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ABSTRACT
Many important data management and analytics tasks cannot be
completely addressed by automated processes. Crowdsourcing is
an effective way to harness human cognitive abilities to process
these computer-hard tasks, such as entity resolution, sentiment anal-
ysis, and image recognition. Crowdsourced data management has
been extensively studied in research and industry recently. In this
tutorial, we will survey and synthesize a wide spectrum of exist-
ing studies on crowdsourced data management. We first give an
overview of crowdsourcing, and then summarize the fundamental
techniques, including quality control, cost control, and latency con-
trol, which must be considered in crowdsourced data management.
Next we review crowdsourced operators, including selection, col-
lection, join, top-k, sort, categorize, aggregation, skyline, planning,
schema matching, mining and spatial crowdsourcing. We also dis-
cuss crowdsourcing optimization techniques and systems. Finally,
we provide the emerging challenges.
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1. INTRODUCTION
There are many computer-hard tasks, such as entity resolution [93,

95, 91, 96], sentiment analysis [113, 61, 69], and image recogni-
tion [98, 82, 103], which cannot be effectively solved by existing
machine algorithms. Benefited from using human cognitive abil-
ity, crowdsourcing has been emerged as an effective paradigm to
address such tasks by utilizing hundreds of thousands of ordinary
workers (i.e., the crowd) [92, 25, 47, 100, 60, 8, 11]. Thanks
to public crowdsourcing platforms, such as Amazon Mechanical
Turk (AMT) [1], CrowdFlower [2], the access to crowdsourcing
resources has become easier. As reported in [3], more than 500K
workers from 190 countries have performed tasks on AMT [1].

Over the past few years, crowdsourcing has become an active
area in the data management community from both research and
industry (see a survey [57] and a book [67]). There are several im-
portant problems in crowdsourced data management as shown in
Figure 1. Typically, in a crowdsourcing platform (e.g., AMT [1]),
there are two types of users, called “workers” and “requesters”.
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Requesters publish tasks on a crowdsourcing platform, while work-
ers perform tasks and return the results. Suppose a requester has an
entity resolution problem to solve, which aims to find the same en-
tity from 10K products. The requester needs to first perform “task
design”, e.g., designing the user interface of a task (e.g., showing
a pair of products and asking the crowd to choose between “the
same entity" and “different entities"), and set up some properties
of the tasks (e.g., the price of a task, the number of workers to
answer a task, the time duration to answer a task). Then the re-
quester publishes the tasks to the platform, and collects the answers
from the crowd. In this process, three core crowdsourced data man-
agement techniques must be considered: “quality control”, “cost
control”, and “latency control”. Quality control aims to gener-
ate high-quality answers from workers’ (possibly noisy) answers,
by characterizing a worker’s quality and aggregating workers’ an-
swers [39, 61, 105, 16, 110, 53, 14, 52, 100, 50, 49, 13, 47, 100, 87,
79, 71, 27, 109, 108, 43, 44, 43, 44]. Cost control focuses on how to
reduce human costs while still keeping good result quality [93, 95,
22, 96, 99, 91, 48, 99, 89, 36, 69, 39, 19, 77, 26, 104, 54, 75, 112,
111]. Latency control exploits how to reduce the latency by model-
ing workers’ latency and estimating workers’ arrival rates [35, 31,
41]. Note there are trade-offs among quality, cost, and latency, and
existing studies focus on how to balance them, e.g., optimizing the
quality given a fixed cost, reducing the latency given a fixed cost,
minimizing the cost under latency and quality constraints, etc.

In addition, it is rather inconvenient for the requester to interact
with the crowdsourcing platforms, because the platforms require
requesters to set parameters and even write codes. To encapsulate
the process of interacting with the crowd, we need to design crowd-
sourced operators and systems. For example, entity resolution can
use a crowdsourced join to find objects referring to the same entity.
In data extraction, we need to use crowdsourced selection to select
relevant data. In subjective comparison scenarios, we need to use
crowdsourced sort to rank the results. All database operators have
been studied in crowdsourcing, e.g., Selection [73, 72, 81, 103],
Collection [86, 76], Join [93, 95, 91, 96, 36, 99], Topk/Sort [39,
19, 77, 26, 39, 21, 104, 54], Categorize [75], Aggregation [39, 88,
66, 42, 21], Skyline [62, 63, 37], Planning [51, 64, 106, 83, 84],
Schema Matching [105, 70, 28], Mining [11, 12, 9, 10], and Spatial
Crowdsourcing [85]. In addition, several crowdsourcing database
systems (e.g., CrowdDB [33], Deco [74], Qurk [68]) have been de-
veloped for query plan generation and optimization.
• Tutorial Structure. The 3 hours’ tutorial is split into 2 sections.

In the first section (1.5 hours), we first give an overview of crowd-
sourcing (0.5 hour), including motivation of crowdsourcing (see
Section 2), basic crowdsourcing concepts (e.g., workers, requesters),
crowdsourcing platforms (e.g., AMT [1], CrowdFlower [2]), crowd-
sourcing workflow, and crowdsourcing applications. Then we talk
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Figure 1: Overview of Crowdsourced Data Management.

about three fundamental techniques in crowdsourcing (1 hour), i.e.,
quality control, cost control and latency control (see Section 3).
Specifically, we summarize the factors considered in each case and
discuss the pros and cons of different factors in the techniques.

In the second section (1.5 hours), we first discuss optimization
techniques in crowdsourced data management by balancing the trade-
offs among the three fundamental factors (20 min) and then in-
troduce crowdsourced database systems (20 min), e.g., CrowdDB
[33], Deco [74], Qurk [68], including their design, query plan gen-
erations and optimizations (see Section 4). Then we discuss how
existing studies address crowdsourced operators (20 min), e.g., se-
lection, collection, join, topk, sort, categorize, aggregation, skyline,
planning, schema matching, mining and spatial crowdsourcing, in
order to optimize cost, quality or latency (see Section 4.2). Finally
we provide emerging challenges (15 min) in Section 5. We leave
15 min for Q&A to interact with the tutorial audience.
Tutorial Audience. The intended audience include all SIGMOD
attendees from both research and industry communities. We will
not require any prior background knowledge and a basic under-
standing of database (e.g., selection, join) will be helpful.
Differences from Existing Tutorials. Although there are exist-
ing crowdsourcing tutorials (e.g., in VLDB’16 [7], VLDB’15 [34],
ICDE’15 [18], VLDB’12 [24]), most of them focus on a specific
part of crowdsourcing. VLDB’16 [7] investigates human factors
involved in task assignment and completion. VLDB’15 [34] fo-
cuses on truth inference in quality control. ICDE’15 [18] reviews
individual crowdsourcing operators, crowdsourced data mining and
social applications. VLDB’12 [24] introduces crowdsourcing plat-
forms and discusses design principles for crowdsourced data man-
agement. Compared with these tutorials, we will summarize an
overview of a wide spectrum of work on crowdsourced data man-
agement, with a special focus on the fundamental techniques for
controlling quality, cost and latency. We will also introduce crowd-
sourcing systems and operators, including the works published very
recently [27, 37, 40, 41, 50, 65, 71, 89, 90, 96, 108, 110, 111, 112,
113], which can give the audience an update of the crowdsourcing
techniques. Moreover, we will also provide emerging challenges.

2. CROWDSOURCING OVERVIEW
Crowdsourcing Workflow. Suppose a requester (e.g., Microsoft
product team) has a set of computer-hard tasks (e.g., entity resolu-
tion tasks that find the objects referring to the same entity). As tra-
ditional entity-resolution algorithms are still far from perfect [93],
the requester wants to utilize crowdsourcing to achieve high qual-
ity. To this end, the requester first designs the tasks (e.g., a task
for every pair of objects that asks workers to check whether the
two objects refer to the same entity) and sets the price of each task.
Then the requester publishes their tasks on a crowdsourcing plat-
form e.g., AMT [1]. Workers who are willing to perform such tasks
accept the tasks, answer them and submit the answers back to the
platform. The platform collects the answers and reports them to
the requester. If a worker has accomplished a task, the requester
who publishes the task can approve or disapprove the worker’s an-
swers. The approved workers will get paid from the requester. As
the crowd has contextual knowledge and cognitive ability, crowd-
sourced entity resolution can improve the quality [93, 95, 96].
Applications. There are many successful applications that utilize
crowdsourcing to solve computer-hard tasks. For example, Von
Ahn et al. digitized newspapers for The New York Times by getting
Internet users to transcribe words from scanned texts [92]. Their
method achieved accuracy exceeding 99% and has transcribed over
440 million words. As another example, Eiben et al. utilized a
game-driven crowdsourcing method to enhance a computationally
designed enzyme [25]. Crowdsourcing can also benefit data man-
agement applications, such as data cleaning [94, 76], data integra-
tion [47, 100, 60], and knowledge construction [8, 11].
Task Design. There are several important task types that are widely
used in real-world crowdsourcing platforms. (1) Single-Choice
Task. Workers select a single answer from multiple options. For
example, in sentiment analysis, given a review, it asks workers to
assess the sentiment of the review (options: Positive, Neutral, Neg-
ative). (2) Multiple-Choice Task. Workers select multiple answers
from multiple options. For example, given a picture, workers se-
lect the objects that appear in the picture (Options: Monkey, Tree,
Banana, Beach, Sun). (3) Fill-in-blank Task. Workers need to fill-
in-blank for an object. For example, given a professor, workers
are asked to fill the university of the professor. (4) Collection Task.
Workers need to collect information, e.g., collecting 100 US univer-
sities. Single/multiple choice tasks are closed-world tasks and the
workers only need to select from given options, while fill/collection
tasks are open-world tasks and the workers can provide any results.
Task Setting. The requester also needs to determine some task
settings based on his/her requirements. (1) Pricing. The requester
needs to price each task, usually varying from a few cents to sev-
eral dollars. Note that pricing is a complex game-theoretic prob-
lem. Usually, high prices can attract more workers, thereby reduc-
ing the latency; but paying more does not always improve answer
quality [31]. (2) Timing. The requester can set time constraints for
a task. For each task, the requester can set the time bound (e.g.,
10 minutes) to answer it, and the worker must answer it within
this time bound. (3) Quality Control. The requester can select
the quality-control techniques provided by the crowdsourcing plat-
form, or design his/her own methods (see Section 3).
Crowdsourcing Platforms. We also introduce existing crowd-
sourcing platforms, e.g., AMT [1], CrowdFlower [2], ChinaCrowd [4],
and discuss their features, differences, and functionalities (includ-
ing whether the requester can control task assignment, whether the
requester can select specific workers).

3. FUNDAMENTAL TECHNIQUES
We review three fundamental techniques, i.e., quality control,

cost control and latency control, and discuss their trade-offs.
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3.1 Quality Control
Crowdsourcing may yield relatively low-quality results, e.g., a

malicious worker may intentionally give wrong answers, and a worker
may have different levels of expertise. To achieve high quality, we
need to tolerate errors and infer high-quality results from noisy an-
swers. There are various factors to consider in quality control.

The first is to characterize a worker’s quality (called “worker
modeling”) [39, 61, 32, 105, 16, 110, 53, 14, 52, 100, 50, 49,
13, 47, 100, 87, 79, 71, 27, 109, 108, 43, 44, 43, 44]. Some ini-
tial works [22, 101, 52, 58] model each worker as a single value
∈ [0, 1] (called “worker probability”), capturing the probability
that the worker will answer tasks correctly. An extension of worker
probability model is to introduce the confidence interval into the
probability, which to some extent models the variance of a worker’s
answering behavior. There are also works [13, 60] that model
each worker’s quality as a confusion matrix, which represents the
worker’s ability in answering different labels, e.g., an optimistic
worker tends to answer “positive” to a sentiment analysis task even
if it holds “neutral” sentiment. Some recent works [97, 27, 111, 65]
model the diverse skills of a worker, which captures the worker’s
answering abilities for different domains. For example, a sports fan
while paying no attention to politics might answer tasks related to
sports more correctly compared with those related to politics.

Then in order to infer worker’s quality, there are three ways.
The first is to adopt qualification test, and when a worker comes,
he/she is required to answer qualification test (containing tasks with
known ground truth) before the worker can answer real tasks. Then
based on the estimated quality of workers, we can eliminate/block
the low-quality workers (called “worker elimination”) to answer
tasks [78, 47, 66]. The second is to use golden tasks, which mix
tasks with ground truth into the tasks assigned to workers. Differ-
ent from qualification test, workers do not know which are golden
tasks, and they do not perform a test at their first come. The two
approaches both require the ground truth of a subset of tasks to be
known in advance. The third computes each worker’s quality in
an unsupervised manner, i.e., without requiring ground truth to be
known [16, 56, 61, 113, 13, 47, 110, 101, 65, 97]. The basic princi-
ple is two fold: (1) the workers who have answered tasks correctly
tend to have high qualities; (2) the answers of tasks given by high
quality workers tend to be the true answers. Following these two
intuitive principles, existing works [13, 47, 101, 60, 65, 97] often
regard workers’ qualities and tasks’ truth as two sets of parameters,
and follow an iterative approach to update them until convergence.
They are often called “Truth Inference” methods, since not only
workers’ qualities are computed, but also each task’s truth is ob-
tained. We summarize different factors in existing truth inference
methods in Table 1. We list the task models (e.g., modeling the
difficulty of tasks, the domains in tasks), the worker models as dis-
cussed above, and the techniques used. Majority voting directly
computes the truth by the answers of majority workers, and other
methods adopt an iterative approach. Some of them design an opti-
mization function with desired goals [59, 58, 114]; others adopt the
probabilistic graphical model [13, 65, 47, 101, 97], where the most
classical framework is Expectation-Maximization [13, 47, 23].

There are also some works that actively assign tasks to appro-
priate workers (called “task assignment”) [109, 108, 110, 16, 61,
15, 113, 27]. Their basic ideas are to gradually and judiciously as-
sign the tasks to the workers that have high probability to correctly
answer the tasks. Following this way, the quality can be improved
within a fixed amount of budget.

3.2 Cost Control
The crowd is not free, and a large number of tasks would result

in high costs. For example, in entity resolution, if there are 10K

Table 1: Comparisons of Truth Inference Methods.
Method Task Modeling Worker Modeling Techniques

Majority Voting No Model No Model Direct Computation
ZenCrowd [22] No Model Worker Probability Graphical Model
GLAD [101] Task Difficulty Worker Probability Graphical Model

D&S [13] No Model Confusion Matrix Graphical Model
Minimax [114] No Model Diverse Skills Optimization

BCC [55] No Model Confusion Matrix Graphical Model
CBCC [87] No Model Confusion Matrix Graphical Model
LFC [80] No Model Confusion Matrix Graphical Model

CATD [58] No Model Confidence Interval Optimization
CRH [59] No Model Worker Probability Optimization
Multi [97] Latent Topics Diverse Skills Graphical Model
KOS [52] No Model Worker Probability Graphical Model

Mean Field [60] No Model Confusion Matrix Graphical Model

objects, there will be about 50M pairs. Even if the price per pair
is $0.01, it still takes lots of money. Therefore, a big challenge
for crowdsourced data management is cost control. That is, how to
reduce human cost while still keeping good result quality.

There are several cost-control techniques. The first is “pruning”,
which first uses computer algorithms to remove unnecessary tasks
and then utilizes the crowd to answer only the useful ones [93, 95,
22, 96, 99, 91]. The second is “task selection”, which prioritizes
tasks with high benefits for crowdsourcing [48, 99, 89, 36, 69, 39,
19, 77, 26, 104, 54, 75]. The third is “answer deduction”, which
crowdsources a subset of tasks and based on the answers collected
from the crowd, deduces the results of other tasks [95, 91, 96, 38,
51, 106, 9]. The fourth is “sampling”, which samples a subset of
tasks to crowdsource [66, 42, 94]. There are also “miscellaneous”
ways [66, 86], which try to leverage well-designed task interfaces
and pay-as-you-go approach to reduce costs. These cost-control
techniques can also be used together. For example, we can first
prune many tasks and then utilize the task-selection idea to select
tasks. There are some specialized cost control techniques designed
to optimize cost for a particular operator. For example, Marcus et
al. [66] proposed a count-based user interface to reduce the number
of tasks required for crowdsourced count.

3.3 Latency Control
Crowd answers may incur excessive latency for several reasons.

For example, workers may be distracted or unavailable, the tasks
may not be appealing to enough workers, or the tasks might be
difficult for most workers. If the requester has a time constraint, it is
important to control latency. There are several strategies for latency
control. The first is pricing [35, 31]. Usually a higher price attracts
more workers and can reduce the latency. The second is latency
modeling [90, 81]. There are mainly two latency models: the round
model [81, 90] and the statistical model [103, 31]. The round model
leverages the idea that tasks can be published in multiple rounds.
If there are enough active workers on the crowdsourcing platform,
the latency of answering tasks in each round can be regarded as
constant time. Thus the overall latency is modeled as the number of
rounds. The statistical model is also used to model latency, which
leverages the collected statistics from previous crowdsourcing tasks
to build statistical models that can capture the workers’ arrival time,
the completion time, etc. These derived models can then be used to
predict and perhaps adjust for expected latency.

3.4 Trade-Off
There is a tradeoff among cost, quality, and latency. Firstly, the

cost-control techniques may sacrifice the quality. For example, the
answer deduction may reduce the quality if the crowd makes an er-
ror in their answers, and pruning can decrease the quality if some
important tasks are pruned as discussed above. Thus, some studies
study how to balance quality and cost [93, 95, 19]. Secondly, there
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is also a trade-off between latency and cost. For example, in order
to reduce cost, some cost-control techniques (e.g., answer detec-
tion) have to publish tasks in multiple rounds. However, increasing
the number of rounds will lead to long latency. Thirdly, the similar
trade-off also exists between latency and quality. For example, to
increase quality, task assignment assigns hard tasks to more work-
ers and easy tasks to fewer workers. To achieve this goal, it needs to
select tasks in multiple rounds to better understand the tasks. Thus,
a large number of rounds can improve the quality but reduce the
latency. To balance the trade-off among quality, cost, and latency,
existing studies focus on different problem settings, e.g., optimiz-
ing the quality given a fixed cost, minimizing the cost with a little
sacrifice of quality, reducing the latency given a fixed cost, etc.

4. CROWDSOURCING SYSTEMS
Several crowdsourcing database systems [33, 68, 74, 30] have

been proposed to encapsulate the process of interacting with the
crowdsourcing platforms. The basic workflow of query process-
ing consists of query parser, query plan generation, optimization,
and execution. Given a query, a parser is first applied and multi-
ple plans can be generated. Then the query optimization selects the
best query plan, and finally executes the plan. Existing crowdsourc-
ing database systems focus on query model, query operators, and
query optimization techniques. Next we discuss different existing
crowdsourced optimization techniques and operators.

4.1 Crowdsouring Optimization
CrowdDB [33] extends SQL and defines a new query language,

called CrowdSQL, to define which table or attribute should be crowd-
sourced. In query processing, CrowdDB introduces three crowd
operators: CrowdProbe (collect missing information of attributes
or new tuples), CrowdJoin (a nested-loop join over two tables),
and CrowdCompare (compare between two elements). CrowdDB
proposes rule-based optimization techniques for processing queries
with multiple operators.

Qurk [68] uses an SQL-based query language with user-defined
functions (UDFs) to enable crowdsourced data management. Qurk
focuses on implementing join and sort. It has two important com-
ponents for cost optimization: task cache and task model. Task
cache maintains the crowdsourced answers from previous tasks,
while task model trains a model to predict the results for the tasks
based on the data that are already collected from the crowd. It uses
cost-based optimization to select a good query plan.

Deco [74] focuses on crowdsourcing missing values or new tu-
ples based on the defined fetch rules. In query optimization, to find
the best query plan with the minimum cost, it considers both cost
estimation and optimal query generation. For cost estimation, it
proposes an iterative approach to estimate the cost for a query plan.
For optimal query plan generation, it enumerates all possible query
plans and selects the best query plan with the least estimated cost.

4.2 Crowdsouring Operators
There are many crowdsourced operators proposed to enable real-

world applications, e.g., Selection [73, 72, 81, 103], Collection [86,
76, 29], Join [93, 95, 17, 91, 96, 36, 99], Topk/Sort [39, 19, 77,
26, 39, 21, 104, 54, 107], Categorize [75], Aggregation [39, 88,
66, 42, 21], Skyline [62, 63, 37], Planning [51, 64, 106, 83, 84],
Schema Matching [105, 70, 28], Mining [11, 12, 9, 10], and Spa-
tial Crowdsourcing [85, 45, 46]. Various techniques are adopted to
optimize the operator’s trade-off among three factors: cost, qual-
ity and latency. To obtain high-quality results, different applica-
tions require to use different crowdsourced operators, which have
operator-specific optimization goals over three factors: cost, qual-
ity and latency. Specifically, for each operator, we discuss opti-

mization goals (cost, quality, or latency), and the techniques used
to achieve the desired optimization goal. For example, in the se-
lection operator, a type of query is filtering [73, 72], which fil-
ters items based on several properties (e.g., pictures with humans
on them). They usually perform quality and cost trade-off, e.g.,
given a fixed budget, the quality of the query should be optimized.
To improve quality, truth inference and task assignment are often
adopted, which infer the truth correctly and judiciously assign tasks
to appropriate workers; while to improve cost, more advanced task
selection methods (e.g., based on predicate cardinality estimation)
are often preferred.

5. CROWDSOURCING CHALLENGES
Query Optimization. An SQL query often corresponds to multi-
ple query plans and it relies on a query optimizer to select the best
plan. Traditionally, the way a query optimizer works is to estimate
the computation cost of each query plan and choose the one with the
minimum estimated cost. However, this process turns to be quite
challenging in a crowdsourcing environment because (1) there are
three optimization objectives (result quality, monetary cost, and la-
tency) that need to be considered and (2) humans are much more
unpredictable than machines.
Benchmark. A large variety of TPC benchmarks (e.g., TPC-H
for analytic workloads, TPC-DI for data integration) standardize
performance comparisons for database systems and promote the
development of database research. Although there are some open
datasets [5], there is still lack of standardized benchmarks avail-
able. In order to better explore the research topic, it is important
to study how to develop evaluation methodologies and benchmarks
for crowdsourced data management systems.
Big Data. In the big data era, data volumes are increasing very
fast. Compared to machines, humans are much more expensive,
and thus it would be increasingly more costly to apply crowdsourc-
ing to emerging big data scenarios. There are existing works that
aim to address this problem, but they only work for some certain
data processing tasks, such as data cleaning [94], data labeling [69].
Therefore, it is important to continue this study and to develop new
techniques that work for all kinds of data processing tasks.
Macro-Tasks. Most of existing studies focus on micro-tasks, which
can be easily assigned to workers and instantly answered by work-
ers. However, many real applications need to use macro-tasks, such
as writing a paper. Macro-tasks are hard to be split and accom-
plished by multiple workers, because they will loose the context
information if they are split [40]. Workers are not interested in an-
swering a whole macro-task as each macro-task will take a long
time. Thus it is rather challenging to support macro-tasks, includ-
ing automatically splitting a macro-task, assigning tasks to crowd
or machines, and automatically aggregating the answers.
Privacy. There are several types of privacy issues in crowdsourc-
ing. First, the requester wants to protect the privacy of their tasks [102].
The tasks may contain sensitive attributes and could cause pri-
vacy leakage. Malicious workers could link them with other pub-
lic datasets to reveal individual private information. Although the
requester can publish anonymity data to the workers using exist-
ing privacy techniques, e.g., K-Anonymity, it may lower down the
quality as the workers cannot get the precise data. Thus it is chal-
lenging to trade-off the accuracy and privacy for requesters. Sec-
ond, the workers have privacy-preserving requirement. Personal
information of workers can be inferred from the answers provided
by the workers, such as their locations, professions, hobbies. On
the other hand, the requester wants to assign their tasks to appro-
priate workers that are skilled at their tasks (or close to the tasks).
Mobile Crowdsourcing. With the growing popularity of smart-
phones, there are emerging mobile crowdsourcing platforms, e.g.,
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gMission [20], Waze [6], ChinaCrowd [4]. These mobile platforms
pose new challenges for crowdsourced data management. First,
more factors (e.g., spatial distance, mobile user interface) will af-
fect workers’ latency and quality. It is more challenging to control
quality, latency and cost for mobile platforms. Second, traditional
crowdsourcing platforms adopt worker selection model to assign
tasks; however mobile crowdsourcing requires to support server as-
signment model, which calls for new task assignment techniques.
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