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ABSTRACT
A typical predictive analytics workflow will pre-process data
in a database, transfer the resulting data to an external sta-
tistical tool such as R, create machine learning models in
R, and then apply the model on newly arriving data. To-
day, this workflow is slow and cumbersome. Extracting data
from databases, using ODBC connectors, can take hours on
multi-gigabyte datasets. Building models on single-threaded
R does not scale. Finally, it is nearly impossible to use R or
other common tools, to apply models on terabytes of newly
arriving data.

We solve all the above challenges by integrating HP Ver-
tica with Distributed R, a distributed framework for R.
This paper presents the design of a high performance data
transfer mechanism, new data-structures in Distributed R
to maintain data locality with database table segments, and
extensions to Vertica for saving and deploying R models.
Our experiments show that data transfers from Vertica are
6× faster than using ODBC connections. Even complex pre-
dictive analysis on 100s of gigabytes of database tables can
complete in minutes, and is as fast as in-memory systems
like Spark running directly on a distributed file system.

Categories and Subject Descriptors
H.2 [Database Management]: Systems; H.3.4
[Information Storage and Retrieval]: Systems
and software—distributed systems

General Terms
Design, Performance
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HP Vertica; R; Machine Learning; In-database
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1. INTRODUCTION
Data scientists rely on advanced statistical tools, such as

R and MATLAB, for exploratory analysis: modeling his-
torical data using different algorithms and then applying
these models on new data. Since operational data is gen-
erally stored in databases, data scientists extract data from
databases, import it in their statistical tool, and then use
their tool for both creating and deploying models. This
workflow is slow and cumbersome. Extracting data us-
ing ODBC connectors can take hours, and statistical tools
are typically single process, in-memory systems that cannot
handle 100s of gigabytes of data.

HP Vertica, Teradata, IBM Netezza, Pivotal Greenplum
and others currently implement a handful of data mining al-
gorithms inside the database [22, 14, 2]. Yet, data scientists
continue to prefer their external statistical tools because of
ease-of-use, the rigor of the algorithm implementations in
these tools (for regulatory compliance), and availability of
thousands of functions (such as 6000 packages in R). Given
the popularity of statistical tools, vendors of these tools have
enhanced their systems for parallel processing, which means
the number of scalable algorithms will continue to grow in
these systems [4, 9, 26]. Additionally, when in-database im-
plementation of an algorithm is unavailable, data scientists
are anyway forced to extract data from a database. Hence,
in addition to extending in-database capabilities, there is a
need to improve the performance of workflows that use both
database and statistical tools. In this paper, we describe
how HP Vertica integrates with R to solve the challenges of
customers who use both database and statistical tools.

Using statistical tools, such as R, with a database is chal-
lenging for multiple reasons. First, there is high overhead in
transferring data from the database and converting to R’s
format. Second, even if machine learning models are cre-
ated in R, it is ill-suited for applying the model on large
amounts of data in a timely manner. Third, when database
and R instances run on the same node, resource contention
can degrade performance.

1.1 Challenges
To understand the challenge in data transfer, consider the

case when 50GB to 150GB of table data has to be trans-
ferred from a database to R. Figure 1 compares two cases
(1) when data is transferred from Vertica to a single R in-
stance and (2) when extensions to R, such as Distributed
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Figure 1: Extracting data from a database is slow.
R and Distributed R use ODBC connections in this
setup. Lower is better.

R [3], are used to extract data in parallel from a database.
We use a 5-node database installation, where both R and
Distributed R make connections via ODBC. Using a single R
instance (a common scenario with customers), loading even
50 GB takes close to an hour. Parallel analytics engines,
such as Distributed R (prior name Presto [26]) or ScaleR [9]
may improve performance by starting multiple ODBC con-
nections to the database. Even this approach has limita-
tions. Multiple simultaneous SQL queries can overwhelm
the database. For example, an installation of Distributed R
on five 24-core servers will simultaneously start 120 ODBC
connections, stressing the database. Additionally, ODBC
connections destroy data locality when data is moved from
the database to concurrent R instances. Figure 1 shows
what happens if we launch Distributed R with 120 instances
where each R instance concurrently requests 1/120th of the
table rows in the database. Even with all of this parallelism,
loading 150 GB of data can still take close to 40 minutes.
Ironically, many machine learning analyses, such as regres-
sion, can complete in a few minutes even at these data sizes
(Section 7). Using these current approaches means that data
scientists may spend more time waiting for data to load than
to perform analysis.

Regarding the second challenge, extensions to R provide
parallel algorithms that speed up model creation. However,
models are typically created by training on a subset of data,
while deployment of models can occur on terabytes of new
data, and may have real-time constraints. Consider the case
of media buying platforms (such as RocketFuel [7]), which
bid on digital media advertisement in real time. These plat-
forms may create offline regression models on user charac-
teristics (such as websites visited and demographics), and
then use these models to bid, in real-time, on advertisement
slots auctioned by Google, Facebook, and other online ser-
vices. While R is a good fit for offline model creation, it is
ill-suited for real-time model deployment–transferring data
from a database is slow, and so is managing newly arriving
terabytes of data in R.

Finally, brokering shared resources between the database
and R is challenging. Machine learning computations are
generally compute as well as memory intensive. As an ex-
ample, a single R instance can easily use 100% of a CPU
core during computations, and have a large memory foot-
print. Running R computations on the same nodes as the

database can lead to resource starvation and poor perfor-
mance for both R jobs and database queries.

1.2 Contributions
This paper describes how HP Vertica solves the above

challenges by integrating the Vertica database with Dis-
tributed R, HP’s open source enhancement to single-
threaded R. The integrated product leverages the strengths
of both Vertica and R to provide the following features:

• Fast, parallel data transfer between Vertica and R

• Creation of distributed machine learning models in R
using database tables

• In-database model deployment and prediction

For fast, parallel data data transfer, our key idea is to
reduce the number of simultaneous database queries issued
to fetch data, and still allow parallel transfer from Vertica
to Distributed R. Only the master node in Distributed R
needs to issue a SQL query and initiate data transfer. The
new transfer mechanism works irrespective of whether R in-
stances are on the same or different nodes as the database.
Our methods enable users to choose between different poli-
cies to indicate their preference for maintaining data locality
versus ensuring evenly partitioned data in Distributed R.

For model creation, data scientists can leverage high per-
formance parallel algorithms in Distributed R to create mod-
els. We have added new data-structures to Distributed R
so that parallel algorithms work on data loaded from the
database.

For model deployment, we have extended Vertica to save
R models and apply them on tables. Since models can some-
times be very large, and inappropriate for storing in table
format, we serialize R objects and store them in Vertica’s
internal distributed file system. Models in Vertica can be
accessed by the query engine to run distributed prediction
functions. We use Hadoop YARN to broker shared resources
when Vertica and Distributed R are installed on the same
machines.

Our evaluation shows dramatic increase in performance of
workflows that use R on database data. For instance, data
transfer is now about 6× faster than using a traditional
ODBC connector. As an example, 400GB of data can be
loaded into Distributed R in less than 10 minutes. Addition-
ally, in-database prediction takes only a few minutes on bil-
lions of rows. We also compare against Spark, an in-memory
platform, which is 100× faster than MapReduce for iterative
algorithms [28]. Spark loads data directly from Hadoop file
system (HDFS) and is expected to be faster than executing
machine learning via external tools (such as R) on database
tables. Our results show that with Vertica integration, Dis-
tributed R executes machine learning algorithms as fast as
Spark even when data resides in a database. These results
are encouraging because, unlike the low overhead of load-
ing data directly from HDFS, interfacing with a database is
slower because the database first loads data from the local
filesystem, deserializes and decompresses data, converts it
to a standard format and then hands it to Distributed R for
parsing and converting into R objects.

2. OVERVIEW
Vertica is a disk-based, columnar store with MPP archi-

tecture [23]. Distributed R, on the other hand, extends R
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Figure 2: Architectural diagram of Vertica and Distributed R integration

with distributed, in-memory data structures (such as ar-
rays and lists) to execute parallel machine learning algo-
rithms [26]. Distributed R currently handles only data that
fits in the aggregate memory of the cluster. For larger
datasets, the operating system may invoke virtual memory
swapping and substantially increase overheads. In this work
we have integrated Vertica with Distributed R by adding
functionality to both systems. The new techniques support
fast data transfers, maintain data locality, and include the
ability to deploy R models inside the database.

Figure 2 shows the architecture of the integrated prod-
uct. Both Vertica and Distributed R run on commodity
Linux nodes. For good performance, we recommend well-
provisioned network such as nodes with 10Gb ethernet con-
nection. Distributed R can be installed on either the same
nodes as the Vertica database or on remote nodes. We
use Hadoop YARN, a resource manager, to broker shared
resources between Vertica and Distributed R. YARN uses
Linux containers for isolation between processes, and can
enforce memory and CPU usage restrictions. YARN ensures
that Vertica queries and Distributed R jobs do not adversely
interfere with each other.

To begin an R session, users connect to the Distributed R
master node shown in Figure 2. During the workflow, data
is transferred from Vertica’s on-disk tables to Distributed
R’s in-memory data structures. The data transfer occurs in
parallel. For high performance, data is read from local disks,
adhering to the table segmentation scheme of Vertica. Once
data is loaded in Distributed R, users can manipulate it us-
ing R functions and also apply distributed machine learning
algorithms. After creating machine learning models, users
can store them in the database for later use. If the model has
a reference to data spread across Distributed R nodes, then
the data is first fetched from Distributed R workers to the
master, embedded into an R model object, and then trans-
ferred from the Distributed R master to the Vertica node.
Within the Vertica node, R models are stored in an internal
distributed file system (DFS) and hence accessible to the
database query engine including user-defined functions.

The seamless integration between Vertica and Distributed
R ensures that users can leverage the strengths of both sys-
tems. In a typical enterprise scenario, customers use stan-
dard ETL processes to first load data into Vertica. During
a predictive analytics workflow, pre-processing steps such as
feature extraction can be accomplished inside Vertica itself
using SQL operators, sometimes in conjunction with user-
defined functions. After pre-processing, machine learning

#Start Distributed R session
1 : library(distributedR)
2 : library(HPdregression)
3 : distributedR_start()
4 : ...

#Load features
5 : data<-db2darray(‘‘mytable’’,

list(‘‘def’’), list(‘‘A’’,’’B’’))

#Run distributed regression and cross validation
6 : model<-hpdglm(data$Y, data$X,

family=binomial(link=logit))
7 : cv.hpdglm(data$Y, data$X, model)
8 : print(coef(model))

#Deploy model to database
9 : deploy.model(model, ‘rModel’)

#Run in-db predictions
10: q<-‘‘SELECT glmPredict(A,B

using PARAMETERS model=‘rModel’)
OVER (PARTITION BEST) from mytable2’’

11: res<-sqlQuery(conn,q)

Figure 3: Regression analysis. Illustrates data
transfer, distributed model creation, and model de-
ployment.

models can be created in Distributed R. For instance, Fig-
ure 3 shows an example R code which uses Vertica and Dis-
tributed R to perform distributed regression analysis. In
lines 1-3, the user starts Distributed R from an R console.
In line 5, the db2darray function selects features from a Ver-
tica table and loads it in a distributed array in R. In line 6,
hpdglm executes distributed logistic regression R. The user
can then inspect the regression model, such as the coeffi-
cients using coeff, and include other types of analysis in R
(line 8). Using deploy.model in line 9, the regression model
is serialized and stored in Vertica. Finally, the user can
run predictions inside the database using SQL commands,
which can be invoked at the Vertica SQL prompt or through
R (line 10-11).

3. VERTICA FAST TRANSFER
We have implemented a new data transfer mechanism,

called Vertica Fast Transfer (VFT), that solves two chal-
lenges. First, it overcomes the problem that hundreds of
simultaneous ODBC connections from Distributed R can
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select ExportToDistributedR(col1, col2, col3,
USING PARAMETERS DR_workers =
‘worker1:port|worker2:port’,
partitionSize=100000,
policy = ‘uniform’)

over(PARTITION BEST) from Samples;

Figure 4: SQL query issued internally to initiate
data transfer

overwhelm the database and make transfers slow. Second,
it provides the ability to optimize data transfer for different
partitioning policies such as those preserving locality or bal-
ancing load. To understand the second challenge, consider
the case of multiple R instances connecting to a database.
As each instance loads data from the database table, data
locality is destroyed. For example, the first R instance will
request the first N rows of a table (e.g., 1 to 1 million rows),
the second instance will request the next N rows (e.g., 1 mil-
lion to 2 million rows), and so on. However, the first million
rows may be spread across the database nodes (depending
upon the segmentation scheme). Extracting these rows from
multiple nodes and transferring it to each R instance hurts
data locality and increases transfer overheads.

Vertica Fast Transfer has two components. On the
database side, once a data request arrives from Distributed
R, Vertica starts parallel data streams to Distributed R
nodes. Vertica user-defined functions handle these streams
and also determine the data partitioning scheme. On the
Distributed R side, data streams are stored in-memory, op-
tionally combined, and then converted into R objects. All
of these steps are hidden from the user by a single line of R
function, i.e., db2darray on line 5 of Figure 3.

3.1 Extracting tables
Initially data resides as tables in Vertica and is stored

as segments on the database nodes. After transfer to Dis-
tributed R, the data becomes part of distributed data-
structures (such as arrays). To depict that the data dis-
tribution may be different in Distributed R compared to the
original database table, we call chunks of data local to Dis-
tributed R nodes as partitions. As an example, a 5-node
Distributed R cluster may load a database table as an R
array with 5 partitions. The union of these partitions cor-
respond to the complete data in the table.

To initiate data loading, the Distributed R master node
issues a single SQL query to Vertica. At the same time,
Distributed R workers start listening for network connec-
tions from Vertica processes. The SQL query invokes a Ver-
tica user-defined function, ExportToDistributedR to start
data transfer. The query also relays meta-data information
that is used in subsequent steps to perform the parallel data
transfer. Figure 4 shows the three key arguments that are
included in the ExportToDistributedR function. First, net-
work information such as the hostname and ports of the Dis-
tributed R workers, is passed. This information tells Vertica
which R instances to connect to. Second, approximate sizes
of partitions that R instances expect, is provided. Partition
sizes are calculated by dividing the the number of rows in
the Vertica table by the total number of R instances waiting
to receive the data. This calculation is performed by the
Distributed R code that invokes the data transfer. Partition
sizes are used as hints by Vertica to determine how much

Worker 1
in‐mem
buffer R objectdata UDF

Worker 2
in‐mem
buffer R objectdata UDF

Vertica Distributed R

Node 1

Node 2

Figure 5: Locality preserving data transfer policy

data should be buffered before transferring to R instances.
Third, the transfer policy argument determines how data
should be spread across R instances.

Once all data transfer related information is received,
Vertica spawns multiple instances of user-defined functions
(UDFs) to extract data from its columnar storage. UDFs
on each database node read a unique segment of the table
stored on that node. The partitioning policy determines how
the database table should be split for each UDF instance to
operate. Generally, the PARTITION BY clause on a particular
table column is used. However, in many cases there is no
natural column to partition the table, and the only require-
ment is to transfer table contents to Distributed R with-
out ordering constraints. In such cases, Vertica’s PARTITION
BEST scheme is appropriate as it processes data that is local
to each Vertica node and sends it to the corresponding R
instance. Using this scheme, we avoid the costly data move-
ment of simultaneous ODBC connections that fetch ordered
sequence of rows from a table. Vertica’s PARTITION BEST

takes into account resource availability, such as CPU and
memory usage, to determine the optimal number of UDF
instances to spawn. The UDFs use in-memory buffers to
stage table contents before pushing them to R instances.

3.2 Data distribution policies
Vertica can currently transfer data to Distributed R us-

ing one of the two policies– locality preserving and uniform
distribution. As shown in Figure 5 and 6, these policies
provide users control over how data is distributed. Figure 5
illustrates the locality preserving policy. This policy adheres
to the data segmentation on Vertica, i.e., there is one-to-one
mapping of data transfer between Vertica nodes and Dis-
tributed R workers. In this policy, all UDF instances ex-
ecuting on Vertica node 1 will send data to Distributed R
worker 1 and so on. This approach is used when Vertica
and Distributed R have the same number of nodes. In the
common case, where Vertica and Distributed R are installed
on the same nodes, there is additional advantage as network
overhead is minimized.

While data locality is important, it can sometimes lead
to load imbalance and hence poor performance of machine
learning algorithms in Distributed R. For example, if tables
in Vertica have skewed segmentation, once loaded in Dis-
tributed R, some R instances will hold more data than oth-
ers. During the execution of distributed machine learning
algorithms, this data skew can lead to straggler tasks, and
hence poor performance [20]. Figure 6 illustrates the uni-
form distribution policy, which addresses the issue of data
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skew. The key idea is to sprinkle data across Distributed R
workers such that data distribution is largely uniform, i.e.,
each R instance will contain the same amount of data. In
this policy, each UDF instance connects and transfers data
equally to Distributed R workers in a round-robin fashion
until all local table data has been processed. This policy
can be employed irrespective of the relative number of Dis-
tributed R and Vertica nodes.

3.3 Receiving data in R
As each Distributed R node receives data from Vertica, it

stores them as in-memory data files (typically in /dev/shm).
For parallelism, each Distributed R node uses a thread-
pool to accept data streams from multiple Vertica UDF in-
stances. The conversion of incoming data into distributed
data-structures happens in two steps. First, an empty dis-
tributed data-structure (such as a distributed array) is cre-
ates in R. This empty data-structure will have a symbol ta-
ble in the Distributed R master node, which points to empty
partitions on worker nodes. Once R instances on the work-
ers receive enough rows from Vertica, the in-memory files
are converted into R objects and assembled into partitions.
Thus, the empty pointers in the distributed data-structure
start pointing to the now filled partitions. At the end of this
stage, data from Vertica is available for use by Distributed
R algorithms.

4. NEW DATA STRUCTURES ADDED TO
DISTRIBUTED R

Distributed R enhances R’s data structures such as arrays,
data-frames, and lists to store data in-memory across nodes.
Data in Distributed R is partitioned by rows, columns,
or blocks (sub-matrices). Using these data-structures, R
programmers can manipulate remote data and express dis-
tributed algorithms. For example, to add two distributed
arrays, programmers write a R function that takes corre-
sponding partitions of the two arrays and adds them. In
this section, we describe novel additions to Distributed R
for integrating with Vertica. To simplify the discussion we
focus on distributed arrays. We first discuss the existing
state of distributed arrays and then describe the enhance-
ments.

In current distributed arrays, all partitions, except for the
last one, are of the same size. The last partition may be
slightly smaller if the total number of rows in the data is
not divisible by the number of partitions. Figure 7 shows
an example where the input table has 2 columns and 6

Id Age

1 55

2 21

3 89

4 13

5 34

6 42

1 55

2 21

3 89

4 13

A=darray(dim=c(6,2), blocks=c(2,2))

Partition 1 Partition 2 Partition 3

5 89

6 42

Vertica table Distributed R array

Figure 7: Distributed arrays originally supported
only equal sized partitions

1 55 2 21

3 89

4 13

Partition 1

Partition 2

Partition 3

5 89

6 42

A=darray(npartitions=3)Id Age

1 55

2 21

3 89

4 13

5 34

6 42
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DB 
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DB 
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Vertica table Distributed R array

Figure 8: New data-structures now handle arrays
with different partition sizes

rows (ignoring the names of the columns). The program-
mer can declare an array using A = darray(dim=c(6,2),

blocks=c(2,2)) and load the input data into Distributed
R. This array definition creates a distributed array of size
6×2, where each partition is a 2×2 sub-array. Therefore,
the array has equal sized partitions.

Forcing partitions to be the same size has multiple advan-
tages. First, R programmers can treat distributed arrays
just like normal R arrays. For example, the syntax of declar-
ing distributed arrays (darray(dim=,blocks=)) is same as
R arrays, except that blocks represents the partition size.
Second, in many distributed algorithms different arrays may
need to be co-partitioned, i.e., partitioned in the same man-
ner for parallel processing to occur. As an example, to add
distributed arrays, the arrays should be partitioned in the
same manner (such as by rows) and be of the same size. It
is fairly simple to use blocks to declare arrays that have
the same partition size. Finally, knowledge of array dimen-
sion and partition sizes during declaration simplifies how
Distributed R allocates and manages its memory space.

To integrate with Vertica, we need to handle arrays with
different partition sizes. In fact, partition sizes are not
known at the time distributed arrays are declared. Instead,
partition sizes become available once data has been trans-
ferred from Vertica to Distributed R. The reason for the
different partition sizes is that the Vertica table segments
present on each node depend on the segmentation scheme
and may contain different numbers of elements. Therefore,
when using the locality preserving data transfer policy, par-
titions of the distributed array correspond to table segments
and will be of uneven size. Figure 8 shows an example where
an input table is initially stored in a 3-node Vertica database.
In this case the first row of the table is in database node one,
the next three rows are in the second node, and the remain-
ing in the last node. If we want to maintain data locality
while loading data in Distributed R, we need distributed
data-structures that can store different sized partitions in
R.

1661



Functionality Description
darray(npartitions=) Create a distributed array with

specified number of partitions

dframe(npartitions=) Create a distributed data-
frame with specified number of
partitions

dlist(npartitions=) Create a distributed list with
specified number of partitions

partitionsize(A,i) Return size of ith partition or of
all partitions if i is missing.

clone(A,nrow=,ncol=) Return another object with the
same structure, such as number
partitions, as input A .

Table 1: New language constructs in Distributed R

To handle different sized partitions, we have added new
data-structures in Distributed R. Table 1 lists the new data-
structures and helper functions in Distributed R. Users can
declare distributed arrays without providing any size infor-
mation (darray(npartitions=)). After declaration, meta-
data related to darray is created on the Distribute R master
node, but no memory is reserved on the workers to store data
contents. Users can call R functions to either generate data
for each partition or load data from Vertica. Even though
each partition can be of different size, Distributed R checks
for conformity between adjacent partitions. For example,
if data is row partitioned, each partition may have variable
number of rows, but the same number of columns. These
checks ensure that arrays constitute well-formed matrices.

Figure 8 illustrates an example of array partitions when
data has been loaded from Vertica to Distributed R. The
Distributed R array has three partitions, each of which is
of a different size. The first array partition contains only
one row which is the data present in the first segment of
the database. The second and third array partitions contain
three and two rows respectively, which correspond to the
remaining two database segments.

We have implemented multiple machine learning algo-
rithms in Distributed R that use these new data-structures.
In many of these algorithms, intermediate steps require ar-
rays which have the same partitioning scheme as other ar-
rays. Since arrays can have hundreds of different sized parti-
tions, we provide high level functions such as clone to copy
the structure of an existing array.

Figure 9 illustrates how a table from Vertica is loaded into
a distributed array X, in order to run algorithms. The first
step, X<-db2darray(..), loads data from the table Samples
to the array X. The array X has two partitions but each with
different number of rows. Next, a user may run the Y<-

clone(..) command to create a vector Y. Y has the same
number of partitions as X, same number of rows, one column,
and the partitions are co-located with those of array X. In
the figure, the Distributed R memory manager is located on
the master node. The memory manager tracks the location
and meta-data of each partition.

5. IN-DATABASE MODEL DEPLOYMENT
AND PREDICTION

After creating machine learning models in Distributed R,
data scientists typically use the model for predictions. We
have added new features in Vertica to store and apply ma-

1

2

…

1000

1

…

…

…

1000

1

…

…

…

1000

X_1 Y_1 X_2 Y_2

X_1 X_2

Step 1: Load from Vertica
X<‐db2darray(“Samples”,…)

Samples

Step 2: Create vector
Y<‐clone(X, ncol=1)

Vertica
table

Worker 1 Worker 2

Distributed R

Mem. manager
X X_1

_loc
X_2
_loc

Y Y_1
_loc

Y_2
_loc

Data 
transfer

Figure 9: Distributed arrays with different partition
sizes

=> select * from R_Models;

model | owner | type | size | description
-------------------------------------------------
model1 | X | kmeans | 100 | clustering
model2 | Y | regression | 20 | forecasting

Figure 10: Vertica R models table

chine learning models in the database. Saving models in
Vertica eliminates the need to move data to an external an-
alytical tool to perform predictions. Therefore, models can
be applied on terabytes of data as well as on newly arriving
data which is streamed into the database.

Once a model has been created in Distributed R, users
can deploy them in the database using the deploy.model

function. Users simply pass the R model as well as a name
with which the model can be referred to (e.g., Figure 3 line
9). Internally, models are first serialized and then trans-
ferred to the database using a Vertica user-defined function
(UDF). Since models can be large (sometimes gigabytes), we
don’t store them as part of a regular table. Instead, mod-
els are stored as binary blobs in Vertica’s distributed file
system (DFS). The Vertica DFS was primarily created for
storing unstructured data that are accessible by the query
engine. The DFS can replicate files across nodes to ensure
that they are available at all nodes. While models are stored
in the DFS, meta-data related to the models are stored in
a database table called R_Models. Figure 10 shows an ex-
ample of what the model table may contain. Models can be
assigned security permissions to grant access or modification
rights to database users. Models stored in the DFS provide
the same fault-tolerance guarantees as Vertica tables.

Users can explore models and apply them on tables by
providing R functions that perform predictions. Prediction
functions are algorithm specific because both the data con-
tained in the model, and how it should be used depends
upon the machine learning algorithm. As an example, a
K-means clustering model may contain information about
centers while a regression model may contain only coeffi-
cients. Applying a K-means model on new data involves
calculating distance from the centers while for linear regres-
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Figure 11: Model deployment and prediction

sion coefficients have to be multiplied with values in a row.
We have added prediction functions in Vertica for common
machine learning models such as clustering, regression, and
randomforest. Users have the flexibility to create their own
prediction functions for custom models and register them
with Vertica.

Figure 11 illustrates the complete workflow of how mod-
els are created in Distributed R and then deployed in Ver-
tica for predictions. If the content of a machine learning
model is distributed across Distributed R workers, the mas-
ter first gathers the model from R workers, and then sends
them to one of the Vertica nodes. The Vertica DFS inter-
nally replicates the model, and makes it available to different
nodes for prediction functions. When prediction functions
are invoked, Vertica starts user-defined functions that first
retrieve the models from DFS, deserialize and load them
in R, and call the prediction function on the input data.
The Vertica query planner starts many parallel instances
of user-defined functions. The amount of parallelism is de-
pendent on resources available and how the input table is
partitioned. When the table is well partitioned among the
nodes of the Vertica cluster, a near linear speedup can be
achieved through parallel prediction.

6. RESOURCE MANAGEMENT
Distributed R and Vertica can be deployed on the same

node or on separate nodes. There are advantages and dis-
advantages to both setup options. Using just a single set of
nodes means that in many cases network overhead is mini-
mized and transferring data from Vertica to Distributed R
is fast. Node consolidation also leads to better resource uti-
lization so that the database and R processes can share re-
sources when needed. The disadvantage of such an approach
is that resource isolation is a thorny issue. Under heavy us-
age, both SQL queries and machine learning processes will
see performance degradation, especially when resources are
insufficient. Deploying Vertica and Distributed R on sepa-
rate nodes can be considered a case of static resource allo-
cation. It ensures that machine learning analysis does not
affect production SQL queries. However, if machine learning
analysis is infrequent or SQL queries occur in bursts, node
resources remain idle and underutilized.

We use Hadoop’s YARN resource manager for allocat-
ing and isolating resources. YARN uses a two level sched-
uler, supports different allocation policies such as capac-
ity and fairness, and is cognizant of data locality. To use
YARN, each framework requires an application manager
which makes requests to YARN for resources. Instead of
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Figure 12: ODBC vs. Vertica Fast Transfer in a
5-node cluster. Lower is better.

creating a new resource manager, we leverage YARN be-
cause it is a natural choice for multi-engine software stacks.

Since releasing resources and tearing down a database is
costly, Vertica requests resources from YARN for long term
use. Distributed R, on the other hand, requests resources
from YARN whenever a user starts a session. When start-
ing a Distributed R session, users can specify resources such
as the number of cores or amount of memory to be used
in that session. These user specified resources are requested
from YARN, with a preference for data locality with Vertica.
When scheduled on the same nodes, Vertica and Distributed
R processes are isolated using Linux cgroups [6]. These en-
forcement mechanisms ensure that each process is restricted
to the allocated amount of CPU and memory usage.

7. PERFORMANCE BENEFITS
By integrating Vertica and Distributed R, we address two

major customer complaints– extracting data from databases
is slow and R cannot be used for analysis on really large
data. In this section we empirically evaluate the benefits of
our integration.

Setup. Our experiments use a cluster of 24 HP SL390
servers running CentOS 6.4. Each server has 24 hyper-
threaded 2.67 GHz cores (Intel Xeon X5650), 196 GB of
RAM, 120 GB SSD, and are connected with full bisection
bandwidth on a 10Gbps network. We use Vertica 7.1 and
Distributed R 1.0.0. For the comparison study with Spark,
we use Spark 1.1.0 running on HDFS. HDFS is set to the
default 3-way data replication. Spark machine learning al-
gorithms are from the MLlib package which uses optimized
linear algebra libraries.

7.1 Vertica Fast Transfer
The aim of our new Vertica Fast Transfer (VFT) mech-

anism is to ensure that data can be loaded in an external
analytics engine in a matter of minutes. Figure 12 compares
the performance of loading data in Distributed R using par-
allel ODBC connections versus VFT. In this experiment, we
use a 5-node Vertica cluster, with Distributed R installed
on a separate 5-node cluster. For VFT we use the locality-
preserving policy. Distributed R starts 24 R instances on
each node, and each R instance connects using an ODBC
connection or uses the VFT mechanism. We vary the Ver-
tica table size from 50 GB to 150 GB data (approximately
1 billion to 3 billion rows). The results show that VFT can
load datasets as large as 150 GB in less than 6 minutes, com-
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12-node cluster setup with 400 GB data.

pared to about 40 minutes in the case of ODBC connectors.
We noticed that running Distributed R and Vertica on the
same servers has similar performance, which means that the
network is not a bottleneck. Instead, disk, database, and R
execution are the bottlenecks.

Figure 13 shows similar results on a 12-node cluster and
with up to 400 GB size tables. For the ODBC case,
Distributed R will spawn 288 (12*24) connections to the
database. Unfortunately, even with these many parallel con-
nections and a large database cluster, it takes almost an hour
to load 400 GB of data. With VFT, the load time is less
than 10 minutes. Figure 14 shows a breakdown of the time
spent in VFT, as we increase the number of R instances on
each server. The DB part includes time taken by Vertica
to read 400 GB data from disk, serialize, and send it across
the network. The R part includes the time taken by Dis-
tributed R instances to receive data, buffer it, and finally
convert to an R object. The results show that when there
are only a couple of R instances per server, almost half of
the transfer time is spent in buffering data and converting
into R objects. Time taken by the database is constant and
independent of the parallelism in Distributed R. The reason
is that the database, irrespective of Distributed R, uses the
same amount of parallelism and resources as specified by its
query planner. As we increase the number of R instances
(more parallelism in Distributed R), the time to create R
objects decreases.
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Figure 15: Scalability of in-database K-means pre-
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Figure 16: Scalability of in-database linear regres-
sion prediction.

7.2 Scalable model deployment in Vertica
Once machine learning models are created, they can be

stored in the database for later use. Customers can, there-
fore, use Vertica itself for predictions. To measure the per-
formance of in-database prediction, we use a 5-node Vertica
cluster, and populate tables with six columns and up to a
billion rows. We test the performance of prediction on two
machine learning models, K-means and linear regression.

Figure 15 shows the time taken to apply the K-means
model on Vertica tables. A K-means model contains the fi-
nal centers into which the training data was clustered. By
applying the predict function (KmeansPredict), each point
in the table is mapped to its nearest cluster center. For each
row in the table, KmeansPredict calculates the euclidean dis-
tance of the point to the centers. The prediction function
runs in parallel inside Vertica and, as shown in Figure 15,
takes less than 20 seconds to execute on 10 million rows. As
we increase the table size to a billion rows, the prediction
time increases to 318 seconds. The execution time shows
close to linear scaling because both the dataset and execu-
tion time grows by approximately 100×.

Figure 16 shows a similar behavior for linear regression.
The linear regression model consists of coefficients that de-
fine a line best fitting the training data. The Vertica predict
function (GlmPredict) applies these coefficients on the input
table and outputs the response value. As shown in Figure 16,
Vertica takes less than 10 seconds to run prediction on a 10
million row table. Even on a 1 billion row table, it takes only
206 seconds to complete prediction. Similar to K-means pre-

1664



0

5

10

15

20

25

30

35

40

1 2 4 8 12 16 20 24

Ti
m
e 
(m

in
ut
es
)

No. of cores

DR R

Figure 17: Distributed R vs. R: K-means clustering
on a single node. Lower is better.

0

5

10

15

20

25

30

1 2 4 8 16 24

Ti
m
e 
(m

in
ut
es
)

No. of cores

DR R

Figure 18: Distributed R vs. R: Linear regression
on a single node. Lower is better.

diction, the linear regression prediction function shows near
linear scalability as the dataset size is increased.

7.3 Comparison with R and Spark
Vertica’s integration with Distributed R not only helps

users overcome the limitations of R, but also allows them to
efficiently analyze their data stored in the database. We use
experiments to show how our solution compares against the
state-of-the-art.

7.3.1 Advantages over R
R, due to its single-threaded nature, has limitations re-

garding both the dataset size and performance. HP Vertica
Distributed R solves many of these limitations by scaling R
to multi-core and multi-node settings. We have open sourced
different clustering, classification, and graph algorithms in
Distributed R, and made them available on GitHub [3]. This
section provides evidence of the performance and scalabil-
ity benefits of Distributed R. Here, we use K-means and
linear regression as example machine learning applications.
We exclude the time taken to load data from Vertica because
single-threaded R, using one ODBC connection, takes a long
time to load from a database (as shown earlier in Figure 1).

K-means clustering assigns points to one of K groups
based on their similarity. In each iteration, points are first
mapped to their closest centers and then new centers are
calculated by averaging the groups. In this experiment, we
set the number of centers, i.e., K, to 1000 and use a syn-
thetic dataset with 1 million points, each with 100 features,
to compare the performance of R and Distributed R on a sin-
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Figure 19: Scalability of linear regression in Dis-
tributed R. Both per-iteration and convergence time
are shown. Lower is better.

gle node as we vary the number of cores from 1–24. Figure 17
plots the time taken per iteration for both R and Distributed
R . Figure 17 shows that R takes approximately 35 minutes
to complete an iteration of K-means, even as the number of
cores is increased. In contrast, on a single node Distributed
R can reduce the per-iteration time to less than 4 minutes by
using 12 or more cores. The performance plateaus beyond
12 cores because the node has only 12 physical cores and the
K-means algorithm is compute bound. Overall, Distributed
R shows 9× speedup over stock R by using 12 cores.

We also compare against R using regression analysis,
which is widely used by financial firms for forecasting, such
as predicting sales based on customer characteristics. Fig-
ure 18 compares the performance of regression on a dataset
with 100 million rows and 7 columns. On this dataset,
R takes more than 25 minutes to converge to the result.
In comparison, Distributed R takes less than 10 minutes
even with a single core. The reason for this difference is
because R uses matrix decomposition to implement regres-
sion, while Distributed R uses the Newton-Raphson tech-
nique [27]. Even though the final answer is the same, these
techniques result in different running time. Irrespective of
the implementation technique, Distributed R shows good
single-core performance as well as scalability with the num-
ber of cores. As the number of cores is increased from 1 to
24, the execution time of Distributed R drops from about 8
minutes to less than a minute, representing a 9× speedup.

Scaling on multiple nodes. While R is restricted to a
single node and single core, Distributed R can scale horizon-
tally and utilize multiple nodes to analyze multi-gigagbyte
datasets. Figure 19 shows how distributed linear regression
scales on upto 8 nodes. For the experiments, we synthet-
ically generated datasets by creating vectors around coef-
ficients that we expect to fit the data. This methodology
ensures that we can check for accuracy of the answers by
Distributed R. We use 100 features per dataset, and the
number of rows are 30M, 120M, and 240M for 1, 4, and 8
nodes respectively, representing a proportional data increase
per node. Figure 19 shows that Distributed R completes
each Newton-Raphson iteration in less than 2 minutes, and
converges in just 4 minutes (2 iterations).

7.3.2 Comparison with Spark on HDFS
Due to the prevalent belief that loading data into a

database and then exporting data out of a database is slow,
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Hadoop, especially the HDFS filesystem, has become a com-
mon choice for storing raw data. On this data, analysts may
use MapReduce, Spark, and other programming paradigms
for different kinds of analysis. While MapReduce and sys-
tems built on top of it are known to be slow, Spark provides
a fast, in-memory computation layer, and is an order of mag-
nitude faster.

In this section we show that Vertica with Distributed R
can be as fast as Spark running on top of HDFS. These num-
bers are encouraging because loading data directly from a
distributed file system is expected to be much faster than
reading data out of a database and running analytics in an
external tool. This is because the database has to read data
from the local filesystem, deserialize and decompress data,
convert it into a standard format (such as csv), and may
even need to serialize again if the client is using a network
connection. The external tool, such as R, will then parse the
incoming data and convert it into objects. In comparison,
Spark which is tightly integrated with HDFS, reads the data
directly from the local HDFS node and optionally deserial-
izes the data before converting into its own data-structures.

We run K-means on multi-gigabyte datasets and compare
the end-to-end application performance between Vertica and
Spark. We use three setups: 1 node cluster, 4 node cluster,
and 8 node cluster running Distributed R on Vertica and
Spark on HDFS.

K-means. We use three synthetic datasets, with 60M,
240M, and 480M rows. Each dataset has 100 features, and
we set the number of centers (K) to 1000. These datasets
correspond to approximately 45GB, 180GB, and 360GB on-
disk data.

Figure 20 compares the performance of Spark and Dis-
tributed R. We exclude the load time to first measure the
scalability of each system. As we increase the number of
nodes from 1 to 4 and finally 8, we proportionally increase
the number of rows in the dataset from 60M to 240M, and
then to 480M. Therefore, in an ideal distributed system the
per-iteration execution time should remain constant. In the
figure, Spark and DR denote the same implementation of the
K-means algorithm, and hence an apples-to-apples compar-
ison.

Figure 20 shows that Distributed R takes approximately
16 minutes to complete each iteration at 8 nodes while Spark
requires 21 minutes or more. Both Distributed R and Spark
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Distributed R and Spark. We use a 4-node cluster
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scale well as the number of servers and the dataset size is
increased. Overall, Distributed R and Spark have similar
performance, with Distributed R faster about 20%.

End-to-end experiments. While the previous exper-
iment shows that machine learning algorithms available in
Distributed R are slightly faster than Spark, the results ex-
clude one important aspect–time to load data. Our final ex-
periment compares end-to-end performance, i.e, application
time plus the time taken to load data from Vertica compared
to Spark loading data from HDFS.

We run K-means in the 4-node setup. The datasets are
the same as in the previous experiment, 240M rows and 100
features. For K-means, Distributed R takes 15 minutes to
load the data from Vertica and 16 minutes per-iteration.
Spark, on the other hand, needs 11 minutes to load the
data from HDFS and 21 minutes per-iteration. Overall, this
means that Spark and Distributed R take almost the same
time to run K-means end-to-end. We also measure the case
when data resides as files in the local ext4 filesystem of each
node, and Distributed R loads data directly from these files.
DR-disk in the figure shows that it takes just 5 minutes to
load all the data from files in ext4, about 2× faster than
Spark on HDFS and 3× faster than loading via Vertica.
These numbers indicate the higher overheads involved in
extracting data from distributed filesystems and databases.

Summary. Our comparison with Spark shows that in-
terfacing an external tool, such as R, with a database is not
necessarily slow. With proper integration, R applications
can read data from a database at comparable speeds to sys-
tems like Spark that are tightly integrated with HDFS, and
read directly from the distributed file system.

8. RELATED WORK
There are many systems that provide the ability to per-

form machine learning analysis. We briefly survey the rele-
vant systems below.

Machine learning infrastructure. Matlab [5],
SAS [11], R [8], and others are traditional statistical tools
used by data scientists for different types of analysis includ-
ing machine learning and graph processing. Each of these
tools has a wide user base, sometimes in the order of mil-
lions of customers. R, given it’s open source nature, has be-
come increasingly popular and has more than 6000 packages
available. All of these tools are generally single-threaded
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and known to have limitations on large datasets. Therefore,
the common usage model is to install these tools on lap-
tops and desktops, and perform analysis on sampled data
to avoid hitting the data size limitations. Several recent ef-
forts have extended these tools for parallel processing on a
single machine(parallel Matlab [4], ScaleR [9]), distributed
computing (Distributed R [26]), and even integration with
Hadoop (SAS on Hadoop [12], RHadoop [10]).

The last few years has seen a surge in distributed com-
puting infrastructure for machine learning and graph pro-
cessing. Google’s MapReduce pushed the scale of dis-
tributed computing to thousands of commodity, but unre-
liable, servers [18]. A prominent use of the MapReduce in-
frastructure is for graph analysis, such as calculating PageR-
ank of the Web graph [15]. The Hadoop ecosystem, an
open source version of MapReduce, added many machine
learning and graph analysis algorithms under the Mahout
library [1]. However, the MapReduce paradigm is ineffi-
cient for machine learning algorithms, since they are iter-
ative in nature. There have been efforts to improve per-
formance of iterative algorithms by using techniques such
as caching (HaLoop [16], Twister [19]). Another line of re-
search has abandoned the MapReduce interface completely
for specialization, such as a vertex centric programming for
graph processing (Pregel [24], GraphLab [20]). Spark gen-
eralizes the programming paradigm of MapReduce by sup-
porting LINQ like API which include aggregation and filter
functions [28]. Spark improves over the performance of other
systems by using main memory for computations, avoiding
disk accesses, but still guaranteeing fault-tolerance. Spark’s
machine learning and SQL interface are an order of magni-
tude faster than similar systems on Hadoop.

Many of the techniques in this paper, such as extracting
data from databases, are independent of the choice of the ex-
ternal analytics tool. For example, one could use the mech-
anisms in this paper to integrate Vertica with Spark instead
of Distributed R. The integration of Vertica and Distributed
R ensures that customers can continue to use the popular
tool R along with industrial strength SQL by Vertica, and
get competitive performance.

Databases and machine learning. Database vendors
use three main approaches to support machine learning anal-
ysis (1) provide ways to extract data from database to R like
tools, (2) support R within the database, and (3) implement
distributed algorithms in the database. We contrast these
approaches below.

ODBC based connectors are commonly used to extract
data from databases. As mentioned in this paper, ODBC
connections are slow and do not meet the performance re-
quirements on large data. Solutions such as Teradata Par-
allel Transporter (TPT) FastExport supports parallel data
transfer from Teradata to a client [13]. It uses multiple ses-
sions to extract partitioned table data, and is similar to
using multiple ODBC connections. Unlike mechanisms ex-
pressed in this paper, TPT does not transfer data to the
memory of remote analytics engines, nor does it support
different transfer policies such as partitioning data for load
balance or data locality. RICE shows how to bridge SAP
HANA with single-threaded R [21]. The key idea is to use
shared memory on the node to convert database tables to
R data-frames with low overhead. The data format con-
version techniques in RICE are complementary to Vertica’s
fast transfer mechanism. As an example, Distributed R uses

shared memory to not only stage data arriving from Vertica
but also to share data across multiple R processes. However,
unlike RICE, Vertica also focuses on reducing the overhead
of transferring data in parallel to multiple R instances, and
supports different data distribution policies.

Many prominent database vendors such as Oracle, Ver-
tica, and others embed R in the database. This approach
provides the ability to call R with user defined functions
(UDF). Unfortunately, such an approach is limited by the
single threaded implementation of the algorithm in the UDF.
As an example, a customer can call single threaded R K-
means by funneling a table through a single R UDF, but
they cannot create a distributed K-means function by sim-
ple invoking multiple K-means UDFs. Ricardo is an ex-
ample system that combines R and Hadoop [17]. Ricardo
performs coarse grained decomposition by delegating large
scale aggregation queries to Hadoop and small-scale statis-
tical analysis to single-threaded R. Vertica has similar goals
of delegating pre-processing and model deployment to the
database, but provides new mechanisms for integrating with
a distributed system such as Distributed R.

Finally, MADlib exemplifies the approach of expressing
distributed, in-database, machine learning algorithms via
user-defined functions, and SQL statements [22]. SciDB
goes a step further by providing support for arrays in
the database instead of retrofitting them on relational ta-
bles [25]. MADlib like approaches can leverage the SQL
query optimizer and reduce data movement overhead. How-
ever, to contribute algorithms one needs to follow the pro-
gramming paradigm proposed by MADlib. Vertica’s inte-
gration with Distributed R is an orthogonal approach. It
leverages the strengths of both relational databases and R.
Our approach uses the database for model deployment, but
does not rule out implementing distributed algorithms in-
side the database (such as pattern mining in Vertica [2]).
However, by integrating Vertica with Distributed R, Vertica
customers get the familiarity and power of R. Additionally,
since most data scientists use R like tools to implement their
analysis, one expects R based package contributions to grow
rapidly, and these new algorithms will become automatically
available to Vertica customers.

9. CONCLUSIONS
By integrating Vertica with Distributed R, we have not

only expanded the functionality of Vertica but also solved
multiple performance issues that customers face when using
R with a database. This paper shows how customers can
now use Vertica’s industrial strength SQL engine for pre-
processing data, deploying machine learning models, and ap-
plying predictions on database tables. Our new data transfer
mechanism and parallel algorithms in Distributed R improve
the end-to-end execution time of workflows by an order of
magnitude compared to using R on a database.
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