Queries
	Encoding Recommendations
	Data Query Recommendations
	Hybrid Recommendations

	Discussion & Future Work
	Acknowledgments
	References

