
Supporting Dynamic Quantization for High-Dimensional Data
Analytics

Gheorghi Guzun
Electrical and Computer Engineering

University of Iowa
Iowa City, Iowa 52242

gheorghi-guzun@uiowa.edu

Guadalupe Canahuate
Electrical and Computer Engineering

University of Iowa
Iowa City, Iowa 52242

guadalupe-canahuate@uiowa.edu

ABSTRACT
Similarity searches are at the heart of exploratory data analysis tasks.
Distance metrics are typically used to characterize the similarity
between data objects represented as feature vectors. However, when
the dimensionality of the data increases and the number of features
is large, traditional distance metrics fail to distinguish between the
closest and furthest data points. Localized distance functions have
been proposed as an alternative to traditional distance metrics. These
functions only consider dimensions close to query to compute the
distance/similarity.

Furthermore, in order to enable interactive explorations of high-
dimensional data, indexing support for ad-hoc queries is needed.
In this work we set up to investigate whether bit-sliced indices can
be used for exploratory analytics such as similarity searches and
data clustering for high-dimensional big-data. We also propose a
novel dynamic quantization called Query dependent Equi-Depth
(QED) quantization and show its effectiveness on characterizing
high-dimensional similarity. When applying QED we observe im-
provements in kNN classification accuracy over traditional distance
functions.

ACM Reference format:
Gheorghi Guzun and Guadalupe Canahuate. 2017. Supporting Dynamic
Quantization for High-Dimensional Data Analytics. In Proceedings of Ex-
ploreDB’17, Chicago, IL, USA, May 14-19, 2017, 6 pages.
https://doi.org/http://dx.doi.org/10.1145/3077331.3077336

1 INTRODUCTION
Exploratory data analysis techniques are used to gather insights
from data with the ultimate goal of maximizing the information
retrieval quality and the user satisfaction. Data scientists spend much
of their time exploring and analysing the data before making further
decisions, which eventually leads to enhanced use of a dataset [1].

Data exploration implies that the entire dataset has to be scanned
and processed before answering an exploratory query. Furthermore,
after an initial set of results, queries are typically refined and have to
be answered again. This iterative process makes it difficult to build

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ExploreDB’17, May 14-19, 2017, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4674-0/17/05. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3077331.3077336

an effective index for the purpose of data exploration, as the queries
are unknown. Thus data exploration can be slow and even unfeasible
at times.

Exploratory queries often use a random or user specified seed to
execute a similarity search to narrow the exploration over a partic-
ular set or subspace of the data. These and other ranked retrieval
techniques are applied with the goal of filtering out information. The
concept of similarity is captured using a distance function defined
over the attributes or features of the data. User preferences can be
used to indicate the importance or weight of each feature. However,
as the number of features grows, the notion of similarity looses
its meaning. The reason is that distances between data points in
high-dimensional spaces, are usually very concentrated around their
average [5]. This makes it difficult to distinguish between the closest
and furthest data points [3].

Distance functions such as PiDist[2], DPF [14], and n-match
[15] only consider dimensions that are close to the query point to
characterize similarity in high-dimensions. These partial or local-
ized distance functions provide a better distinction between closer
and further points and often improve the accuracy of the results.
Nevertheless, these distance functions require either expensive pre-
processing of the data, or indexing support to be computed efficiently.
For high-dimensional data, these indices usually consist of colum-
nar representations of the data such as sorted columns and data
quantization.

In our previous work [9] we proposed the use of columnar bit-
sliced indices (BSI) to perform preference queries in a distributed en-
vironment over high-dimensional data. This approach was shown to
outperform other threshold-based algorithms that use sorted columns
to perform preference queries. Motivated by this result, in this work
we set up to investigate whether this type of index can also be used
for exploratory analytics such as similarity searches and data cluster-
ing. Creating an index that supports ad-hoc queries can speed up the
process of data exploratory analysis. Our first challenge is to devise
a way to perform distance computations effectively with this index.

The number of set bits can be used to represent population counts
and can be efficiently computed. This opens the door for a novel
dynamic quantization which we call Query dependent Equi-Depth
(QED) quantization. QED uses the query itself to determine the
quantization boundaries. User can specify the number of points de-
sired to fall within the dynamic bin as a percentage of the number of
points in the dataset. The query is placed at the center of the bin and
the interval is determined to contain at least p points. We evaluate the
performance of QED in terms of k-NN classification accuracy over
a several labelled datasets, and its robustness to classification param-
eter k and user-specified parameter p. For all datasets considered

https://doi.org/http://dx.doi.org/10.1145/3077331.3077336
https://doi.org/http://dx.doi.org/10.1145/3077331.3077336

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA Gheorghi Guzun and Guadalupe Canahuate

in this study, QED was able to improve the baseline classification
accuracy.

The rest of this paper is organized as follows. Section 2 presents
background and related work. Section 3 describes the index struc-
ture and the proposed quantization for similarity searches. Section 4
shows experimental results for classification accuracy. Finally, con-
clusions and future work are presented in Section 5.

2 BACKGROUND AND RELATED WORK
This section presents background and related work for similarity
searches and nearest neighbor queries in high dimensional spaces as
well as bit-sliced indices.

2.1 High-dimensional Similarity
Similarity searches are typically posed as nearest neighbor queries,
where the k closest points to the query are retrieved as the answer to
the query. Manhattan distance is preferred over Euclidean distance
for large datasets due to its lower computational cost but no distance
metric dominates another in all cases.

Quantization has been widely used to improve the accuracy of
classifiers and clustering algorithms as it reduces the noise of the
data and simplifies the models. A detail survey of quantization meth-
ods can be found in [6]. After quantization, each attribute can be
represented using discrete values and points are considered “close”
if they fall into the same bin. Hamming distance is the preferred
distance metric for discrete domains. In simple terms, the Hamming
distance between two data points is the number of dimensions where
the two points do not fall into the same bin (or for discrete data, do
not have the same value).

Localized similarities only consider a subset of the attributes to
compute the distance between high-dimensional data points. Dy-
namic Partial Function (DPF) [14], considers only the smallest N
distances between all the dimensions. To make this method less sen-
sitive to the value of N , the k-N-match algorithm returns the most
frequent k objects appearing in the solutions for a range of N values.

In [2], quantization was used to create equi-populated partitions
for each dimension and only considered the dimensions for which
the two points fall into the same bin to compute the distance. PiDist
is defined as:

PiDist(X ,Y ,kd) =

∑

i ∈S [X ,Y ,kd]

(
|xi − yi |

mi − ni

)p
1
p

where kd is the number of ranges for each dimension, S [X ,Y ,kd] is
the set of dimensions for which the two objects lie in the same range,
andmi and ni are the upper and lower bounds of the corresponding
range in dimension i. This function accumulates benefit for each
attribute for which a data object maps to the same quantization as the
query object. It does not differentiate between data and query objects
that do not map to the same quantization. Therefore, a data point
is not excessively penalized for a few dissimilar attributes. Note
that this function is not a distance metric as the triangle inequality
property does not hold.

Another approach for high-dimensional similarity is Locality
Sensitive Hashing (LSH)[10]. LSH algorithms use data dependent

hashing so that similar items fall into the same “bucket”. LSH ap-
proaches are extensively used in solving the K-Nearest Neighbors
problem. To maximize the probability of retrieving good Nearest
Neighbor candidates, one has to generate a high number of hash
tables which represents a high storage cost. Due to LSH being an
approximate method for similarity searches, we do not compare our
approach against it.

2.2 Bit-Sliced Indexing
Bit-sliced indexing (BSI) was introduced in [11] and it encodes the
binary representation of attribute values with binary vectors. There-
fore, ⌈log2values⌉ vectors, each with a number of bits equal to the
number of records, are required to represent all the values for a given
attribute. This bit-vectors can be compressed using specialized run-
length encoding schemes that allow queries to be executed without
requiring explicit decompression [7].

BSI arithmetic for a number of operations, including the addition
of two BSIs, is defined in [13]. Previous work [9, 12], uses BSIs to
support preference and top-k queries efficiently. BSI-based top-k for
high-dimensional data was shown to outperform current approaches
for centralized queries [9] and distributed environments [8].

Figure 1 illustrates how indexing of two attribute values and their
sum is achieved using bit-wise operations.

Since each attribute has three possible values, the number of
bit-slices for each BSI is 2. For the sum of the two attributes, the
maximum value is 6, and the number of bit-slices is ⌈log2 6⌉ = 3. The
first tuple t1 has the value 1 for attribute 1, therefore only the bit-slice
corresponding to the least significant bit, B1[0] is set. For attribute 2,
since the value is 3, the bit is set in both BSIs. For example, the addi-
tion of the BSIs representing the two attributes is done using efficient
bit-wise operations. First, the bit-slice sum[0] is obtained by XORing
B1[0] and B2[0]: sum[0] = B1[0] ⊕B2[0]. Then sum[1] is obtained in
the following way: sum[1] = B1[1] ⊕B2[1] ⊕ (B1[0]∧B2[0]). Finally
sum[2], which is the carry, ismajority(B1[1],B2[1], (B1[0]∧B2[0])),
wheremajority(A,B,C) = (A ∧ B) ∨ (A ∧C) ∨ (B ∧C).

We choose this data structure at the basis of our approach due
to a number of advantages that we expect to observe in centralized
systems as well as in distributed environments. The compact rep-
resentation of the compressed slices decreases the communication
overhead from disk and network between nodes. Bit-wise operations
benefit from single instruction multiple data (SIMD) operations.
Moreover, breaking up the computation into slices to perform bit-
wise operations as building blocks for more complex operations
provide a greater room for parallelism as all the tasks are indepen-
dent from each other. Additionally, combination of partial results are
very efficient as they do not involve expensive set operations such as
union and intersections but rather OR and AND bit-wise operations,
respectively.

In this work we do not present a solution for answering nearest
neighbor queries in distributed environments using BSI, however
that shall be addressed in one of our future works.

3 PROPOSED APPROACH
In this section we first provide an overview of how a BSI index
can be used to answer Nearest Neighbor queries and then describe

Supporting Dynamic Quantization for High-Dimensional Data Analytics ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

Raw Data Bit-Sliced Index (BSI) BSI SUM
A1 A2

A1 A2 B1[1] B1[0] B2[1] B2[0] S [2] S [1] S [0]
r1 1 3 0 1 1 1 1 0 0
r2 2 1 1 0 0 1 0 1 1
r3 1 1 0 1 0 1 0 1 0
r4 3 3 1 1 1 1 1 1 0
r5 2 2 1 0 1 0 1 0 0
r6 3 1 1 1 0 1 1 0 0

Figure 1: Simple BSI example for a table with 6 tuples, two at-
tributes A1 and A2, and three values per attribute.

the dynamic query dependent equi-depth quantization for high-
dimensional similarity.

3.1 kNN queries over BSI
We extended the BSI to handle signed numbers (both 2’s comple-
ment and sign and magnitude) and represent decimal numbers using
a fixed point format for each attribute. For every decimal BSI, the
position of the decimal point is maintained as metadata for the at-
tribute. To perform arithmetic operations between two attributes with
different precision, namely a and b, where a > b, the decimal point
for the second attribute is moved (a − b) positions by multiplying
the second attribute by the appropriate power of 10. Multiplication
by a constant, as in this case, can be done efficiently by adding the
logically shifted BSI to the original BSI for every set bit in the binary
representation of the constant. The parallel optimization of the BSI
SUM operation over partitioned BSI is presented in [8].

The steps to execute a kNN query over BSI index using Manhattan
distance can be summarized as:

(1) Compute the distance score between each data point and
the query for every dimension. The query point BSI is
constructed using compressed bit-vectors of all ones and
all zeros and the result is a BSI in 2’s complement. The
absolute values is computed by XORing every slice with
the sign bit-slice and adding the sign slice. The result is an
unsigned BSI.

(2) Aggregate these BSIs across all dimensions using the paral-
lel operation BSI_SUM [8].

(3) Finally, select the k minimum distance scores perform-
ing topK-Min operation over the distance BSI (Adapted
from [13]).

The steps 1-3 described above are executed using bitwise opera-
tions between the bit-vectors of the BSI index. If the bit-vectors are
compressed, there is no need for full de-compression. In this work
we focus on the dynamic quantization performed during step one
described above.

3.2 Query Dependent Equi-Depth Quantization
The similarity function is directly affected by the number of dimen-
sions in the data. The dominant components of distance functions
such as the Manhattan or Euclidean metrics are the dimensions on
which the points are the farthest apart. With higher dimensionality,
the probability of having high discrepancies between two points in
at least one dimension increases. The authors of [2, 3] show that

Algorithm 1: Quantization
Input: BSI A, int p
Output: BSI S

1 BitSlice penalty = (A[A.size − 2] XOR A.siдn);
2 for (i = A.size − 2; i >= 0; i − −) do
3 penalty = (penalty OR (A[sSize] XOR A.siдn));
4 if penalty.count() >= n − p then
5 sSize = i;
6 break;
7 end
8 end
9 BSI S = new BSI(sSize);

10 for (i = 0; i < sSize; i++) do
11 S[i] = (A[i] XOR A.siдn);
12 end
13 S .addSlice(penalty);
14 return S

for Lp -norm distance functions, the averaging effects of the differ-
ent dimensions start predominating with increasing dimensionality.
To avoid this, the authors of PiDist [2] suggest that by imposing a
proximity threshold for each dimension, beyond which the degree
of dissimilarity is not relevant, could improve accuracy in nearest
neighbor and similarity searches. They achieve this by quantizing
the indexed space into a fixed number of bins which are either
equi-width or equi-depth (equi-populated). These quantizations are
performed over the dataset without considering the query points.
Even when a query point lies close to the boundary of a bin, only the
points within the bin are considered for computing the similarity.

In this work we introduce an equi-depth quantization method that
considers the query value for defining the bin boundaries and it is
done on-the-fly during query execution. For each dimension, if the
data point has its respective dimension within threshold x then the
distance to the query is considered for that dimension otherwise a
dissimilarity penalty larger than x is assigned. For exploratory tasks,
instead of directly specifying x , user specifies parameter p as the
minimum number of data points that should be considered in order
to define the query bin boundaries. Notice that this is effectively
defining equi-populated (equi-depth) ranges for each dimension.
Using a population threshold instead of a data value threshold, is
motivated by the distribution of real data, which is rarely uniform.

To illustrate the proposed dynamic quantization, consider a 1-
dimensional dataset with values:

{{r1, 9}, {r2, 2}, {r3, 15}, {r4, 10},
{r5, 36}, {r6, 8}, {r7, 6}, {r8, 18}}

and query {q, 10}. If using Manhattan distance, the distance between
the data points and the query are:

{{r1, 1}, {r2, 8}, {r3, 5}, {r4, 0},
{r5, 26}, {r6, 2}, {r7, 4}, {r8, 8}}

For QED, if parameter p = 3, only the 3 points with the smallest
distances, i.e. {r1, r4, and r6}, will be considered according to their
distance. The rest of the points will be given a larger penalty δi to

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA Gheorghi Guzun and Guadalupe Canahuate

Figure 2: Query dependent Equi-Depth(QED) quantization with population range p = 3

characterize a large dissimilarity. This normalization of the larger
differences gives point r5 a chance to make it as a NN in the cases
where there are other many dimensions for which r5 is really close
to the query. The value of the penalty, δi , can be assigned a con-
stant larger than the distances computed within the query-dependent
interval for each dimension. In the case of PIDist, the penalty as-
signed to dissimilar points is 1 and the distance for similar points
is normalized to less than 1. Another approach could be to make δi
to represent a number larger than the largest distance between the
query and the closest p elements in dimension i.

QED can be done gracefully with the BSI index without imposing
any overhead when compared to the computation of the Manhattan
distance without quantization, as shown in Algorithm 1. Because we
operate on top of a BSI index representing the distance between the
query and the data points in each dimension, we define the penalty δi
as the truncation of the most significant bits for the largest distances
as depicted in Figure 2.

QED can be included in the calculation of the absolute value of the
distance between query and each dimension as shown in Algorithm
1. In datasets with large attribute ranges, the output of Algorithm 1
is significantly smaller in size than the size of the actual distance
measures, for most distributions. This is very important because
the result of this operation is further processed to aggregate and
rank similar objects. As a result of reducing significantly the output
size of this step, the overall execution time of the kNN query is
generally improved. The number of bit-vectors required to encode a
difference attribute is equal to the number of bits required to encode
the difference range. Where the difference range is the maximum
difference between the query dimension and the same dimension of
any of the p tuples, and their minimum difference.

In large datasets where the number of tuples is high, p should
typically be small, and most of those p closest tuples are much closer
than the attribute range. Thus the reduction in size of the result of
Algorithm 1.

For a better understanding of Algorithm 1, we show how the
distance BSI attribute between the query and the data points used
in our previous running example is quantized using QED in Figure
2. For simplicity, all the distances are positive in Figure 2 (leftmost
BsiAttribute). Starting from the most significant bit-slice, the bit-
slices in the distance attribute are OR-ed until the count of set-bits in
the resulting bit-slice (the penalty bit-slice) is equal or greater than
n − p. At this point the bit-slices that were operated are dropped and
replaced with one single penalty bit-slice.

The effect of this quantization is the identification of the furthest
n − p points from the query for one given dimension, and reduc-
ing their distance, while keeping an accurate distance for the close
points. Hence reducing the dissimilarity for outliers and avoiding
over penalizing a point if only a few dimensions are far from the
query.

Figure 2 and Algorithm 1 use Manhattan distance along with
QED quantization. However it is also possible to use other distance
metrics such as Euclidean or Hamming.

Equation 1 shows the Hamming distance between a data point a
and the query q after applying the QED quantization.

QEDHamming(a, q) =
d∑

i=1

{
0 ifa ∈ Pi

1 otherwise
(1)

Where Pi is the subset of points closest to the query in dimension i.
In the next section we evaluate the QED quantization in terms of

classification accuracy over datasets with up to several hundreds of
dimensions.

4 EXPERIMENTAL EVALUATION
In this section, we perform an experimental evaluation of the kNN
classification accuracy for localized distance functions including our
query-dependent equi-depth quantization.

We perform experiments over several datasets from the UCI repos-
itory [4]. The number of dimensions for the data used in the experi-
ments range from 19 to 279 and the number of classes from 2 to 24.
The details of the characteristics of the data and the class distribution
can be found in Table 1, as well as on the UCI repository web page.

Dataset Rows Cols Classes (Count per class)
anneal 798 38 5 (8/88/608/60/34)
arrhythmia 452 279 13 (245/50/4/5/22/44/15/15/13/25/3/2/9)
dermatology 366 33 6 (112/61/72/49/52/20)
horse-colic 300 26 2 (99/201)
ionosphere 351 33 2 (126/225)
musk 476 165 2 (269/207)
segmentation 210 19 7 (30/30/30/30/30/30/30)
soybean-large 307 34 19 (1/40/20/10/10/40/20/10/6/6/10/10/40/4/

10/40/10/10/10)
wdbc 569 30 2 (357/212)

Table 1: Description of the characteristics of the real datasets
used in the experiments.

Supporting Dynamic Quantization for High-Dimensional Data Analytics ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

Manhattan Hamming PiDist
Dataset Euc NQ QED NQ EW ED QED EW ED
anneal .934 .939 .964 .986 .984 .980 .994 .990 .990
arrhyt. .659 .653 .701 .602 .686 .646 .650 .695 .635
dermat. .975 .978 .986 .975 .973 .883 .921 .981 .970
horse .740 .770 .783 .780 .827 .857 .867 .833 .843
iono. .866 .909 .943 .809 .926 .860 .920 .929 .903
musk. .882 .893 .916 .819 .876 .870 .878 .868 .887
segm. .843 .886 .881 .586 .871 .857 .924 .900 .876
soyb. .873 .899 .938 .909 .912 .902 .821 .909 .922
wdbc .940 .949 .949 .692 .967 .951 .967 .961 .960

Table 2: Leave-one-out best classification accuracy using k-
nearest neighbor (k ∈ {1, 3, 5, 10}) classification with dif-
ferent distance functions and quantization methods (NQ=No
Quantization, EW=Equi-witdth, ED=Equi-depth, QED=Query-
dependent Equi-depth). The best result for each dataset is high-
lighted in bold.

Figure 3: kNN Classification accuracy as the number of nearest
neighbors (k) increases for Horse Colic dataset. (Dataset: Hour-
seColic, 300 rows, 26 attributes, 2 classes (99/201))

Figure 4: kNN Classification accuracy as the number of nearest
neighbors (k) increases for Arrhythmia dataset. (Dataset: Ar-
rhythmia, 452 rows, 279 attributes, 13 classes)

4.1 Nearest Neighbor Classification Accuracy
For each data set, nearest neighbor (NN) classification is performed
for all data points. Classification accuracy is computed over the

0

0.2

0.4

0.6

0.8

1

QED_avg Euclidean QEDH_avg

Figure 5: kNN Classification accuracy by dataset with varying
the range for p: 1% < p < 60% (the error bars show the maxi-
mum and minimum accuracy as p varies). k was set to 5.

labeled data using the leave-one-out methodology as the number of
correct classifications divided by the total number of tuples in the
data set. Voting was used to decide the class for each data point.

Table 2 shows the best classification accuracy when using k-NN
classification for each method. We vary the number of nearest neigh-
bors used in classification k = {1, 3, 5, 10, 15, 20, 25}, and report the
best result for each distance function. For quantization, we apply
Equi-width and Equi-Poplulated partitioning varying the number of
bins/clusters from 3 to 20 {3, 5, 7, 10, 15, 20}. The same number of
bins/clusters was used for all the dimensions. The only case where at-
tributes could be quantized using a different number of bins/clusters
than the one provided as a parameter was the categorical attributes
with less categories than the number of bins/clusters provided. In
that case each value was considered as a bin/cluster. For dynamic
quantization we set p as a percentage of the number of rows. We
vary p = {60%, 50%, 40%, 30%, 25%, 20%, 10%, 5%, and 1%}.

The best accuracy for each dataset is highlighted in bold in Ta-
ble 2. As shown in the table, QED is able to improve the results for
Manhattan and Hamming in most datasets. QED using Manhattan is
consistently better than Manhattan with no quantization (8/9) with
up to 7.35% accuracy increase (2.4% on average). For Hamming dis-
tance, QED quantization outperformed no-quantization in 7/9 cases
with up to 57.7% accuracy improvements (10.95% on average).

4.2 Robustness with K and p
When using nearest neighbor searches for classification purposes,
the number of neighbors considered is often crucial for the accu-
racy of the classifier. In this experiment we evaluate the effect of k
(the number of nearest neighbors) when QED is used in k-Nearest
Neighbor (kNN) classification.

Figures 3 and 4 show the classification accuracy for several dis-
tance functions as the number of neighbors k increases for two
different datasets. In figure 3 for the Horse-colic dataset, the clas-
sification accuracy increases gradually for QED (with Hamming
distance - QEDH), while the other distance functions are more sen-
sitive to the value of k. Regardless of the pick for k, QEDH has the
highest accuracy among the measured distance functions for k-NN
classification for this dataset.

For the Arrhythmia dataset, figure 4, QED (with Manhattan dis-
tance) has the highest accuracy. It is worth noting that while the
accuracy performance for other distance functions decreases as k in-
creases, classification accuracy for QED is not significantly affected.

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA Gheorghi Guzun and Guadalupe Canahuate

(a) Manhattan distance (b) Euclidean distance

(c) Hamming distance (d) QED

Figure 6: The heatmap of the distance matrix for the Iono-
sphere dataset computed with a) Manhattan distance, b) Eu-
clidean distance, c) Hamming distance, and d) QED.

Figure 5 shows the average k-NN classification accuracy when
varying p, the number of data points considered for QED. We vary
p = {60%, 50%, 40%, 30%, 25%, 20%, 10%, 5%, and 1%}. The value of
K was set to 5 for this figure. The error bar in each column shows
the maximum and minimum measured accuracy. As shown, the
performance of QED, while dependent on p is robust for different
values of p. Furthermore, at least one QED approaches has a higher
average accuracy than euclidean for each dataset.

4.3 QED for clustering
For this experiment we illustrate QED as a suitable quantization for
high-dimensional data clustering. For this experiment, we sorted the
data points using the class label, computed the distance between
each pair of points, and plotted the distance matrix as a heat-map. A
black pixel represents a distance of 0. Figure 6 shows the distance
matrix heat-map for the Ionosphere dataset. This dataset has two
classes which can be clearly seen in Figure 6d QED in the form of
two darker squares along the diagonal, while in Figures 6a, 6b, and
6c, one of the classes is not clearly distinguishable. We observed
similar results for some of the other datasets described in Table 1
but omitted them for space constraints.

Many popular clustering algorithms use distance matrices to de-
cide what points to cluster together. This experiment suggests that
using QED instead of more traditional distance metrics could im-
prove clustering accuracy.

5 CONCLUSION
In this work we described how bit-sliced indexing can be used to
support k-Nearest Neighbor queries over high-dimensional data and
efficiently perform on-the-fly Query dependent Equi-Depth (QED)

quantization to improve the accuracy of the results. The quantization
is done for each dimension at query time and localized scores are
generated for the closest x% of the points with a constant penalty for
the rest of the points.

We evaluated the kNN classification accuracy of the proposed
QED quantization on a set of nine high-dimensional datasets and
observed an average improvement in accuracy of 2.4% for Manhat-
tan distance and 10.95% for Hamming distance when using QED
quantization. We also showed that the proposed quantization makes
the classification accuracy more robust to increasing number of
neighbors which makes it suitable for clustering algorithms.

The BSI structures used in this paper and the query algorithms
used as building blocks to support the kNN searches are designed
for distributed processing. In future work, we want to evaluate the
scalability as the dimensionality increases using a Spark/Hadoop
cluster. We also need to evaluate the effect of QED quantization over
query time.

ACKNOWLEDGEMENTS
This research was partially supported by NSF grant DMS-1557578 and NIH
award number R01CA214825.

REFERENCES
[1] James G Acker and Gregory Leptoukh. 2007. Online analysis enhances use of

NASA earth science data. Eos, Transactions American Geophysical Union 88, 2
(2007), 14–17.

[2] Charu C Aggarwal and Philip S Yu. 2000. The IGrid index: reversing the dimen-
sionality curse for similarity indexing in high dimensional space. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 119–129.

[3] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When is “nearest neighbor” meaningful?. In International conference on database
theory. Springer, 217–235.

[4] C Blake and CJ Merz. 1998. UCI repository of machine learning databases
[http://www. ics. uci. edu/ mlearn/MLRepository. html], Department of Informa-
tion and Computer Science. University of California, Irvine, CA (1998).

[5] David L Donoho and others. 2000. High-dimensional data analysis: The curses
and blessings of dimensionality. AMS Math Challenges Lecture 1 (2000), 32.

[6] Salvador García, Julián Luengo, José Antonio Sáez, Victoria López, and Francisco
Herrera. 2013. A Survey of Discretization Techniques: Taxonomy and Empirical
Analysis in Supervised Learning. IEEE Trans. Knowl. Data Eng. 25, 4 (2013),
734–750.

[7] Gheorghi Guzun and Guadalupe Canahuate. 2015. Hybrid query optimization for
hard-to-compress bit-vectors. The VLDB Journal (2015), 1–16.

[8] Gheorghi Guzun, Guadalupe Canahuate, and David Chiu. 2016. A Two-Phase
MapReduce Algorithm for Scalable Preference Queries over High-Dimensional
Data. In Proceedings of the 20th International Database Engineering & Applica-
tions Symposium (IDEAS).

[9] Gheorghi Guzun, Joel Tosado, and Guadalupe Canahuate. 2014. Slicing the
Dimensionality: Top-k Query Processing for High-Dimensional Spaces. In Trans-
actions on Large-Scale Data-and Knowledge-Centered Systems XIV. Springer,
26–50.

[10] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. ACM, 604–613.

[11] P.E. O’Neil and D. Quass. 1997. Improved query performance with variant
indexes. In Proceedings of the 1997 ACM SIGMOD international conference on
Management of data. ACM Press, 38–49.

[12] Denis Rinfret. 2008. Answering preference queries with bit-sliced index arith-
metic. In Proceedings of the 2008 C 3 S 2 E conference. ACM, 173–185.

[13] Denis Rinfret, Patrick O’Neil, and Elizabeth O’Neil. 2001. Bit-sliced index
arithmetic. In ACM SIGMOD Record, Vol. 30. ACM, 47–57.

[14] King shy Goh, Beitao Li, and Edward Chang. 2002. DynDex: A Dynamic and
Non-metric Space Indexer. In IN ACM MULTIMEDIA. 466–475.

[15] Anthony K. H. Tung, Rui Zhang, Nick Koudas, and Beng Chin Ooi. 2006. Simi-
larity search: a matching based approach. In VLDB’2006: Proceedings of the 32nd
international conference on Very large data bases. VLDB Endowment, 631–642.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 High-dimensional Similarity
	2.2 Bit-Sliced Indexing

	3 Proposed Approach
	3.1 kNN queries over BSI
	3.2 Query Dependent Equi-Depth Quantization

	4 Experimental Evaluation
	4.1 Nearest Neighbor Classification Accuracy
	4.2 Robustness with K and p
	4.3 QED for clustering

	5 Conclusion
	References

